JP2975882B2 - Silicon nitride heatsink for pressure welding and pressure welding structural parts using it - Google Patents

Silicon nitride heatsink for pressure welding and pressure welding structural parts using it

Info

Publication number
JP2975882B2
JP2975882B2 JP7344234A JP34423495A JP2975882B2 JP 2975882 B2 JP2975882 B2 JP 2975882B2 JP 7344234 A JP7344234 A JP 7344234A JP 34423495 A JP34423495 A JP 34423495A JP 2975882 B2 JP2975882 B2 JP 2975882B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
heat
grain boundary
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7344234A
Other languages
Japanese (ja)
Other versions
JPH0969594A (en
Inventor
和男 池田
通泰 小松
信幸 水野谷
孔俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7344234A priority Critical patent/JP2975882B2/en
Publication of JPH0969594A publication Critical patent/JPH0969594A/en
Application granted granted Critical
Publication of JP2975882B2 publication Critical patent/JP2975882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals

Landscapes

  • Ceramic Products (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧接用窒化けい素放
熱板およびそれを用いた圧接構造部品に係り、特に、高
い強度および放熱性を有するとともに、優れた耐絶縁破
壊特性を備えた圧接用窒化けい素放熱板およびそれを用
いた圧接構造部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride heat radiating plate for pressure welding and a pressure welding structural component using the same, and more particularly to a pressure welding device having high strength and heat dissipation and excellent dielectric breakdown resistance. The present invention relates to a silicon nitride radiator plate and a press-contact structure component using the same.

【0002】[0002]

【従来の技術】発熱部品と圧接により接合され、発熱部
品からの熱を系外に放散するための圧接用放熱板が各種
電気設備や電子機器に広く用いられる。また大電流のス
イッチングや交流を直流に変換するなどの電流制御機能
を持つ半導体素子としてサイリスタ等の圧接構造部品が
広く使用されている。
2. Description of the Related Art A heat-dissipating plate for pressure welding, which is joined to a heat-generating component by pressure welding and dissipates heat from the heat-generating component to the outside of the system, is widely used in various electric equipment and electronic equipment. In addition, a pressure-contact structure component such as a thyristor is widely used as a semiconductor element having a current control function such as switching of a large current or converting an alternating current to a direct current.

【0003】図1はシリコン制御整流素子(SCR)と
してのサイリスタの構造例を示す断面図である。このサ
イリスタは、陽極となる銅スタッド1と陰極導線2との
間に介装されたシリコン接合体3と、シリコン接合体3
に接続されるゲート導線4と、シリコン接合体3をシー
ルして外気と遮断するためのセラミックシール5および
ケース6と、内部で発生する熱を銅スタッド1を介して
外部に放散させるために圧接された平板状の放熱板7と
を備えて構成され、ゲート導線4に流れるゲート電流に
よって陽陰極間をオフ(遮断)状態からオン(始動)状
態にして、大電流を制御するものである。
FIG. 1 is a sectional view showing a structural example of a thyristor as a silicon controlled rectifier (SCR). The thyristor includes a silicon joint 3 interposed between a copper stud 1 serving as an anode and a cathode conductor 2, and a silicon joint 3
, A ceramic seal 5 and a case 6 for sealing the silicon bonded body 3 and blocking it from the outside air, and a pressure contact for dissipating heat generated inside through the copper stud 1 to the outside. A large current is controlled by switching between the positive and negative electrodes from an off (cut off) state to an on (starting) state by a gate current flowing through the gate conductor 4.

【0004】近年、発熱部品の高集積化,高出力化に対
応して部品からの発熱量も急激に増大する傾向があり、
より放熱性が良好な放熱板が希求されている。例えば、
電力需要の増大に対処するために、より大容量のサイリ
スタが希求されており、必然的に発熱による絶縁破壊を
起こすおそれがなく、より放熱特性および絶縁特性が優
れた放熱板が望まれている。
[0004] In recent years, the amount of heat generated from components tends to increase rapidly in response to higher integration and higher output of heat generating components.
There is a need for a heat sink having better heat dissipation. For example,
In order to cope with the increase in power demand, a thyristor having a larger capacity is demanded, and a heat radiating plate having more excellent heat radiation characteristics and insulation characteristics without inevitably causing dielectric breakdown due to heat generation is desired. .

【0005】このようなサイリスタ用などの放熱板7を
構成する材料としては、従来アルミナ(Al2 3 )が
一般に使用されていたが、熱伝導率が20W/m・K程
度と小さいために放熱性が低く、高出力化に対応した放
熱板を形成することは困難であった。そこで熱伝導率が
アルミナの2〜3倍程度と大きく、より熱伝導性が優れ
た窒化アルミニウム(AlN)焼結体も放熱板の構成材
料として使用されつつある。
Conventionally, alumina (Al 2 O 3 ) has been generally used as a material for forming the radiator plate 7 for such a thyristor. However, since the thermal conductivity is as small as about 20 W / m · K, It is difficult to form a radiator plate that has a low heat radiation property and is compatible with high output. Therefore, an aluminum nitride (AlN) sintered body having a thermal conductivity as large as about two to three times that of alumina and having better thermal conductivity is also being used as a constituent material of the heat sink.

【0006】一方、窒化けい素を主成分とするセラミッ
クス焼結体は、一般に1000℃以上の高温度環境下で
も優れた耐熱性を有し、かつ耐熱衝撃性にも優れている
ことから、従来の耐熱性超合金に代わる高温構造材料と
してガスタービン用部品、エンジン用部品、製鋼用機械
部品等の各種高強度耐熱部品への応用が試みられてい
る。
On the other hand, a ceramic sintered body containing silicon nitride as a main component generally has excellent heat resistance even in a high temperature environment of 1000 ° C. or higher, and also has excellent thermal shock resistance. As a high-temperature structural material replacing the heat-resistant superalloy, application to various high-strength heat-resistant parts such as parts for gas turbines, parts for engines, and mechanical parts for steelmaking has been attempted.

【0007】従来より窒化けい素セラミックス焼結体の
組成として、窒化けい素に酸化イットリウム(Y
2 3 ),酸化セリウム(CeO),酸化カルシウム
(CaO)などの希土類元素あるいはアルカリ土類元素
の酸化物を焼結助剤として添加されたものが知られてお
り、これら焼結助剤により焼結性を高めて緻密化・高強
度化している。
Conventionally, as a composition of a silicon nitride ceramic sintered body, yttrium oxide (Y
It is known that an oxide of a rare earth element or an alkaline earth element such as 2 O 3 ), cerium oxide (CeO) and calcium oxide (CaO) is added as a sintering aid. Densification and strength are enhanced by improving sinterability.

【0008】従来の窒化けい素焼結体は、窒化けい素原
料粉末に上記のような焼結助剤を添加し成形し、得られ
た成形体を1600〜2000℃程度の温度で焼成炉で
所定時間焼成した後に炉冷し、得られた焼結体を研削研
摩加工する製法で製造されている。
[0008] A conventional silicon nitride sintered body is formed by adding the above-mentioned sintering aid to silicon nitride raw material powder and molding the obtained molded body at a temperature of about 1600 to 2000 ° C in a firing furnace. It is manufactured by a manufacturing method in which the sintered body obtained is calcined after sintering for an hour, and the obtained sintered body is ground and polished.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来方法によって製造された窒化けい素焼結体では、靭性
値などの機械的強度は優れているものの、熱伝導特性の
点では、他の窒化アルミニウム(AlN)焼結体、酸化
ベリリウム(BeO)焼結体や炭化けい素(SiC)焼結体
などと比較して著しく低いため、特に放熱性を要求され
る放熱板などの電子用材料としては実用化されておら
ず、用途範囲が狭い難点があった。
However, although the silicon nitride sintered body manufactured by the above-mentioned conventional method has excellent mechanical strength such as toughness, it does not have the same thermal conductivity as other aluminum nitrides. AlN) sintered body, beryllium oxide (BeO) sintered body, silicon carbide (SiC) sintered body, etc., which are extremely low compared to sintered bodies, etc. However, there was a disadvantage that the range of application was narrow.

【0010】一方上記窒化アルミニウム焼結体は他のセ
ラミックス焼結体と比較して高い熱伝導率と低熱膨張係
数の特長を有するため、高速化、高出力化、多機能化、
大型化が進展する半導体チップ搭載用の回路基板部品や
パッケージ材料として用いられているが、機械的強度の
点で充分に満足できるものは得られていなかった。
On the other hand, since the above-mentioned aluminum nitride sintered body has features of high thermal conductivity and low coefficient of thermal expansion as compared with other ceramic sintered bodies, high speed, high output, multi-function,
Although it is used as a circuit board component or a package material for mounting a semiconductor chip, which is increasing in size, a material which is sufficiently satisfactory in terms of mechanical strength has not been obtained.

【0011】さらに上記セラミックス焼結体を主たる構
成材とする放熱板を、発熱部品と圧接により接合した
り、アッセンブリ工程にて実装ボートにねじ止め等によ
り固定しようとすると、ねじの押圧力や圧接力による僅
かな変形やハンドリング時の衝撃によって放熱板が破損
し、放熱部品の製造歩留りが大幅に低減する問題があっ
た。
Further, when a heat radiating plate mainly composed of the above-mentioned ceramic sintered body is joined to a heat-generating component by press contact or is fixed to a mounting boat by a screw or the like in an assembly process, the pressing force of the screw and the pressure contact are increased. There has been a problem that the heat sink is damaged by a slight deformation due to a force or an impact at the time of handling, and the production yield of the heat dissipation component is greatly reduced.

【0012】またサイリスタに使用される放熱板のよう
に高電圧が印加される場合には、所定の絶縁耐力を確保
するために、ある程度の厚さを有する放熱板が必要にな
り、必然的に熱抵抗が増大するとともに放熱板の原料コ
ストを上昇させる難点もあった。
When a high voltage is applied as in a radiator used for a thyristor, a radiator having a certain thickness is required in order to secure a predetermined dielectric strength. There is also a problem that the heat resistance increases and the raw material cost of the heat sink increases.

【0013】本発明は上記のような課題に対処するため
になされたものであり、高強度特性とともに、熱伝導率
が高く放熱性に優れるとともに絶縁破壊特性を大幅に改
善した圧接用放熱板およびそれを用いたサイリスタ等の
圧接構造部品を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to address the above-mentioned problems, and has a high-strength property, a high heat conductivity, a high heat-dissipation property and a greatly improved insulation breakdown property. An object of the present invention is to provide a press-contact structure component such as a thyristor using the same.

