JP3450570B2 - High thermal conductive silicon nitride circuit board - Google Patents

High thermal conductive silicon nitride circuit board

Info

Publication number
JP3450570B2
JP3450570B2 JP03493396A JP3493396A JP3450570B2 JP 3450570 B2 JP3450570 B2 JP 3450570B2 JP 03493396 A JP03493396 A JP 03493396A JP 3493396 A JP3493396 A JP 3493396A JP 3450570 B2 JP3450570 B2 JP 3450570B2
Authority
JP
Japan
Prior art keywords
silicon nitride
circuit board
substrate
thermal conductivity
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03493396A
Other languages
Japanese (ja)
Other versions
JPH08319187A (en
Inventor
和男 池田
通泰 小松
信幸 水野谷
裕 小森田
孔俊 佐藤
高志 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03493396A priority Critical patent/JP3450570B2/en
Publication of JPH08319187A publication Critical patent/JPH08319187A/en
Application granted granted Critical
Publication of JP3450570B2 publication Critical patent/JP3450570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置等に使用
される高熱伝導性窒化けい素回路基板に係り、特に機械
的強度および耐熱サイクル特性を改善できるとともに放
熱特性に優れた高熱伝導性窒化けい素回路基板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high thermal conductivity silicon nitride circuit board used for semiconductor devices and the like, and particularly to a high thermal conductivity silicon nitride circuit which can improve mechanical strength and heat cycle characteristics and is excellent in heat dissipation characteristics. Regarding a circuit board.

【0002】[0002]

【従来の技術】従来からアルミナ(Al2 3 )焼結体
などのように絶縁性に優れたセラミックス基板の表面
に、導電性を有する金属回路板をろう材で一体に接合し
た回路基板が広く普及している。
2. Description of the Related Art Conventionally, a circuit board in which a conductive metal circuit board is integrally bonded with a brazing material to the surface of a ceramic board having excellent insulating properties such as an alumina (Al 2 O 3 ) sintered body has been known. Widely used.

【0003】一方、窒化けい素を主成分とするセラミッ
クス焼結体は、一般に1000℃以上の高温度環境下で
も優れた耐熱性を有し、かつ耐熱衝撃性にも優れている
ことから、従来の耐熱性超合金に代わる高温構造材料と
してガスタービン用部品、エンジン用部品、製鋼用機械
部品等の各種高強度耐熱部品への応用が試みられてい
る。また、金属に対する耐食性が優れていることから溶
融金属の耐溶材料としての応用も試みられ、さらに耐摩
耗性も優れていることから、軸受等の摺動部材、切削工
具への実用化も図られている。
On the other hand, a ceramic sintered body containing silicon nitride as a main component generally has excellent heat resistance even in a high temperature environment of 1000 ° C. or higher, and also has excellent thermal shock resistance. As a high-temperature structural material that replaces the heat-resistant superalloy described above, it has been attempted to be applied to various high-strength heat-resistant parts such as gas turbine parts, engine parts, and steel-making machine parts. In addition, since it has excellent corrosion resistance to metals, it has been tried to apply it as a melt-resistant material of molten metal, and because it has excellent wear resistance, it can be put to practical use in sliding members such as bearings and cutting tools. ing.

【0004】従来より窒化けい素セラミックス焼結体の
組成として、窒化けい素に酸化イットリウム(Y
2 3 ),酸化セリウム(CeO),酸化カルシウム
(CaO)などの希土類元素あるいはアルカリ土類元素
の酸化物を焼結助剤として添加されたものが知られてお
り、これら焼結助剤により焼結性を高めて緻密化・高強
度化している。
Conventionally, as a composition of a silicon nitride ceramics sintered body, yttrium oxide (Y
2 O 3 ), cerium oxide (CeO), calcium oxide (CaO) and other rare earth elements or alkaline earth element oxides are known to be added as sintering aids. Higher sinterability and higher density and strength.