【0014】[0014]

【課題を解決するための手段】本発明者は上記目的を達
成するために、従来使用されていた窒化けい素粉末の種
類、焼結助剤や添加物の種類および添加量、焼結条件に
検討を加え、従来の窒化けい素焼結体の有する熱伝導率
の3倍以上の高い熱伝導性(90W/m・K以上)を有
する窒化けい素焼結体を開発した。さらに、この窒化け
い素焼結体を放熱板として使用し、その放熱板に整流素
子等の発熱部品を圧接により一体に接合してサイリスタ
等の圧接構造部品を製造したときに、機械的強度、靭性
値、絶縁耐力特性および放熱性を全て満足するサイスリ
タ等の圧接構造部品が得られることを実験により確認し
た。
In order to achieve the above object, the present inventor has set forth the types of conventionally used silicon nitride powder, the types and amounts of sintering aids and additives, and the sintering conditions. In addition, a silicon nitride sintered body having a high thermal conductivity (90 W / m · K or more) three times or more that of a conventional silicon nitride sintered body was developed. Furthermore, when this silicon nitride sintered body is used as a heat sink and a heat generating component such as a rectifier is integrally joined to the heat sink by pressure welding to produce a press-contact structure component such as a thyristor, mechanical strength and toughness are increased. It was confirmed by an experiment that a pressure-welded structure component such as a sice litter, which satisfies all values, dielectric strength characteristics, and heat dissipation properties, was obtained.

【0015】このような熱伝導率が90W/m・K以上
の高熱伝導性窒化けい素焼結体自体は、その一部が既に
本発明者により特許出願されており、さらに特開平6−
135771号公報および特開平7−48174号公報
によって出願公開されている。そして、これらの特許出
願において記載されている窒化けい素焼結体は、希土類
元素を酸化物に換算して2.0〜7.5重量%含有する
ものである。しかしながら、本発明者はさらに改良研究
を進めた結果、含有される希土類元素は酸化物に換算し
て7.5重量%を超えた場合の方が焼結体の高熱伝導化
がさらに進み、焼結性も良いことを見い出し、本願発明
を完成したものである。特に希土類元素がランタノイド
系列の元素である場合に、その効果は顕著である。ちな
みに粒界相中における結晶化合物相の粒界相全体に対す
る割合が60〜70%である場合においても、焼結体は
110〜120W/m・K以上の高熱伝導率を達成する
ことができる。
A part of such a high thermal conductive silicon nitride sintered body having a thermal conductivity of 90 W / m · K or more has already been applied for a patent by the present inventors.
The application is published by Japanese Patent Publication No. 1359771 and Japanese Patent Application Laid-Open No. 7-48174. The silicon nitride sintered bodies described in these patent applications contain 2.0 to 7.5% by weight of a rare earth element in terms of oxide. However, as a result of further improvement research, the present inventor has found that when the content of the rare earth element exceeds 7.5% by weight in terms of oxide, the sintered body has higher thermal conductivity, and The inventors have found that they have good binding properties and completed the present invention. In particular, when the rare earth element is a lanthanoid element, the effect is remarkable. Incidentally, even when the ratio of the crystalline compound phase in the grain boundary phase to the entire grain boundary phase is 60 to 70%, the sintered body can achieve a high thermal conductivity of 110 to 120 W / m · K or more.

【0016】具体的には、微細で高純度を有する窒化け
い素粉末に希土類元素酸化物等を所定量ずつ添加した原
料混合体を成形脱脂し、得られた成形体を所定温度で一
定時間加熱保持して緻密化焼結を実施した後、所定の冷
却速度以下で徐冷し、製造することにより高特性の焼結
体が得られる。この熱伝導率が90W/m・K以上で、
かつ高強度を有する窒化けい素焼結体を放熱板に適用し
たときに、優れた放熱特性と耐久性と絶縁破壊特性とを
同時に兼ね備えた圧接用窒化けい素放熱板および圧接構
造部品を実現できることが判明した。
Specifically, a raw material mixture obtained by adding a predetermined amount of a rare earth element oxide or the like to fine and high-purity silicon nitride powder is molded and degreased, and the obtained molded body is heated at a predetermined temperature for a predetermined time. After carrying out the densification sintering while holding, a sintered body with high characteristics can be obtained by slow cooling at a predetermined cooling rate or less and manufacturing. When this thermal conductivity is 90 W / mK or more,
In addition, when a silicon nitride sintered body having high strength is applied to a heat sink, it is possible to realize a silicon nitride heat sink for pressure welding and a pressure welding structural component having excellent heat dissipation characteristics, durability and dielectric breakdown characteristics at the same time. found.

【0017】また、酸素や不純物陽イオン元素含有量を
低減した高純度の窒化けい素原料粉末を使用し、上記条
件にて焼結することにより、粒界相におけるガラス相
(非晶質相)の生成を効果的に抑制できる。そして、粒
界相における結晶化合物相の割合を20%以上(粒界相
全体に対し)、より好ましくは50%以上とすることに
より、希土類元素酸化物のみを原料粉末に添加した場合
においても90W/m・K以上さらに好ましくは100
W/m・K以上の高熱伝導率を有する窒化けい素焼結体
が得られるという知見を得た。
A glass phase (amorphous phase) in a grain boundary phase is obtained by sintering under the above conditions using a high-purity silicon nitride raw material powder having a reduced content of oxygen and impurity cation elements. Can be effectively suppressed. By setting the proportion of the crystalline compound phase in the grain boundary phase to 20% or more (based on the whole grain boundary phase), more preferably to 50% or more, 90 W can be obtained even when only the rare earth element oxide is added to the raw material powder. / M · K or more, more preferably 100
It has been found that a silicon nitride sintered body having a high thermal conductivity of W / m · K or more can be obtained.

【0018】また、従来、焼結操作終了後に焼成炉の加
熱用電源をOFFとして焼結体を炉冷していた場合に
は、冷却速度が毎時400〜800℃と急速であった
が、本発明者の実験によれば、特に冷却速度を毎時10
0℃以下に緩速度に制御することにより、窒化けい素焼
結体組織の粒界相が非結晶質状態から結晶相を含む相に
変化し、高強度特性と高伝熱特性とが同時に達成される
ことが判明した。
Conventionally, when the sintered body is cooled by turning off the heating power supply of the firing furnace after the sintering operation is completed, the cooling rate was as fast as 400 to 800 ° C. per hour. According to the experiment of the inventor, in particular, the cooling rate was set to 10
By controlling the temperature slowly to 0 ° C. or less, the grain boundary phase of the silicon nitride sintered body structure changes from an amorphous state to a phase containing a crystalline phase, and high strength characteristics and high heat transfer characteristics are simultaneously achieved. Turned out to be.

【0019】このように高強度特性および高伝熱特性を
共に満足する窒化けい素焼結体を放熱板材料とし、整流
素子等の発熱部品を圧接により放熱板に接合してサイリ
スタ等の圧接構造部品を形成することにより、サイリス
タ等の圧接構造部品の靭性強度および熱伝導性を改善す
ることができ、特に放熱板のアッセンブリ工程における
締め付け割れや熱サイクルの付加によるクラックの発生
を効果的に防止できることが判明した。
As described above, a silicon nitride sintered body satisfying both high strength characteristics and high heat transfer characteristics is used as a heat sink material, and a heat-generating component such as a rectifying element is joined to the heat sink by pressure welding to form a press-contact structure component such as a thyristor. By forming a thyristor, it is possible to improve the toughness and thermal conductivity of a pressure-welded structural component such as a thyristor, and in particular, it is possible to effectively prevent the occurrence of cracks due to tightening cracks and the addition of a heat cycle in a heat sink assembly process. There was found.

【0020】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係る圧接用窒化けい素放熱
板は、ランタノイド系列の元素を酸化物に換算して7.
5重量%を超え17.5重量%以下含有し、窒化けい素
結晶および粒界相から成るとともに粒界相中における結
晶化合物相の粒界相全体に対する割合が20%以上であ
り、90W/m・K以上の熱伝導率を有する高熱伝導性
窒化けい素焼結体から成る圧接用窒化けい素放熱板であ
り、発熱部品等に圧接される高熱伝導性窒化けい素焼結
体の圧接面の表面粗さが最大高さ(Rmax)基準で1
0μm以下であることを特徴とする。
The present invention has been completed based on the above findings. That is, the silicon nitride radiator for pressure welding according to the present invention converts the lanthanoid-based elements into oxides.
More than 5% by weight and not more than 17.5% by weight, comprising silicon nitride crystals and a grain boundary phase, wherein the ratio of the crystalline compound phase in the grain boundary phase to the whole grain boundary phase is 20% or more, and 90 W / m · A heat-dissipating silicon nitride heat-dissipating plate composed of a high-thermal-conductivity silicon nitride sintered body having a thermal conductivity of K or more, and the surface roughness of the press-contact surface of the high-thermal-conductivity silicon nitride sintered body pressed against a heat-generating component, etc. Is 1 based on the maximum height (R max ).
It is not more than 0 μm.

【0021】また高熱伝導性窒化けい素焼結体の3点曲
げ強度は650MPa以上である。さらに発熱部品等に
圧接される高熱伝導性窒化けい素焼結体の圧接面の表面
粗さは最大高さ(Rmax)基準で10μm以下にすると
よい。高熱伝導性窒化けい素焼結体の圧接面の表面粗さ
をRmax 基準で10μm以下とすることにより、発熱部
品からの熱を効果的に放散させることができる。
The high thermal conductivity silicon nitride sintered body has a three-point bending strength of 650 MPa or more. Further, the surface roughness of the press contact surface of the high thermal conductive silicon nitride sintered body pressed against a heat-generating component or the like is preferably set to 10 μm or less based on the maximum height (R max ). By setting the surface roughness of the press contact surface of the high thermal conductive silicon nitride sintered body to 10 μm or less on the basis of Rmax, heat from the heat generating component can be effectively dissipated.

【0022】さらに高熱伝導性窒化けい素焼結体は、窒
化けい素結晶および粒界相から成るとともに、粒界相中
における結晶化合物相の粒界相全体に対する割合が50
%以上であることがさらに好ましい。
Further, the high thermal conductive silicon nitride sintered body is composed of silicon nitride crystals and a grain boundary phase, and the ratio of the crystalline compound phase in the grain boundary phase to the entire grain boundary phase is 50.
% Is more preferable.

【0023】なお、上記希土類元素としてランタノイド
系列の元素を使用することが、焼結体の熱伝導率を向上
させるために特に好ましい。
It is particularly preferable to use a lanthanoid element as the rare earth element in order to improve the thermal conductivity of the sintered body.

【0024】また、窒化けい素焼結体が窒化アルミニウ
ムまたはアルミナを1.0重量%以下含有するように構
成してもよい。さらにアルミナを1.0重量%以下と窒
化アルミニウムを1.0重量%以下とを併用してもよ
い。
Further, the silicon nitride sintered body may be constituted so as to contain 1.0% by weight or less of aluminum nitride or alumina. Further, 1.0% by weight or less of alumina and 1.0% by weight or less of aluminum nitride may be used in combination.

【0025】また本発明で使用する高熱伝導性窒化けい
素焼結体は、Ti,Zr,Hf,V,Nb,Ta,C
r,Mo,Wからなる群より選択される少なくとも1種
を酸化物に換算して0.1〜0.3重量%含有すること
が好ましい。このTi,Zr,Hf,V,Nb,Ta,
Cr,Mo,Wから成る群より選択される少なくとも1
種は、酸化物、炭化物、窒化物、けい化物,硼化物とし
て窒化けい素粉末に添加することにより含有させること
ができる。
The high thermal conductive silicon nitride sintered body used in the present invention is Ti, Zr, Hf, V, Nb, Ta, C
It is preferable that at least one selected from the group consisting of r, Mo, and W is contained in an amount of 0.1 to 0.3% by weight in terms of oxide. These Ti, Zr, Hf, V, Nb, Ta,
At least one selected from the group consisting of Cr, Mo, W
The seed can be contained as an oxide, carbide, nitride, silicide, or boride by adding to the silicon nitride powder.

【0026】さらに本発明に係る圧接構造部品は、ラン
タノイド系列の元素を酸化物に換算して7.5重量%を
超え17.5重量%以下含有し、窒化けい素結晶および
粒界相から成るとともに粒界相中における結晶化合物相
の粒界相全体に対する割合が20%以上であり、90W
/m・K以上の熱伝導率を有し、圧接面の表面粗さが最
大高さ(Rmax)基準で10μm以下である高熱伝導
性窒化けい素焼結体から成る圧接用窒化けい素放熱板に
発熱部品を圧接して構成したことを特徴とする。
Further, the press-bonded structural component according to the present invention contains more than 7.5% by weight to 17.5% by weight or less of oxides of lanthanoid series elements, and is composed of silicon nitride crystals and a grain boundary phase. At the same time, the ratio of the crystalline compound phase in the grain boundary phase to the entire grain boundary phase is 20% or more;
/ N · K heat-dissipating plate composed of a high-thermal-conductivity silicon nitride sintered body having a thermal conductivity of not less than / m · K and having a surface roughness of 10 μm or less on the basis of a maximum height (R max ). A heat-generating component is press-contacted with the first component.

【0027】本発明に係る圧接用窒化けい素放熱板およ
び圧接構造部品の構成材料として使用される高熱伝導性
窒化けい素焼結体は、例えば以下の方法で製造される。
すなわち、酸素を1.7重量%以下、不純物陽イオン元
素としてのLi,Na,K,Fe,Ca,Mg,Sr,
Ba,Mn,Bを合計で0.3重量%以下、α相型窒化
けい素を90重量%以上含有し、平均粒径1.0μm以
下の窒化けい素粉末に、ランタノイド系列の元素を酸化
物に換算して7.5重量%を超え17.5重量%以下
と、必要に応じてアルミナおよび窒化アルミニウムの少
なくとも一方を1.0重量%以下添加した原料混合体を
成形して成形体を調製し、得られた成形体を脱脂後、温
度1800〜2100℃で雰囲気加圧焼結し、上記焼結
温度から、上記希土類元素により焼結時に形成された液
相が凝固する温度までに至る焼結体の冷却速度を毎時1
00℃以下にして徐冷する。
The high thermal conductive silicon nitride sintered body used as a constituent material of the silicon nitride heat sink for pressure welding and the component of the pressure welding structure according to the present invention is produced, for example, by the following method.
That is, oxygen is 1.7% by weight or less, and Li, Na, K, Fe, Ca, Mg, Sr,
An oxide of a lanthanoid element is added to silicon nitride powder having a total of 0.3% by weight or less of Ba, Mn, and B and 90% by weight or more of α-phase silicon nitride and an average particle diameter of 1.0 μm or less. A raw material mixture is formed by adding more than 7.5% by weight and not more than 17.5% by weight and, if necessary, 1.0% by weight or less of at least one of alumina and aluminum nitride to prepare a formed body. Then, after degreasing the obtained molded body, it is subjected to atmospheric pressure sintering at a temperature of 1800 to 2100 ° C., and the sintering is performed from the sintering temperature to a temperature at which a liquid phase formed during sintering by the rare earth element solidifies. The cooling rate of the aggregate is 1 hour
Slowly cool to below 00 ° C.

【0028】上記製造方法において、窒化けい素粉末
に、さらにアルミナおよび窒化アルミニウムの少なくと
も一方を1.0重量%以下添加するとよい。
In the above production method, it is preferable that at least one of alumina and aluminum nitride is further added to the silicon nitride powder in an amount of 1.0% by weight or less.

【0029】さらに窒化けい素粉末に、さらにTi,Z
r,Hf,V,Nb,Ta,Cr,Mo,Wの酸化物、
炭化物、窒化物、けい化物、硼化物からなる群より選択
される少なくとも1種を0.1〜3.0重量%添加する
とよい。
Further, Ti, Z are added to the silicon nitride powder.
oxides of r, Hf, V, Nb, Ta, Cr, Mo, W;
At least one selected from the group consisting of carbides, nitrides, silicides, and borides may be added in an amount of 0.1 to 3.0% by weight.

【0030】上記製造方法によれば、窒化けい素結晶組
織中に希土類元素等を含む粒界相が形成され、気孔率が
2.5%以下、熱伝導率が90W/m・K以上、三点曲
げ強度が室温で650MPa以上の機械的特性および熱
伝導特性が共に優れた窒化けい素焼結体が得られる。
According to the above manufacturing method, a grain boundary phase containing a rare earth element or the like is formed in the silicon nitride crystal structure, the porosity is 2.5% or less, the thermal conductivity is 90 W / m · K or more, and A silicon nitride sintered body having a point bending strength of 650 MPa or more at room temperature and excellent in both mechanical properties and heat conduction properties is obtained.

【0031】平均粒径が1.0μm以下の微細な原料粉
末を使用することにより、少量の焼結助剤であっても気
孔率が2.5%以下の緻密な焼結体を形成することが可
能であり、また焼結助剤が熱伝導特性を阻害するおそれ
も減少する。
By using a fine raw material powder having an average particle size of 1.0 μm or less, it is possible to form a dense sintered body having a porosity of 2.5% or less even with a small amount of a sintering aid. Is also possible, and the possibility that the sintering aid impairs the heat transfer properties is reduced.

【0032】さらに、β相型と比較して焼結性に優れた
α相型窒化けい素を90重量%以上含有する窒化けい素
原料粉末を使用することにより、高密度の焼結体を製造
することができる。
Further, a high-density sintered body can be produced by using a silicon nitride raw material powder containing 90% by weight or more of α-phase type silicon nitride which is superior in sinterability as compared with β-type type. can do.

【0033】また窒化けい素原料粉末に焼結助剤として
添加する希土類元素としては、Ho,Er,Yb,Y,
La,Sc,Pr,Ce,Nd,Dy,Sm,Gdなど
の酸化物もしくは焼結操作により、これらの酸化物とな
る物質が単独で、または2種以上の酸化物を組み合せた
ものを含んでもよいが、特に酸化ホルミウム(Ho2
3 ),酸化エルビウム(Er2 3 )が好ましい。
The rare earth elements to be added to the silicon nitride raw material powder as a sintering aid include Ho, Er, Yb, Y,
Oxides such as La, Sc, Pr, Ce, Nd, Dy, Sm, and Gd, or substances that become these oxides by sintering operation alone or in combination of two or more oxides are included. Good, but especially holmium oxide (Ho 2 O
3 ) Erbium oxide (Er 2 O 3 ) is preferred.

【0034】特に希土類元素としてランタノイド系列の
元素であるHo,Er,Ybを使用することにより、焼
結性あるいは高熱伝導化が良好になり、1850℃程度
の低温度領域においても十分に緻密な焼結体が得られ
る。したがって焼成装置の設備費およびランニングコス
トを低減できる効果も得られる。これらの焼結助剤は、
窒化けい素原料粉末と反応して液相を生成し、焼結促進
剤として機能する。
In particular, by using Ho, Er, and Yb, which are lanthanoid series elements, as a rare earth element, sinterability or high thermal conductivity is improved, and sufficiently dense sintering can be performed even in a low temperature range of about 1850 ° C. Solidification is obtained. Therefore, the effect of reducing the equipment cost and running cost of the firing apparatus can be obtained. These sintering aids are
It reacts with the silicon nitride raw material powder to form a liquid phase and functions as a sintering accelerator.

【0035】上記焼結助剤の添加量は、酸化物換算で原
料粉末に対して7.5重量%超え17.5重量%以下の
範囲とする。この添加量が7.5重量%以下の場合は、
焼結体の緻密化が不十分であり、特に希土類元素がラン
タノイド系元素のように原子量が大きい元素の場合に
は、低強度で低熱伝導率の焼結体が形成される。一方、
添加量が17.5重量%を超える過量となると、過量の
粒界相が生成し、熱伝導率の低下や強度が低下し始める
ので上記範囲とする。
The amount of the sintering aid to be added is in the range of more than 7.5% by weight and 17.5% by weight or less based on the raw material powder in terms of oxide. When this addition amount is 7.5% by weight or less,
If the sintered body is insufficiently densified, especially when the rare earth element is an element having a large atomic weight such as a lanthanoid-based element, a sintered body with low strength and low thermal conductivity is formed. on the other hand,
If the added amount exceeds 17.5% by weight, an excessive amount of grain boundary phase is generated, and the thermal conductivity and strength start to decrease.

【0036】また上記製造方法において他の選択的な添
加成分として使用するTi,Zr,Hf,V,Nb,T
a,Cr,Mo,Wの酸化物,炭化物、窒化物、けい化
物、硼化物は、上記希土類元素の焼結促進剤の機能を促
進すると共に、結晶組織において分散強化の機能を果し
Si3 4 焼結体の機械的強度を向上させるものであ
り、特に、Hf,Tiの化合物が好ましい。これらの化
合物の添加量が0.1重量%未満の場合においては添加
効果が不充分である一方、3.0重量%を超える過量と
なる場合には熱伝導率および機械的強度や電気絶縁破壊
強度の低下が起こるため、添加量は0.1〜3.0重量
%の範囲とする。特に0.2〜2重量%とすることが望
ましい。
In addition, Ti, Zr, Hf, V, Nb, T
The oxides, carbides, nitrides, silicides, and borides of a, Cr, Mo, and W promote the function of the sintering accelerator of the rare earth element, and also have the function of strengthening the dispersion of Si 3 in the crystal structure. It is intended to improve the mechanical strength of the N 4 sintered body, and particularly, compounds of Hf and Ti are preferable. When the added amount of these compounds is less than 0.1% by weight, the effect of the addition is insufficient, while when the added amount exceeds 3.0% by weight, the thermal conductivity and mechanical strength and electric breakdown are caused. Since the strength is reduced, the amount of addition is in the range of 0.1 to 3.0% by weight. In particular, it is desirable that the content be 0.2 to 2% by weight.

【0037】また上記Ti,Zr,Hf等の化合物は窒
化けい素焼結体を黒色系に着色し不透明性を付与する遮
光剤としても機能する。
The above compounds such as Ti, Zr, and Hf also function as a light-shielding agent that imparts opacity by coloring the silicon nitride sintered body black.