【0005】従来の窒化けい素焼結体は、窒化けい素原
料粉末に上記のような焼結助剤を添加し成形し、得られ
た成形体を1600〜1850℃程度の温度で焼成炉で
所定時間焼成した後に炉冷し、得られた焼結体を研削研
摩加工する製法で製造されている。
A conventional silicon nitride sintered body is formed by adding the above-mentioned sintering aid to a silicon nitride raw material powder and molding the obtained sintered body at a temperature of about 1600 to 1850 ° C. in a firing furnace. It is manufactured by a manufacturing method in which after firing for a time, the furnace is cooled, and the resulting sintered body is ground and polished.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来方法によって製造された窒化けい素焼結体では、靭性
値などの機械的強度は優れているものの、熱伝導特性の
点では、他の窒化アルミニウム(AlN)焼結体、酸化
ベリリウム(BeO)焼結体や炭化けい素(SiC)焼結体
などと比較して著しく低いため、特に放熱性を要求され
る半導体用回路基板などの電子用材料としては実用化さ
れておらず、用途範囲が狭い難点があった。
However, although the silicon nitride sintered body manufactured by the above-mentioned conventional method has excellent mechanical strength such as toughness, it is different from other aluminum nitrides in terms of thermal conductivity. AlN) sintered body, beryllium oxide (BeO) sintered body, silicon carbide (SiC) sintered body, etc. are significantly lower than those in electronic materials such as semiconductor circuit boards that require heat dissipation. Has not been put to practical use, and has a drawback that its application range is narrow.

【0007】一方上記窒化アルミニウム焼結体は他のセ
ラミックス焼結体と比較して高い熱伝導率と低熱膨張係
数の特長を有するため、高速化、高出力化、多機能化、
大型化が進展する半導体チップの回路基板部品やパッケ
ージ材料として主流となっているが、機械的強度の点で
充分に満足できるものは得られていない。そこで高い機
械的強度を有するとともに高い熱伝導率も併せ持ったセ
ラミックス焼結体の開発が要請されていた。
On the other hand, the above-mentioned aluminum nitride sintered body has the characteristics of high thermal conductivity and low thermal expansion coefficient as compared with other ceramics sintered bodies, so that it is possible to achieve high speed, high output, and multi-functionality.
Although it is the mainstream as a circuit board component for semiconductor chips and package materials, which are becoming larger in size, a material that is sufficiently satisfactory in terms of mechanical strength has not been obtained. Therefore, there has been a demand for the development of a ceramics sintered body having high mechanical strength and high thermal conductivity.

【0008】さらに上記セラミックス焼結体基板を主た
る構成材とする回路基板を、アッセンブリ工程にて実装
ボートにねじ止め等により固定しようとすると、ねじの
押圧力による僅かな変形やハンドリング時の衝撃によっ
て回路基板が破損し、半導体装置の製造歩留りを大幅に
低減させる場合がある。したがって、回路基板において
も、外力に耐える高強度特性と、高出力化,高発熱量化
に対応できる優れた放熱特性とを兼ね備えたものが要請
されている。
Further, when the circuit board having the above-mentioned ceramic sintered body substrate as a main component is fixed to the mounting boat by screwing or the like in the assembly process, a slight deformation due to the pressing force of the screw or an impact at the time of handling is caused. The circuit board may be damaged, and the manufacturing yield of semiconductor devices may be significantly reduced. Therefore, the circuit board is also required to have both high strength characteristics to withstand external force and excellent heat dissipation characteristics to cope with high output and high heat generation.

【0009】また上記のうよなセラミックス基板表面に
金属回路板および半導体チップを一体に接合して形成し
た回路基板においては、セラミックス基板自体の機械的
強度および靭性が不充分であったため、半導体チップの
作動に伴い繰り返しの熱サイクルを受けて、金属回路板
の接合部付近のセラミックス基板にクラックが発生し易
く、耐熱サイクル特性および信頼性が低いという問題点
があった。
Further, in a circuit board formed by integrally joining a metal circuit board and a semiconductor chip on the surface of a ceramic substrate as described above, the mechanical strength and toughness of the ceramic substrate itself are insufficient, so that the semiconductor chip Due to the repeated heat cycle, the ceramic substrate in the vicinity of the joint portion of the metal circuit board is apt to crack and the heat resistance cycle characteristic and reliability are low.