【0038】さらに上記製造方法において、他の選択的
な添加成分としてのアルミナ(Al2 3 )は、前記希
土類元素の焼結促進剤の機能を助長する役目を果すもの
であり、特に加圧焼結を行なう場合に著しい効果を発揮
するものである。このAl2 3 の添加量が0.1重量
%未満の場合においては、より高温度での焼結が必要に
なる一方、1.0重量%を超える過量となる場合には過
量の粒界相を生成したり、または窒化けい素に固溶し始
め、熱伝導の低下が起こるため、添加量は1重量%以
下、好ましくは0.1〜0.75重量%の範囲とする。
特に強度、熱伝導率共に良好な性能を確保するためには
添加量を0.1〜0.5重量%の範囲とすることが望ま
しい。
Further, in the above-mentioned manufacturing method, alumina (Al 2 O 3 ) as another optional additive component plays a role of promoting the function of the rare earth element sintering accelerator, This has a remarkable effect when sintering. When the addition amount of Al 2 O 3 is less than 0.1% by weight, sintering at a higher temperature is required. On the other hand, when the addition amount exceeds 1.0% by weight, an excessive amount of grain boundaries is required. Since a phase is formed or a solid solution starts to be formed in silicon nitride to cause a decrease in heat conduction, the amount of addition is set to 1% by weight or less, preferably 0.1 to 0.75% by weight.
In particular, in order to ensure good performance in both strength and thermal conductivity, it is desirable that the amount of addition be in the range of 0.1 to 0.5% by weight.

【0039】また、後述するAlNと併用する場合に
は、その合計添加量は1.0重量%以下にすることが望
ましい。
When used in combination with AlN, which will be described later, the total addition amount is desirably 1.0% by weight or less.

【0040】さらに他の添加成分としての窒化アルミニ
ウム(AlN)は焼結過程における窒化けい素の蒸発な
どを抑制するとともに、上記希土類元素の焼結促進剤と
しての機能をさらに助長する役目を果すものである。
Aluminum nitride (AlN) as another additional component serves to suppress the evaporation of silicon nitride during the sintering process and to further promote the function of the rare earth element as a sintering accelerator. It is.

【0041】AlNの添加量が0.1重量%未満(アル
ミナと併用する場合では0.05重量%未満)の場合に
おいては、より高温度での焼結が必要になる一方、1.
0重量%を超える過量となる場合には過量の粒界相を生
成したり、または窒化けい素に固溶し始め、熱伝導率の
低下が起こるため、添加量は0.1〜1.0重量%の範
囲とする。特に焼結性,強度,熱伝導率共に良好な性能
を確保するためには添加量を0.1〜0.5重量%の範
囲とすることが望ましい。なお前記Al2 3と併用す
る場合には、AlNの添加量は0.05〜0.5重量%
の範囲が好ましい。
When the addition amount of AlN is less than 0.1% by weight (less than 0.05% by weight when used in combination with alumina), sintering at a higher temperature is required, while
If the amount exceeds 0% by weight, an excessive amount of the grain boundary phase is generated, or the solid solution starts to be dissolved in silicon nitride to cause a decrease in thermal conductivity. % By weight. In particular, in order to ensure good performance in sinterability, strength, and thermal conductivity, it is desirable that the addition amount be in the range of 0.1 to 0.5% by weight. When used in combination with Al 2 O 3 , the addition amount of AlN is 0.05 to 0.5% by weight.
Is preferable.

【0042】また焼結体の気孔率は熱伝導率および強度
に大きく影響するため2.5%以下となるように製造す
る。気孔率が2.5%を超えると熱伝導の妨げとなり、
焼結体の熱伝導率が低下するとともに、焼結体の強度低
下が起こる。
Since the porosity of the sintered body greatly affects the thermal conductivity and strength, the sintered body is manufactured to be 2.5% or less. If the porosity exceeds 2.5%, it hinders heat conduction,
As the thermal conductivity of the sintered body decreases, the strength of the sintered body decreases.

【0043】また、窒化けい素焼結体は組織的に窒化け
い素結晶と粒界相とから構成されるが、粒界相中の結晶
化合物相の割合は焼結体の熱伝導率に大きく影響し、本
発明において使用される高熱伝導性窒化けい素焼結体に
おいては粒界相の20%以上とすることが必要であり、
より好ましくは50%以上が結晶相で占めることが望ま
しい。結晶相が20%未満では熱伝導率が90W/m・
K以上となるような放熱特性に優れ、かつ高温強度に優
れた焼結体が得られないからである。
Although the silicon nitride sintered body is systematically composed of silicon nitride crystals and a grain boundary phase, the proportion of the crystalline compound phase in the grain boundary phase greatly affects the thermal conductivity of the sintered body. However, in the high thermal conductivity silicon nitride sintered body used in the present invention, it is necessary that the content be 20% or more of the grain boundary phase,
More preferably, it is desirable that the crystal phase accounts for 50% or more. When the crystal phase is less than 20%, the thermal conductivity is 90 W / m.
This is because it is not possible to obtain a sintered body having excellent heat dissipation characteristics such as K or more and high temperature strength.

【0044】さらに上記のように窒化けい素焼結体の気
孔率を2.5%以下にし、また窒化けい素結晶組織に形
成される粒界相の20%以上が結晶相で占めるようにす
るためには、窒化けい素成形体を温度1800〜210
0℃で2〜10時間程度、加圧焼結し、かつ焼結操作完
了直後における焼結体の冷却速度を毎時100℃以下に
して徐冷することが重要である。
Further, as described above, the porosity of the silicon nitride sintered body is set to 2.5% or less, and the crystal phase accounts for 20% or more of the grain boundary phase formed in the silicon nitride crystal structure. The silicon nitride compact was heated to a temperature of 1800 to 210
It is important to perform pressure sintering at 0 ° C. for about 2 to 10 hours and gradually cool the sintered body immediately after completion of the sintering operation at a cooling rate of 100 ° C. or less per hour.

【0045】焼結温度を1800℃未満とした場合に
は、焼結体の緻密化が不充分で気孔率が2.5vol%以上
になり機械的強度および熱伝導性が共に低下してしま
う。一方焼結温度が2100℃を超えると窒化けい素成
分自体が蒸発分解し易くなる。特に加圧焼結ではなく、
常圧焼結を実施した場合には、1800℃付近より窒化
けい素の分解蒸発が始まる。
When the sintering temperature is lower than 1800 ° C., the densification of the sintered body is insufficient, the porosity becomes 2.5 vol% or more, and both the mechanical strength and the thermal conductivity decrease. On the other hand, when the sintering temperature exceeds 2100 ° C., the silicon nitride component itself tends to be vaporized and decomposed. Especially not pressure sintering,
When normal-pressure sintering is performed, decomposition and evaporation of silicon nitride starts at about 1800 ° C.

【0046】上記焼結操作完了直後における焼結体の冷
却速度は粒界相を結晶化させるために重要な制御因子で
あり、冷却速度が毎時100℃を超えるような急速な冷
却を実施した場合には、焼結体組織の粒界相が非結晶質
(ガラス相)となり、焼結体に生成した液相が結晶相と
して粒界相に占める割合が20%未満となり、強度およ
び熱伝導性が共に低下してしまう。
The cooling rate of the sintered body immediately after the completion of the sintering operation is an important control factor for crystallizing the grain boundary phase, and when a rapid cooling is performed such that the cooling rate exceeds 100 ° C./hour. In the method, the grain boundary phase of the structure of the sintered body becomes non-crystalline (glass phase), and the ratio of the liquid phase generated in the sintered body as a crystalline phase to the grain boundary phase is less than 20%, and the strength and thermal conductivity are reduced. Decrease together.

【0047】上記冷却速度を厳密に調整すべき温度範囲
は、所定の焼結温度(1800〜2100℃)から、前
記の焼結助剤の反応によって生成する液相が凝固するま
での温度範囲で充分である。ちなみに前記のような焼結
助剤を使用した場合の液相凝固点は概略1600〜15
00℃程度である。そして少なくとも焼結温度から上記
液相凝固温度に至るまでの焼結体の冷却速度を毎時10
0℃以下、好ましくは50℃以下、さらに好ましくは2
5℃以下に制御することにより、粒界相の20%以上、
特に好ましくは50%以上が結晶相になり、熱伝導率お
よび機械的強度が共に優れた窒化けい素焼結体が得られ
る。
The temperature range in which the cooling rate should be strictly adjusted is a temperature range from a predetermined sintering temperature (1800 to 2100 ° C.) to a temperature at which a liquid phase produced by the reaction of the sintering aid solidifies. Is enough. Incidentally, the liquidus freezing point when using the sintering aid as described above is approximately 1600 to 15
It is about 00 ° C. The cooling rate of the sintered body at least from the sintering temperature to the above-mentioned liquid phase solidification temperature is set to 10
0 ° C. or lower, preferably 50 ° C. or lower, more preferably 2 ° C.
By controlling the temperature to 5 ° C. or less, 20% or more of the grain boundary phase can be obtained.
Particularly preferably, 50% or more becomes a crystalline phase, and a silicon nitride sintered body excellent in both thermal conductivity and mechanical strength can be obtained.

【0048】本発明において使用する窒化けい素焼結体
は、例えば以下のようなプロセスを経て製造される。す
なわち前記所定の微細粒径を有し、また不純物含有量が
少ない微細な窒化けい素粉末に対して所定量の焼結助
剤、有機バインダ等の必要な添加剤および必要に応じて
Al2 3 やAlN,Ti化合物等を加えて原料混合体
を調整し、次に得られた原料混合体を成形して所定形状
の成形体を得る。原料混合体の成形法としては、汎用の
金型プレス法、ドクターブレード法のようなシート成形
法などが適用できる。
The silicon nitride sintered body used in the present invention is manufactured, for example, through the following process. That is, a predetermined amount of a sintering aid, a necessary additive such as an organic binder, and optionally Al 2 O are added to the fine silicon nitride powder having the predetermined fine particle size and a small impurity content. A raw material mixture is prepared by adding 3 or an AlN or Ti compound, and then the obtained raw material mixture is molded to obtain a molded body having a predetermined shape. As a forming method of the raw material mixture, a general-purpose mold pressing method, a sheet forming method such as a doctor blade method, or the like can be applied.

【0049】上記成形操作に引き続いて、成形体を非酸
化性雰囲気中で温度600〜800℃、または空気中で
温度400〜500℃で1〜2時間加熱して、予め添加
していた有機バインダ成分を充分に除去し、脱脂する。
次に脱脂処理された成形体を窒素ガス、水素ガスやアル
ゴンガスなどの不活性ガス雰囲気中で1800〜210
0℃の温度で所定時間雰囲気加圧焼結を行う。
Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 800 ° C. or in air at a temperature of 400 to 500 ° C. for 1 to 2 hours to prepare an organic binder previously added. The components are sufficiently removed and degreased.
Next, the degreased compact is placed in an inert gas atmosphere such as nitrogen gas, hydrogen gas or argon gas in an atmosphere of 1800 to 210 g.
Atmospheric pressure sintering is performed at a temperature of 0 ° C. for a predetermined time.

【0050】上記製法によって製造された窒化けい素焼
結体は気孔率が2.5%以下、90W/m・K(25
℃)以上、さらには100W/m・K以上の熱伝導率を
有し、また三点曲げ強度が常温で650MPa以上、さ
らには800MPa以上と機械的特性にも優れている。
The silicon nitride sintered body manufactured by the above method has a porosity of 2.5% or less and 90 W / m · K (25
° C) or more, and 100 W / m · K or more, and has excellent three-point bending strength at room temperature of 650 MPa or more, further 800 MPa or more.

【0051】なお、低熱伝導性の窒化けい素に高熱伝導
性のSiC等を添加して焼結体全体としての熱伝導率を
90W/m・K以上にした窒化けい素焼結体は本発明の
範囲には含まれない。しかしながら、熱伝導率が90W
/m・K以上である窒化けい素焼結体に高熱伝導性のS
iC等を複合させた窒化けい素系焼結体の場合には、窒
化けい素焼結体自体の熱伝導率が90W/m・K以上で
ある限り、本発明の範囲に含まれることは言うまでもな
い。
The silicon nitride sintered body of which the thermal conductivity as a whole is 90 W / m · K or more by adding high thermal conductivity SiC or the like to low thermal conductivity silicon nitride is the present invention. Not included in range. However, the thermal conductivity is 90W
/ M · K or higher silicon nitride sintered body with high thermal conductivity S
Needless to say, in the case of a silicon nitride-based sintered body in which iC or the like is compounded, as long as the thermal conductivity of the silicon nitride sintered body itself is 90 W / m · K or more, it is included in the scope of the present invention. .

【0052】発熱部品等に圧接される高熱伝導性窒化け
い素焼結体の圧接面の表面粗さは、放熱性に大きな影響
を及ぼすため、本発明においては、最大高さ(Rmax)
基準で10μm以下に設定される。上記表面粗さが10
μmを超えると、圧接面における伝熱抵抗が急激に上昇
して放熱板の放熱特性が低下してしまう。したがって表
面粗さは10μm以下に設定されるが、5μm以下がよ
り好ましい。
Since the surface roughness of the press contact surface of the high thermal conductive silicon nitride sintered body pressed against a heat-generating component or the like has a great effect on heat dissipation, the maximum height (Rmax) is used in the present invention.
It is set to 10 μm or less on a standard basis. The surface roughness is 10
If it exceeds μm, the heat transfer resistance at the press-contact surface rises sharply, and the heat radiation characteristic of the heat sink decreases. Therefore, the surface roughness is set to 10 μm or less, but more preferably 5 μm or less.

【0053】本発明に係る圧接構造部品としてのサイリ
スタは、上記のように製造した高熱伝導性窒化けい素焼
結体に、発熱部品としての整流素子を圧接して製造され
る。
A thyristor as a press-contact structure component according to the present invention is manufactured by press-contacting a rectifying element as a heat-generating component to the high thermal conductive silicon nitride sintered body manufactured as described above.

【0054】本発明に係る圧接用窒化けい素放熱板によ
れば、窒化けい素焼結体が本来的に有する高強度高靭性
特性に加えて熱伝導率を大幅に改善した高熱伝導性窒化
けい素焼結体によって形成されているため、アッセンブ
リ工程において放熱板の締め付け割れが発生せず、放熱
板を用いたサイリスタ等の圧接構造部品を高い製造歩留
りで量産することが可能になる。
According to the silicon nitride heat radiating plate for pressure welding according to the present invention, in addition to the high strength and high toughness characteristics inherently possessed by the silicon nitride sintered body, the high thermal conductivity silicon nitride sintered body having significantly improved thermal conductivity is provided. Since it is formed by a united body, no tightening crack of the heat radiating plate occurs in the assembly process, and it becomes possible to mass-produce a pressure contact structure component such as a thyristor using the heat radiating plate at a high production yield.

【0055】また窒化けい素焼結体の靭性値が高いた
め、発熱部品からの熱サイクルによって放熱板に割れが
発生することが少なく、耐熱サイクル特性が著しく向上
し、耐久性および信頼性に優れたサイリスタなどの圧接
構造部品を提供することができる。
Further, since the silicon nitride sintered body has a high toughness value, the heat radiating plate is less likely to be cracked by a heat cycle from a heat-generating component, the heat-resistant cycle characteristics are remarkably improved, and the durability and reliability are excellent. It is possible to provide a pressure contact structure component such as a thyristor.

【0056】さらに従来では達成されていない高い熱伝
導率を有する窒化けい素焼結体を放熱板として使用して
いるため、高出力化および高集積化を指向する発熱部品
を圧接した場合においても、熱抵抗特性の劣化が少な
く、優れた放熱特性を発揮する。
Further, since a silicon nitride sintered body having a high thermal conductivity, which has not been achieved conventionally, is used as a heat radiating plate, even when a heat-generating component for high output and high integration is pressed, it can be used. Demonstrates excellent heat dissipation characteristics with little deterioration of thermal resistance characteristics.

【0057】特に窒化けい素焼結体自体の機械的強度が
優れているため、要求される機械的強度特性を一定とし
た場合に、他のセラミックス焼結体から成る放熱板と比
較して放熱板の厚さをより低減することが可能となる。
この放熱板の厚さを低減できることから熱抵抗値をより
小さくでき、放熱特性をさらに改善することができる。
また要求される機械的特性に対して、従来より薄い放熱
板でも充分に対応可能となるため、発熱部品の高密度実
装も可能となり、圧接構造部品をより小型化することが
可能となる。
Particularly, since the mechanical strength of the silicon nitride sintered body itself is excellent, when the required mechanical strength characteristics are fixed, the heat radiating plate is compared with the heat radiating plate made of other ceramic sintered bodies. Can be further reduced.
Since the thickness of the heat radiating plate can be reduced, the thermal resistance value can be further reduced, and the heat radiation characteristics can be further improved.
Further, the required mechanical characteristics can be sufficiently coped with even a thinner heat radiating plate than before, so that high-density mounting of heat-generating components is also possible, and it is possible to further reduce the size of the press-contact structure components.

【0058】[0058]

【発明の実施の形態】次に本発明の実施形態を以下に示
す実施例を参照して具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be specifically described with reference to the following examples.

【0059】まず、各放熱板を構成する窒化けい素焼結
体について説明し、しかる後に、この窒化けい素焼結体
を用いたサイリスタについて説明する。
First, a silicon nitride sintered body constituting each heat sink will be described, and then a thyristor using the silicon nitride sintered body will be described.

【0060】実施例1〜2 酸素を1.3重量%、不純物陽イオン元素としてのL
i,Na,K,Fe,Ca,Mg,Sr,Ba,Mn,
Bを合計で0.15重量%含有し、α相型窒化けい素9
7%を含む平均粒径0.55μmの窒化けい素原料粉末
に対して、焼結助剤として平均粒径0.7μmのY2
3 (酸化イットリウム)粉末5重量%、平均粒径0.5
μmのAl2 3 (アルミナ)粉末1.5重量%を添加
し、エチルアルコール中で24時間湿式混合した後に乾
燥して原料粉末混合体を調整した。次に得られた原料粉
末混合体に有機バインダを所定量添加して均一に混合し
た後に、1000kg/cm2 の成形圧力でプレス成形し、
円板状の成形体を多数製作した。次に得られた成形体を
700℃の雰囲気ガス中において2時間脱脂した後に、
この脱脂体を窒素ガス雰囲気中7.5気圧にて1900
℃で6時間保持し、緻密化焼結を実施した後に、焼結炉
に付設した加熱装置への通電量を制御して焼結炉内温度
が1500℃まで降下するまでの間における焼結体の冷
却速度がそれぞれ50℃/hr(実施例1)、25℃/hr
(実施例2)となるように調整して焼結体を冷却し、さ
らに得られた各焼結体を研摩加工することにより、表面
粗さを5μm−Rmaxに設定し、さらに厚さ0.3mm×
直径70mmに加工して、それぞれ実施例1〜2の圧接用
窒化けい素放熱板を調製した。
Examples 1-2 : 1.3% by weight of oxygen, L as impurity cation element
i, Na, K, Fe, Ca, Mg, Sr, Ba, Mn,
B containing 0.15% by weight in total, and α-phase silicon nitride 9
With respect to the average particle size silicon nitride material powder of 0.55μm containing 7%, an average particle size of 0.7μm as a sintering aid Y 2 O
3 (yttrium oxide) powder 5% by weight, average particle size 0.5
1.5 wt% of Al 2 O 3 (alumina) powder of μm was added, wet-mixed in ethyl alcohol for 24 hours, and dried to prepare a raw material powder mixture. Next, a predetermined amount of an organic binder is added to the obtained raw material powder mixture, and the mixture is uniformly mixed, and then press-molded at a molding pressure of 1000 kg / cm 2 ,
A number of disk-shaped compacts were manufactured. Next, after degreasing the obtained molded body in an atmosphere gas at 700 ° C. for 2 hours,
This degreased body was placed in a nitrogen gas atmosphere at 7.5 atm for 1900 hours.
C. for 6 hours, and after performing the densification sintering, control the amount of electricity to the heating device attached to the sintering furnace to control the sintered body until the temperature in the sintering furnace drops to 1500 ° C. Cooling rates of 50 ° C./hr (Example 1) and 25 ° C./hr, respectively
The sintered body was cooled so as to be (Example 2), and each of the obtained sintered bodies was polished so that the surface roughness was set to 5 μm- Rmax and the thickness was further reduced to 0 μm. .3mm ×
By processing to a diameter of 70 mm, the silicon nitride radiator plates for pressure welding of Examples 1 and 2 were prepared.

【0061】比較例1 一方、緻密化焼結完了直後に、加熱装置電源をOFFに
し、従来の炉冷による冷却速度(約500℃/hr)で焼
結体を冷却した点以外は実施例1と同一条件で焼結処理
して比較例1の圧接用窒化けい素放熱板を調製した。
Comparative Example 1 On the other hand, immediately after the completion of the densification sintering, the power of the heating device was turned off and the sintered body was cooled at the conventional cooling rate by furnace cooling (about 500 ° C./hr). The sintering treatment was performed under the same conditions as in Example 1 to prepare a silicon nitride heat sink for pressure welding of Comparative Example 1.

【0062】比較例2 酸素を1.5重量%、前記不純物陽イオン元素を合計で
0.6重量%含有し、α相型窒化けい素93%を含む平
均粒径0.60μmの窒化けい素原料粉末を用いた点お
よび冷却速度を100℃/hrとした点以外は実施例1と
同一条件で処理し、比較例2の圧接用窒化けい素放熱板
を調製した。
Comparative Example 2 Silicon nitride containing 1.5% by weight of oxygen and a total of 0.6% by weight of the impurity cation element and containing 93% of α-phase type silicon nitride and having an average particle diameter of 0.60 μm Except that the raw material powder was used and the cooling rate was set to 100 ° C./hr, the treatment was performed under the same conditions as in Example 1 to prepare a silicon nitride heat sink for pressure welding of Comparative Example 2.

【0063】比較例3 酸素を1.7重量%、前記不純物陽イオン元素を合計で
0.7重量%含有し、α相型窒化けい素91%を含む平
均粒径1.1μmの窒化けい素原料粉末を用いた点およ
び冷却速度を100℃/hrとした点以外は実施例1と同
一条件で処理し、比較例3の圧接用窒化けい素放熱板を
調製した。
Comparative Example 3 Silicon nitride containing 1.7% by weight of oxygen and 0.7% by weight of the impurity cation element in total and containing 91% of α-phase type silicon nitride and having an average particle diameter of 1.1 μm Except that the raw material powder was used and the cooling rate was set to 100 ° C./hr, the treatment was performed under the same conditions as in Example 1 to prepare a silicon nitride radiator for pressure welding of Comparative Example 3.