【0010】本発明は上記のような課題要請に対処する
ためになされたものであり、窒化けい素焼結体が本来備
える高強度特性を利用し、さらに熱伝導率が高く放熱性
に優れるとともに耐熱サイクル特性を大幅に改善した高
熱伝導性窒化けい素回路基板を提供することを目的とす
る。
The present invention has been made in order to meet the above-mentioned demands, and utilizes the high strength characteristics originally possessed by a silicon nitride sintered body, and further has high thermal conductivity and excellent heat dissipation and heat resistance. It is an object of the present invention to provide a high thermal conductivity silicon nitride circuit board with greatly improved cycle characteristics.

【0011】[0011]

【課題を解決するための手段】本発明者は上記目的を達
成するために、従来使用されていた窒化けい素粉末の種
類、焼結助剤や添加物の種類および添加量、焼結条件に
検討を加え、従来の窒化けい素焼結体が有する熱伝導率
の2倍以上の高い熱伝導性を有する窒化けい素焼結体を
開発した。さらに、この窒化けい素焼結体を基板材料と
して使用し、その表面に所定厚さの酸化物層を形成し、
この酸化物層を介して金属回路板を基板上に直接接合し
て回路基板を製造したときに、機械的強度、靭性値、耐
熱サイクル特性および放熱性を全て満足する回路基板が
得られることを実験により確認した。
In order to achieve the above-mentioned object, the present inventor has determined the type of silicon nitride powder, the type and amount of addition of sintering aids and additives, and the sintering conditions that have been conventionally used. After further study, we have developed a silicon nitride sintered body that has high thermal conductivity, which is more than twice the thermal conductivity of conventional silicon nitride sintered bodies. Further, using this silicon nitride sintered body as a substrate material, an oxide layer having a predetermined thickness is formed on the surface thereof,
When manufacturing a circuit board by directly bonding a metal circuit board onto the board through this oxide layer, it is possible to obtain a circuit board that satisfies all of mechanical strength, toughness value, heat cycle characteristics and heat dissipation. Confirmed by experiment.

【0012】具体的には、微細で高純度を有する窒化け
い素粉末に希土類元素酸化物等を所定量ずつ添加した原
料混合体を成形脱脂し、得られた成形体を所定温度で一
定時間加熱保持して緻密化焼結を実施した後、所定以下
の冷却速度で徐冷し、得られた焼結体を研削研摩加工し
て製造したときに熱伝導率が従来の窒化けい素焼結体の
2倍以上、具体的には60W/m・K以上と大きく向上
し、かつ高強度を有する窒化けい素焼結体が得られるこ
とが判明し、放熱特性および強度特性を共に満足する新
規な窒化けい素材料を開発した。そして、この窒化けい
素材料を、半導体搭載用回路基板の基板材料に適用した
ときに、優れた放熱特性と耐久性と耐熱サイクル特性と
を同時に達成できることが判明した。
Specifically, a raw material mixture obtained by adding a predetermined amount of a rare earth element oxide or the like to fine and highly pure silicon nitride powder is molded and degreased, and the obtained molded body is heated at a predetermined temperature for a certain period of time. After carrying out densification sintering while holding, it is gradually cooled at a cooling rate not higher than a predetermined value, and when the obtained sintered body is manufactured by grinding and grinding, the thermal conductivity of the conventional silicon nitride sintered body is It has been revealed that a silicon nitride sintered body having a high strength, which is more than doubled, specifically 60 W / mK or more, can be obtained, and a new silicon nitride satisfying both heat dissipation characteristics and strength characteristics. Developed raw material. It has been found that when this silicon nitride material is applied to a substrate material for a semiconductor-mounting circuit board, excellent heat dissipation characteristics, durability, and heat cycle characteristics can be achieved at the same time.

【0013】また、酸素や不純物陽イオン元素含有量を
低減した高純度の窒化けい素原料粉末を使用し、上記条
件にて焼結することにより、粒界相におけるガラス相
(非晶質相)の生成を効果的に抑制でき、粒界相におけ
る結晶化合物を20体積%以上(粒界相全体に対し)、
より好ましくは50体積%以上とすることにより、希土
類元素酸化物のみを原料粉末に添加した場合においても
60W/m・K以上さらに好ましくは80W/m・K以
上、さらには100W/m・K以上の高熱伝導率を有す
る窒化けい素焼結体基板が得られるという知見を得た。
A glass phase (amorphous phase) in the grain boundary phase is obtained by using a high-purity silicon nitride raw material powder having a reduced content of oxygen and impurity cation elements and sintering the powder under the above conditions. Can be effectively suppressed, and the crystalline compound in the grain boundary phase is 20% by volume or more (relative to the whole grain boundary phase),
It is more preferably 50% by volume or more, so that 60 W / m · K or more, even more preferably 80 W / m · K or more, and further 100 W / m · K or more even when only the rare earth element oxide is added to the raw material powder. It was found that a silicon nitride sintered body substrate having high thermal conductivity can be obtained.