【0064】こうして得た実施例1〜2および比較例1
〜3の圧接用窒化けい素放熱板について気孔率および2
5℃における熱伝導率を測定した。さらに、各Si3
4 放熱板についてX線回折法によって粒界相に占める結
晶相の割合(体積比)を測定し、下記表1に示す結果を
得た。
Examples 1 and 2 and Comparative Example 1 thus obtained
Porosity and 2 for silicon nitride heat sinks for pressure welding
The thermal conductivity at 5 ° C. was measured. Furthermore, each Si 3 N
(4 ) The ratio (volume ratio) of the crystal phase to the grain boundary phase was measured by X-ray diffraction for the heat sink, and the results shown in Table 1 below were obtained.

【0065】[0065]

【表1】 [Table 1]

【0066】表1に示す結果から明らかなように実施例
1〜2の圧接用窒化けい素放熱板においては、比較例1
と比較して緻密化焼結完了直後における焼結体の冷却速
度を従来より低く設定しているため、粒界相に結晶相を
含み、結晶相の占める割合が高い程、高熱伝導率を有す
る放熱性の高い圧接用Si3 4 放熱板が得られた。
As is clear from the results shown in Table 1, the silicon nitride heat radiating plates for pressure welding of Examples 1 and 2 were compared with Comparative Example 1
Since the cooling rate of the sintered body immediately after the completion of densification sintering is set lower than before, the crystal phase is included in the grain boundary phase, and the higher the proportion of the crystal phase, the higher the thermal conductivity A high heat dissipation Si 3 N 4 heat sink for pressure welding was obtained.

【0067】一方、比較例1のように焼結体の冷却速度
を大きく設定し、急激に冷却した場合は粒界相が全て非
結晶質で形成され熱伝導率が低下した。また、比較例2
のように不純物陽イオン元素を0.6重量%と多く含有
した窒化けい素粉末を用いた場合は焼結体の冷却速度を
比較的に小さくしても粒界相が全て非結晶質で形成され
熱伝導率が低下した。
On the other hand, when the cooling rate of the sintered body was set to a high value as in Comparative Example 1, and the material was rapidly cooled, all the grain boundary phases were formed in an amorphous state, and the thermal conductivity was lowered. Comparative Example 2
When silicon nitride powder containing as much as 0.6% by weight of impurity cation element is used, the whole grain boundary phase is amorphous even if the cooling rate of the sintered body is relatively low. And the thermal conductivity decreased.

【0068】さらに比較例3のように平均粒径が1.1
μmと粗い窒化けい素粉末を用いた場合は、焼結におい
て緻密化が不充分で強度、熱伝導率とも低下した。
Further, as in Comparative Example 3, the average particle size was 1.1.
When silicon nitride powder as coarse as μm was used, densification was insufficient in sintering, and both strength and thermal conductivity were reduced.

【0069】比較例4 一方、実施例におけるSi3 4 焼結体に代えて、厚さ
が0.3mmであり、熱伝導率が170W/m・Kである
窒化アルミニウム(AlN)焼結体を使用して実施例と
同一寸法を有する比較例4に係るAlN放熱板を製造し
た。
Comparative Example 4 On the other hand, instead of the Si 3 N 4 sintered body in the example, an aluminum nitride (AlN) sintered body having a thickness of 0.3 mm and a thermal conductivity of 170 W / m · K Was used to manufacture an AlN heat sink according to Comparative Example 4 having the same dimensions as the example.

【0070】比較例5 また、実施例におけるSi3 4 焼結体に代えて、厚さ
が0.8mmであり、熱伝導率が70W/m・Kである窒
化アルミニウム(AlN)焼結体を使用して実施例と同
一寸法を有する比較例5に係るAlN放熱板を製造し
た。
Comparative Example 5 In place of the Si 3 N 4 sintered body in the example, an aluminum nitride (AlN) sintered body having a thickness of 0.8 mm and a thermal conductivity of 70 W / m · K was used. Was used to produce an AlN heat sink according to Comparative Example 5 having the same dimensions as the example.

【0071】比較例6 また、実施例におけるSi3 4 焼結体に代えて、厚さ
が0.3mmであり、熱伝導率が20W/m・Kである酸
化アルミニウム(Al2 3 )焼結体を使用して実施例
と同一寸法を有する比較例6に係るAl2 3 放熱板を
製造した。
Comparative Example 6 In place of the Si 3 N 4 sintered body in the example, aluminum oxide (Al 2 O 3 ) having a thickness of 0.3 mm and a thermal conductivity of 20 W / m · K was used. An Al 2 O 3 radiator plate according to Comparative Example 6 having the same dimensions as the example was manufactured using the sintered body.

【0072】上記のように調製した実施例および比較例
に係る各放熱板の強度特性および絶縁破壊特性を評価す
るため、各放熱板の3点曲げ強度を測定するとともに、
絶縁破壊試験を実施し、放熱板の絶縁耐力を測定した。
In order to evaluate the strength characteristics and dielectric breakdown characteristics of each radiator plate according to the examples and comparative examples prepared as described above, the three-point bending strength of each radiator plate was measured.
A dielectric breakdown test was performed to measure the dielectric strength of the heat sink.

【0073】なお絶縁破壊試験は、絶縁油中に浸漬した
各放熱板の両面に設置した電極に50Hzの電圧を印加
し、放熱板が絶縁破壊を起こしたときの最小の電圧を測
定して実施した。絶縁耐力は測定した最小の絶縁破壊電
圧を放熱板の厚さで割った数値で表す。
In the dielectric breakdown test, a voltage of 50 Hz was applied to the electrodes installed on both sides of each heat sink immersed in insulating oil, and the minimum voltage when the heat sink caused dielectric breakdown was measured. did. The dielectric strength is represented by a value obtained by dividing the measured minimum breakdown voltage by the thickness of the heat sink.

【0074】また上記実施例および比較例に係る各放熱
板を使用して、図2に示すような車輌搭載用のサイリス
タを多数調製した。このサイリスタは、冷却フィン8の
側面に、圧接用放熱板7a,端子9a,整流素子10,
端子9b,絶縁スペーサ11,圧接板12を積層し、冷
却フィン8から立ち上げたボルト13に押え板14を装
着し、さらに皿ばね15を介して圧接ねじ16を取り付
け、この圧接ねじ16を締着することにより整流素子1
0を放熱板7a側に圧接して構成される。
Further, a number of thyristors to be mounted on a vehicle as shown in FIG. 2 were prepared by using the heat radiating plates according to the above Examples and Comparative Examples. This thyristor is provided on a side surface of the cooling fin 8 with a heat radiating plate 7a for pressure contact, a terminal 9a, a rectifying element 10,
The terminal 9b, the insulating spacer 11, and the press contact plate 12 are laminated, the press plate 14 is attached to the bolt 13 raised from the cooling fin 8, the press contact screw 16 is further attached via the disc spring 15, and the press contact screw 16 is tightened. Rectifying element 1 by wearing
0 is pressed against the heat radiating plate 7a.

【0075】そして上記のように各種放熱板を使用して
サイリスタを多数製造するに際して、アセンブル時に圧
接ねじ16の圧接力によってクラックを生じたり、破損
した放熱板の割合を測定し、サイリスタの製造歩留りを
算出した。
When a large number of thyristors are manufactured using various radiating plates as described above, cracks are generated by the pressing force of the pressing screws 16 at the time of assembling, and the ratio of the damaged radiating plates is measured to determine the thyristor manufacturing yield. Was calculated.

【0076】各測定結果を下記表2に示す。The results of each measurement are shown in Table 2 below.

【0077】[0077]

【表2】 [Table 2]

【0078】上記表2に示す結果から明らかなように、
各実施例に係る圧接型Si3 4 放熱板によれば、3点
曲げ強度が、比較例と比較して大きくなる傾向がある。
したがって、サイリスタのアッセンブリ工程における締
め付け割れが発生することが少なく圧接用放熱板を使用
した圧接構造部品の製造歩留りを大幅に改善できること
が実証された。
As is clear from the results shown in Table 2 above,
According to the pressure-contact type Si 3 N 4 heat sink according to each of the examples, the three-point bending strength tends to be larger than that of the comparative example.
Therefore, it has been proved that tightening cracks are less likely to occur in the thyristor assembly process, and the production yield of the press-contact structure component using the press-contact heat sink can be significantly improved.

【0079】さらに各実施例に係るSi3 4 放熱板
は、従来のSi3 4 焼結体から成る比較例1〜3の放
熱板と比較して2〜5倍程度大きな熱伝導率を有してい
るため、放熱性が優れており、高出力化および高発熱化
に対応した放熱板として極めて有効である。
Furthermore, the Si 3 N 4 heatsink according to each of the examples has a heat conductivity about 2 to 5 times larger than the heatsinks of Comparative Examples 1 to 3 made of the conventional Si 3 N 4 sintered body. Because of this, it has excellent heat radiation properties and is extremely effective as a heat radiating plate for high output and high heat generation.

【0080】また各実施例に係る放熱板の絶縁耐力は、
比較例5〜6に示す従来のAlN焼結体やAl2 3
結体の絶縁耐力の2倍程度と大きく、優れた耐絶縁破壊
特性を示す。
The dielectric strength of the radiator plate according to each embodiment is as follows.
Large as 2 times the dielectric strength of the conventional AlN sintered body, Al 2 O 3, or the sintered body shown in Comparative Examples 5-6 exhibit excellent dielectric breakdown characteristic.

【0081】上記のように従来の放熱板と比較して、3
点曲げ強度や絶縁耐力が2倍以上大きい本実施例の放熱
板を使用すると、要求される機械的強度や絶縁耐力を従
来と同一に設定した場合には、放熱板の厚さを従来の1
/2以下に低減することもできる。この場合、放熱板の
厚さを低減できることから放熱板における熱抵抗値をよ
り小さくでき、放熱特性をさらに相乗的に改善すること
ができる。さらに放熱板の板厚の低減化により、発熱部
品の高密度実装も可能になり、サイリスタなどの圧接構
造部品の小型化にも有効である。
As described above, compared with the conventional heat sink, 3
When the heat sink of this embodiment having a point bending strength and a dielectric strength that is twice or more is used, when the required mechanical strength and the dielectric strength are set to be the same as those of the conventional heat sink, the thickness of the heat sink is reduced to the conventional one.
/ 2 or less. In this case, since the thickness of the heat radiating plate can be reduced, the thermal resistance value of the heat radiating plate can be further reduced, and the heat radiating characteristics can be further synergistically improved. Further, by reducing the thickness of the heat sink, high-density mounting of heat-generating components becomes possible, which is also effective for miniaturization of press-contact structural components such as thyristors.

【0082】一方、比較例1〜3に係る圧接型Si3
4 放熱板においては、3点曲げ強度は良好であるが、そ
の熱伝導率が40W/m・K以下と相対的に低いため、
高出力化も指向した圧接構造部品には不適であることが
判明した。
On the other hand, the pressure-contact type Si 3 N according to Comparative Examples 1 to 3
(4) The heat sink has a good three-point bending strength, but its thermal conductivity is relatively low at 40 W / m · K or less.
It has been found that it is not suitable for a press-fitted structural component which is also aimed at increasing the output.

【0083】また比較例4に係るAlN放熱板において
は、熱伝導性が高いAlN焼結体を使用しているため、
放熱特性は優れている反面、強度およびたわみ量が小さ
く、アッセンブリ工程における締め付け割れやハンドリ
ング時の衝撃に耐え難いことが確認された。また耐電圧
特性も低いことが判明した。
In the AlN radiator plate according to Comparative Example 4, since an AlN sintered body having high thermal conductivity was used,
Although the heat radiation characteristics were excellent, it was confirmed that the strength and the amount of deflection were small, and it was difficult to withstand the tightening cracks in the assembly process and the impact during handling. It was also found that the withstand voltage characteristics were low.

【0084】さらに比較例5に係るAlN回路基板にお
いては、従来のSi3 4 基板よりも高い熱伝導率を有
しているため放熱性は良好である反面、強度が不充分で
ある。また耐電圧特性が低下することが判明した。
Further, the AlN circuit board according to Comparative Example 5 has a higher heat conductivity than the conventional Si 3 N 4 substrate, so that the heat dissipation is good, but the strength is insufficient. In addition, it was found that the withstand voltage characteristics were reduced.

【0085】一方、比較例6に係る従来のAl2 3
熱板においては、熱伝導率,3点曲げ強度および絶縁耐
力が揃って小さいため、放熱性および耐久性も低く、ア
センブル時における放熱板の割れや損傷が多く発生し、
サイリスタの製造歩留りが大幅に低下した。
On the other hand, in the conventional Al 2 O 3 heat radiating plate according to Comparative Example 6, since the heat conductivity, the three-point bending strength and the dielectric strength are all small, the heat radiating property and the durability are low, and the heat radiating at the time of assembling is low. Many cracks and damage of the board occur,
Thyristor manufacturing yields have dropped significantly.

【0086】次に種々の組成および特性値を有する他の
窒化けい素焼結体を使用した放熱板および圧接構造部品
としてのサイリスタの実施形態について以下に示す実施
例3を参照して具体的に説明する。
Next, an embodiment of a radiator and a thyristor as a press-contact structure component using other silicon nitride sintered bodies having various compositions and characteristic values will be specifically described with reference to Example 3 shown below. I do.

【0087】実施例3 まず放熱板の構成材となる各種窒化けい素焼結体を以下
の手順で製造した。
Example 3 First, various silicon nitride sintered bodies to be used as components of the heat sink were manufactured by the following procedure.

【0088】すなわち、酸素を1.3重量%、前記の不
純物陽イオン元素を合計で0.15重量%含有し、α相
型窒化けい素97%を含む平均粒径0.55μmの窒化
けい素原料粉末に対して、表3〜5に示すように、焼結
助剤としてのY2 3 ,Ho2 3 などの希土類酸化物
と、必要に応じてTi,Hf化合物とを添加し、エチル
アルコール中で窒化けい素製ボールを用いて72時間湿
式混合した後に乾燥して原料粉末混合体をそれぞれ調整
した。次に得られた各原料粉末混合体に有機バインダを
所定量添加して均一に混合した後に、1000kg/cm2
の成形圧力でプレス成形し、各種組成を有する成形体を
多数製作した。
That is, silicon nitride having an average particle diameter of 0.55 μm containing 1.3% by weight of oxygen and a total of 0.15% by weight of the above-mentioned impurity cation element and containing 97% of α-phase type silicon nitride. As shown in Tables 3 to 5, a rare earth oxide such as Y 2 O 3 or Ho 2 O 3 as a sintering aid and, if necessary, Ti and Hf compounds were added to the raw material powder, The mixture was wet-mixed for 72 hours using silicon nitride balls in ethyl alcohol, and then dried to prepare raw material powder mixtures. Next, a predetermined amount of an organic binder was added to each of the obtained raw material powder mixtures and uniformly mixed, and then 1000 kg / cm 2
Press molding was performed under the above molding pressure to produce a large number of molded articles having various compositions.

【0089】次に得られた各成形体を700℃の雰囲気
ガス中において2時間脱脂した後に、この脱脂体を表3
〜5に示す焼結条件で緻密化焼結を実施した後に、焼結
炉に付設した加熱装置への通電量を制御して焼結炉内温
度が1500℃まで降下するまでの間における焼結体の
冷却速度がそれぞれ表3〜5に示す値となるように調整
して焼結体を冷却し、それぞれ試料1〜56に係る窒化
けい素焼結体を調製した。
Next, each of the obtained compacts was degreased in an atmosphere gas at 700 ° C. for 2 hours.
After performing the densification sintering under the sintering conditions shown in to 5, sintering is performed until the temperature in the sintering furnace falls to 1500 ° C. by controlling the amount of electricity to the heating device attached to the sintering furnace. The sintered bodies were cooled by adjusting the cooling rates of the bodies so as to have the values shown in Tables 3 to 5, respectively, to prepare silicon nitride sintered bodies according to Samples 1 to 56, respectively.

【0090】こうして得た試料1〜56に係る各窒化け
い素焼結体について気孔率、熱伝導率(25℃)、室温
での三点曲げ強度の平均値を測定した。さらに、各焼結
体についてX線回折法によって粒界相に占める結晶相の
割合(面積比)を測定し、下記表3〜5に示す結果を得
た。
The average values of the porosity, the thermal conductivity (25 ° C.), and the three-point bending strength at room temperature of the silicon nitride sintered bodies according to Samples 1 to 56 thus obtained were measured. Further, the ratio (area ratio) of the crystal phase to the grain boundary phase was measured by X-ray diffraction for each sintered body, and the results shown in Tables 3 to 5 below were obtained.

【0091】[0091]

【表3】 [Table 3]

【0092】[0092]

【表4】 [Table 4]

【0093】[0093]

【表5】 [Table 5]

【0094】表3〜5に示す結果から明らかなように試
料1〜56に係る窒化けい素焼結体においては、原料組
成を適正に制御し、従来例と比較して緻密化焼結完了直
後における焼結体の冷却速度を従来より低く設定してい
るため、粒界相に結晶相を含み、結晶相の占める割合が
高い程、高熱伝導率を有する放熱性の高い高強度窒化け
い素焼結体が得られた。
As is clear from the results shown in Tables 3 to 5, in the silicon nitride sintered bodies according to Samples 1 to 56, the raw material composition was appropriately controlled, and the silicon nitride sintered body immediately after the completion of the densification sintering was compared with the conventional example. Since the cooling rate of the sintered body is set lower than before, the crystal phase is included in the grain boundary phase, and the higher the proportion of the crystal phase, the higher the heat conductivity and the higher the strength of the silicon nitride sintered body. was gotten.

【0095】これに対して酸素を1.3〜1.5重量
%,前記の不純物陽イオン元素を合計で0.13〜0.
16重量%含有し、α相型窒化けい素を93%含む平均
粒径0.60μmの窒化けい素原料粉末を用い、この窒
化けい素粉末に対してY2 3(酸化イットリウム)粉
末を3〜6重量と、アルミナ粉末を1.3〜1.6重量
%添加した原料粉末を成形,脱脂後、1900℃で6時
間焼結し、炉冷(冷却速度:毎時400℃)して得た焼
結体の熱伝導率は25〜28W/m・Kと低く、従来の
一般的な製法によって製造された窒化けい素焼結体の熱
伝導率に近い値になった。
On the other hand, oxygen is 1.3 to 1.5% by weight and the above-mentioned impurity cation element is 0.13 to 0.1% in total.
A silicon nitride raw material powder containing 16% by weight and containing 93% of α-phase type silicon nitride and having an average particle diameter of 0.60 μm was used, and Y 2 O 3 (yttrium oxide) powder was added to the silicon nitride powder by 3%. A raw material powder containing 1.3 to 1.6% by weight and 1.3 to 1.6% by weight of alumina powder was molded, degreased, sintered at 1900 ° C for 6 hours, and cooled in a furnace (cooling rate: 400 ° C / hour). The thermal conductivity of the sintered body was as low as 25 to 28 W / m · K, which was close to the thermal conductivity of a silicon nitride sintered body manufactured by a conventional general manufacturing method.

【0096】次に得られた試料1〜56に係る各窒化け
い素焼結体の表面を研磨加工することにより、表面粗さ
を5μm−Rmax に調整し、さらに厚さ0.3mm×直径
70mmに加工してそれぞれ各サイリスタ用の窒化けい素
放熱板とした。さらに各窒化けい素放熱板を使用して図
2に示すような車輌搭載用の実施例3に係るサイリスタ
をそれぞれ多数調製した。そして実施例1〜2と同様
に、サイリスタのアセンブル時に圧接ねじ16の圧接力
によってクラックを生じたり、破損した放熱板の割合を
測定したが、締め付け割れの発生がなく、圧接用放熱板
を使用した製品の製造歩留りを大幅に改善できることが
判明した。
Next, the surface of each of the obtained silicon nitride sintered bodies according to Samples 1 to 56 was polished to adjust the surface roughness to 5 μm-Rmax, and further to a thickness of 0.3 mm × a diameter of 70 mm. Each was processed into a silicon nitride radiator plate for each thyristor. Further, a large number of thyristors according to Example 3 for mounting on a vehicle as shown in FIG. 2 were prepared using the respective silicon nitride radiating plates. In the same manner as in Examples 1 and 2, when the thyristor was assembled, cracks were generated due to the pressing force of the pressing screws 16 and the ratio of the damaged radiator plate was measured. It has been found that the production yield of the manufactured products can be greatly improved.

【0097】さらに各実施例3に係るSi3 4 放熱板
は、従来のSi3 4 焼結体から成る放熱板と比較して
2〜5倍程度大きな熱伝導率を有しているため、放熱性
が優れており、高出力化および高発熱化に対応した放熱
板として極めて有効である。
Further, the Si 3 N 4 radiating plate according to the third embodiment has a thermal conductivity that is about 2 to 5 times larger than that of the conventional radiating plate made of a Si 3 N 4 sintered body. It is excellent in heat dissipation, and is extremely effective as a heat sink corresponding to high output and high heat generation.

【0098】[0098]

【発明の効果】以上説明の通り、本発明に係る圧接用窒
化けい素放熱板によれば、窒化けい素焼結体が本来的に
有する高強度高靭性特性に加えて熱伝導率を大幅に改善
した高熱伝導性窒化けい素焼結体によって形成されてい
るため、アッセンブリ工程において放熱板の締め付け割
れが発生せず、放熱板を用いた圧接構造部品を高い製造
歩留りで量産することが可能になる。
As described above, according to the silicon nitride heat sink for pressure welding according to the present invention, the thermal conductivity is greatly improved in addition to the inherent high strength and toughness characteristics of the silicon nitride sintered body. Since the heat-dissipating plate is formed of the high-thermal-conductivity silicon nitride sintered body, no tightening crack of the heat-dissipating plate occurs in the assembling process, and it becomes possible to mass-produce the press-contact structure component using the heat-dissipating plate at a high production yield.