【0014】また、従来、焼結操作終了後に焼成炉の加
熱用電源をOFFとして焼結体を炉冷していた場合に
は、冷却速度が毎時400〜800℃と急速であった
が、本発明者の実験によれば、特に冷却速度を毎時10
0℃以下に緩速に制御することにより、窒化けい素焼結
体組織の粒界相が非結晶質状態から結晶相を含む相に変
化し、高強度特性と高伝熱特性とが同時に達成されるこ
とが判明した。
Further, conventionally, when the heating power source of the firing furnace was turned off after the sintering operation was finished to cool the sintered body by the furnace, the cooling rate was as rapid as 400 to 800 ° C./hour. According to the experiments by the inventor, the cooling rate is 10
By controlling the temperature slowly to 0 ° C or lower, the grain boundary phase of the silicon nitride sintered body structure changes from an amorphous state to a phase containing a crystalline phase, and high strength characteristics and high heat transfer characteristics are simultaneously achieved. It turned out that

【0015】このような熱伝導率が60W/m・K以上
の高熱伝導性窒化けい素焼結体自体は、その一部が既に
本発明者により特許出願されており、さらに特開平6−
135771号公報および特開平7−48174号公報
によって出願公開されている。そして、これらの特許出
願において記載されている窒化けい素焼結体は、希土類
元素を酸化物に換算して2.0〜7.5重量%含有する
ものである。しかしながら、本発明者はさらに改良研究
を進めた結果、含有される希土類元素は酸化物に換算し
て7.5重量%を超えた場合の方が焼結体の高熱伝導化
がさらに進み、焼結性も良好であるため、7.5重量%
を超えたものを用いることが好ましい。特に希土類元素
がランタノイド系列の元素である場合に、その効果は顕
著である。ちなみに粒界相中における結晶化合物相の粒
界相全体に対する割合が60〜70%である場合におい
ても、焼結体は110〜120W/m・K以上の高熱伝
導率を達成することができる。
A part of the high thermal conductivity silicon nitride sintered body itself having a thermal conductivity of 60 W / m · K or more has already been applied for a patent by the present inventor, and further, JP-A-6-
The application has been disclosed in Japanese Patent No. 135771 and Japanese Patent Laid-Open No. 7-48174. The silicon nitride sintered bodies described in these patent applications contain the rare earth element in an amount of 2.0 to 7.5% by weight in terms of oxide. However, as a result of further improvement research conducted by the present inventor, when the contained rare earth element exceeds 7.5% by weight in terms of oxide, the sintered body has a higher thermal conductivity, and the sintered body has a higher thermal conductivity. 7.5% by weight due to good binding
It is preferable to use a material having a viscosity of more than. In particular, the effect is remarkable when the rare earth element is a lanthanoid series element. By the way, even when the ratio of the crystal compound phase in the grain boundary phase to the whole grain boundary phase is 60 to 70%, the sintered body can achieve a high thermal conductivity of 110 to 120 W / m · K or more.

【0016】しかし、上記窒化けい素焼結体をセラミッ
クス基板材料とした場合、たとえ金属回路板として酸素
を100〜1000ppm含有するタフピッチ電解銅を
使用しても、あるいは表面酸化層を形成した銅を使用し
ても、接合することは困難であった。原理的には例えば
特開昭52−37914号公報に記載されているよう
に、所定温度での加熱により共晶融体が生成し接合され
るはずであるが、実際には接合されない。
However, when the above silicon nitride sintered body is used as a ceramic substrate material, even if tough pitch electrolytic copper containing 100 to 1000 ppm of oxygen is used as the metal circuit board, or copper having a surface oxide layer is used. However, it was difficult to join. In principle, as described in JP-A-52-37914, for example, heating at a predetermined temperature should produce and bond a eutectic melt, but it does not actually bond.