【0099】また窒化けい素焼結体の靭性値が高いた
め、発熱部品からの熱サイクルによって放熱板に割れが
発生することが少なく、耐熱サイクル特性が著しく向上
し、耐久性および信頼性に優れたサイリスタなどの圧接
構造部品を提供することができる。
Further, since the toughness of the silicon nitride sintered body is high, the heat radiating plate is less likely to be cracked by heat cycling from the heat-generating component, the heat cycle characteristics are remarkably improved, and the durability and reliability are excellent. It is possible to provide a pressure contact structure component such as a thyristor.

【0100】さらに従来では達成されていない高い熱伝
導率を有する窒化けい素焼結体を放熱板として使用して
いるため、高出力化および高集積化を指向する発熱素子
を圧接した場合においても、熱抵抗特性の劣化が少な
く、優れた放熱特性を発揮する。
Further, since a silicon nitride sintered body having a high thermal conductivity, which has not been achieved conventionally, is used as a heat radiating plate, even when a heating element for high output and high integration is pressed, Demonstrates excellent heat dissipation characteristics with little deterioration of thermal resistance characteristics.

【0101】特に窒化けい素焼結体自体の機械的強度が
優れているため、要求される機械的強度特性を一定とし
た場合に、他のセラミックス焼結体から成る放熱板と比
較して放熱板の厚さをより低減することが可能となる。
この放熱板の厚さを低減できることから熱抵抗値をより
小さくでき、放熱特性をさらに改善することができる。
また要求される機械的特性に対して、従来より薄い放熱
板でも充分に対応可能となるため、発熱部品の高密度実
装も可能となり、圧接構造部品をより小型化することが
可能となる。
In particular, since the mechanical strength of the silicon nitride sintered body itself is excellent, when the required mechanical strength characteristics are fixed, the heat radiating plate is compared with the heat radiating plate made of other ceramic sintered bodies. Can be further reduced.
Since the thickness of the heat radiating plate can be reduced, the thermal resistance value can be further reduced, and the heat radiation characteristics can be further improved.
Further, the required mechanical characteristics can be sufficiently coped with even a thinner heat radiating plate than before, so that high-density mounting of heat-generating components is also possible, and it is possible to further reduce the size of the press-contact structure components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シリコン制御整流素子としてのサイリスタの構
造例を示す断面図。
FIG. 1 is a sectional view showing a structural example of a thyristor as a silicon controlled rectifier.

【図2】車輌搭載型のサイリスタの他の構造例を示す側
面図。
FIG. 2 is a side view showing another example of the structure of the vehicle-mounted thyristor.

【符号の説明】[Explanation of symbols]

1 銅スタッド(陽極) 2 陰極導線 3 シリコン接合体 4 ゲート導線 5 セラミックシール 6 ケース 7,7a 放熱板 8 冷却フィン 9a,9b 端子 10 整流素子 11 絶縁スペーサ 12 圧接板 13 ボルト 14 押え板 15 皿ばね 16 圧接ねじ DESCRIPTION OF SYMBOLS 1 Copper stud (anode) 2 Cathode lead 3 Silicon junction 4 Gate lead 5 Ceramic seal 6 Case 7, 7a Heat sink 8 Cooling fin 9a, 9b Terminal 10 Rectifying element 11 Insulating spacer 12 Pressure contact plate 13 Bolt 14 Holding plate 15 Disc spring 16 Pressure screw

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ランタノイド系列の元素を酸化物に換算
して7.5重量%を超え17.5重量%以下含有し、窒
化けい素結晶および粒界相から成るとともに粒界相中に
おける結晶化合物相の粒界相全体に対する割合が20%
以上であり、90W/m・K以上の熱伝導率を有する高
熱伝導性窒化けい素焼結体から成る圧接用窒化けい素放
熱板であり、かつ発熱部品等に圧接される高熱伝導性窒
化けい素焼結体の圧接面の表面粗さが最大高さ(R
max)基準で10μm以下であることを特徴とする圧
接用窒化けい素放熱板。
1. A crystalline compound containing a lanthanoid series element in an amount of more than 7.5% by weight to 17.5% by weight or less as oxide, comprising silicon nitride crystals and a grain boundary phase and in the grain boundary phase. The ratio of the phase to the whole grain boundary phase is 20%
This is a silicon nitride heat radiating plate for pressure welding comprising a high thermal conductivity silicon nitride sintered body having a thermal conductivity of 90 W / m · K or more, and a high thermal conductive silicon nitride sintered body pressed against a heat-generating component or the like. The surface roughness of the crimping surface of the consolidated body is the maximum height (R
(max ) a silicon nitride heat radiating plate for pressure welding, characterized in that it is not more than 10 μm on a standard basis.
【請求項2】 高熱伝導性窒化けい素焼結体の3点曲げ
強度が650MPa以上であることを特徴とする請求項
1記載の圧接用窒化けい素放熱板。
2. The silicon nitride heat radiating plate for pressure welding according to claim 1, wherein the three-point bending strength of the high thermal conductive silicon nitride sintered body is 650 MPa or more.
【請求項3】 高熱伝導性窒化けい素焼結体は、窒化け
い素結晶および粒界相から成るとともに粒界相中におけ
る結晶化合物相の粒界相全体に対する割合が50%以上
であることを特徴とする請求項1記載の圧接用窒化けい
素放熱板。
3. The high thermal conductive silicon nitride sintered body is composed of silicon nitride crystals and a grain boundary phase, and the ratio of the crystalline compound phase in the grain boundary phase to the entire grain boundary phase is 50% or more. 2. The heat-dissipating silicon nitride radiator plate according to claim 1, wherein:
【請求項4】 ランタノイド系列の元素を酸化物に換算
して7.5重量%を超え17.5重量%以下含有し、窒
化けい素結晶および粒界相から成るとともに粒界相中に
おける結晶化合物相の粒界相全体に対する割合が20%
以上であり、90W/m・K以上の熱伝導率を有し、圧
接面の表面粗さが最大高さ(Rmax)基準で10μm
以下である高熱伝導性窒化けい素焼結体から成る圧接用
窒化けい素放熱板に発熱部品を圧接して構成したことを
特徴とする圧接構造部品。
4. A crystalline compound comprising silicon nitride crystals and a grain boundary phase and containing a lanthanoid series element in an amount of more than 7.5% by weight and not more than 17.5% by weight as oxides. The ratio of the phase to the whole grain boundary phase is 20%
It has a thermal conductivity of 90 W / m · K or more, and has a surface roughness of 10 μm on the basis of the maximum height (R max ) on the press contact surface.
A press-bonded structural part characterized in that a heat-generating component is pressed against a press-bonded silicon nitride heatsink made of the following high thermal conductive silicon nitride sintered body.
JP7344234A 1995-06-23 1995-12-28 Silicon nitride heatsink for pressure welding and pressure welding structural parts using it Expired - Lifetime JP2975882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7344234A JP2975882B2 (en) 1995-06-23 1995-12-28 Silicon nitride heatsink for pressure welding and pressure welding structural parts using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15820695 1995-06-23
JP7-158206 1995-06-23
JP7344234A JP2975882B2 (en) 1995-06-23 1995-12-28 Silicon nitride heatsink for pressure welding and pressure welding structural parts using it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13487299A Division JP3226898B2 (en) 1999-05-14 1999-05-14 Silicon nitride radiator for thyristor having pressure contact structure and thyristor using the same

Publications (2)

Publication Number Publication Date
JPH0969594A JPH0969594A (en) 1997-03-11
JP2975882B2 true JP2975882B2 (en) 1999-11-10

Family

ID=26485407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7344234A Expired - Lifetime JP2975882B2 (en) 1995-06-23 1995-12-28 Silicon nitride heatsink for pressure welding and pressure welding structural parts using it

Country Status (1)

Country Link
JP (1) JP2975882B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205276A (en) * 1999-01-18 2000-07-25 Koyo Seiko Co Ltd Rolling bearing
US6613443B2 (en) 2000-10-27 2003-09-02 Kabushiki Kaisha Toshiba Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
CN108276008B (en) 2013-10-23 2021-04-30 株式会社东芝 Silicon nitride substrate and silicon nitride circuit substrate using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180762A (en) * 1988-12-13 1990-07-13 Showa Denko Kk Production of aluminum nitride sintered body
JPH06135771A (en) * 1992-09-08 1994-05-17 Toshiba Corp High heat conductivity silicon nitride sintered compact and its production
JPH0717768A (en) * 1993-06-17 1995-01-20 Denki Kagaku Kogyo Kk Silicon nitride ceramic substrate and use thereof
JPH0748174A (en) * 1993-08-03 1995-02-21 Toshiba Corp Highly thermally conductive silicon nitride sinterted compact and its production
JPH07149588A (en) * 1993-11-26 1995-06-13 Toshiba Corp Metallized highly heat conductive silicon nitride substrate, its production and silicon nitride module
JPH07187793A (en) * 1993-12-27 1995-07-25 Toshiba Corp Structural member made of highly heat conductive silicon nitride and semiconductor package

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123352U (en) * 1988-02-15 1989-08-22

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180762A (en) * 1988-12-13 1990-07-13 Showa Denko Kk Production of aluminum nitride sintered body
JPH06135771A (en) * 1992-09-08 1994-05-17 Toshiba Corp High heat conductivity silicon nitride sintered compact and its production
JPH0717768A (en) * 1993-06-17 1995-01-20 Denki Kagaku Kogyo Kk Silicon nitride ceramic substrate and use thereof
JPH0748174A (en) * 1993-08-03 1995-02-21 Toshiba Corp Highly thermally conductive silicon nitride sinterted compact and its production
JPH07149588A (en) * 1993-11-26 1995-06-13 Toshiba Corp Metallized highly heat conductive silicon nitride substrate, its production and silicon nitride module
JPH07187793A (en) * 1993-12-27 1995-07-25 Toshiba Corp Structural member made of highly heat conductive silicon nitride and semiconductor package

Also Published As

Publication number Publication date
JPH0969594A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
US5998000A (en) Silicon nitride circuit board
KR0166406B1 (en) High thermal conductive silicon nitride sintered body method of producing the same and press-contacted body
WO2010002001A1 (en) Silicon nitride board, method for manufacturing the silicon nitride board, and silicon nitride circuit board and semiconductor module using the silicon nitride board
JP3115238B2 (en) Silicon nitride circuit board
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
JPH1093211A (en) Silicon nitride circuit board
JP2698780B2 (en) Silicon nitride circuit board
JP3193305B2 (en) Composite circuit board
JP2939444B2 (en) Multilayer silicon nitride circuit board
JP2975882B2 (en) Silicon nitride heatsink for pressure welding and pressure welding structural parts using it
JP2772273B2 (en) Silicon nitride circuit board
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JP3226898B2 (en) Silicon nitride radiator for thyristor having pressure contact structure and thyristor using the same
WO2020203683A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
JP3561145B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2772274B2 (en) Composite ceramic substrate
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2677748B2 (en) Ceramics copper circuit board
JP2967065B2 (en) Semiconductor module
JP3231822B2 (en) Semiconductor device and method of manufacturing the same
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP4763929B2 (en) Aluminum nitride sintered body, manufacturing method thereof, and circuit board using the sintered body
JP3180100B2 (en) Semiconductor module
JPH0964235A (en) Silicon nitride circuit board
JP2001335368A (en) Highly heat conductive silicon nitride sinterd compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

EXPY Cancellation because of completion of term