【0017】この課題に対して本発明者は、接合が不可
能となる原因は、直接接合時に所定温度(銅の場合10
65℃〜1083℃)での加熱により共晶融体は生成さ
れるが、この生成した共晶融体と上記窒化けい素焼結体
との濡れ性が悪いためであると考えた。
In order to solve this problem, the present inventor has found that the reason why the joining is impossible is a predetermined temperature at the time of direct joining (in the case of copper, 10
The eutectic melt was generated by heating at 65 ° C. to 1083 ° C.), which was considered to be due to poor wettability between the generated eutectic melt and the silicon nitride sintered body.

【0018】このような見地から、共晶融体と上記窒化
けい素焼結体との加熱時の濡れ性を改善するために、上
記窒化けい素焼結体(基板)の表面に予め厚さが0.5
〜10μmの酸化物層を形成した後、酸素を100〜1
000ppm含有するタフピッチ電解銅、あるいは表面
に酸化物層を形成した銅等と所定温度での加熱により直
接接合を可能としたのである。
From this point of view, in order to improve the wettability of the eutectic melt and the silicon nitride sintered body at the time of heating, the surface of the silicon nitride sintered body (substrate) has a thickness of 0 in advance. .5
After forming an oxide layer of 10 μm, oxygen is added to 100 to 1
It was possible to directly bond tough pitch electrolytic copper containing 000 ppm or copper having an oxide layer formed on the surface by heating at a predetermined temperature.

【0019】この場合、上記窒化けい素基板表面に酸化
物層を形成するのみでも直接接合は可能であるが、金属
回路板がたとえ酸素を100〜1000ppm含有する
タフピッチ電解銅であっても、、銅回路板表面にも所定
厚さの酸化銅層を予め形成しておくことによって、窒化
けい素基板と銅回路板との接合強度がさらに改善され、
回路基板の耐久性がより向上することが判明した。
In this case, direct bonding is possible only by forming an oxide layer on the surface of the silicon nitride substrate, but even if the metal circuit board is tough pitch electrolytic copper containing 100 to 1000 ppm of oxygen, By pre-forming a copper oxide layer of a predetermined thickness on the surface of the copper circuit board, the bonding strength between the silicon nitride substrate and the copper circuit board is further improved,
It has been found that the durability of the circuit board is further improved.

【0020】また、窒化けい素基板の表面が平滑である
よりも、ブラスト処理等を実施して中心線平均粗さ(R
a)が5.0〜10.0μmの範囲となるように粗面化
加工した場合の方が、基板と金属回路板との接合強度が
増加し、耐久性が優れた回路基板が得られることも判明
した。
Further, the center line average roughness (R
When a) is roughened to be in the range of 5.0 to 10.0 μm, the bonding strength between the substrate and the metal circuit board is increased, and a circuit board having excellent durability can be obtained. Was also found.

【0021】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係る高熱伝導性窒化けい素
回路基板は、希土類元素を酸化物に換算して2.0〜1
7.5重量%、不純物陽イオン元素としてのLi,N
a,K,Fe,Ca,Mg,Sr,Ba,Mn,Bを合
計で0.3重量%以下含有し、熱伝導率が60W/m・
K以上である窒化けい素基板の表面に、厚さが0.5〜
10μmの酸化物層が形成され、この酸化物層を介して
金属回路板が上記窒化けい素基板に直接接合されている
ことを特徴とする。
The present invention has been completed based on the above findings. That is, the high-thermal-conductivity silicon nitride circuit board according to the present invention has a rare earth element converted to an oxide of 2.0 to 1.
7.5% by weight, Li and N as impurity cation elements
a, K, Fe, Ca, Mg, Sr, Ba, Mn, and B are contained in a total amount of 0.3 wt% or less, and the thermal conductivity is 60 W / m.
On the surface of the silicon nitride substrate of K or more, the thickness is 0.5 to
A 10 μm oxide layer is formed, and the metal circuit board is directly bonded to the silicon nitride substrate through the oxide layer.

【0022】また他の態様として、窒化けい素粒子およ
び粒界相により構成され、粒界相中における結晶化合物
相が粒界相全体に対する割合で20%以上を占め、熱伝
導率が60W/m・K以上である窒化けい素基板の表面
に、厚さが0.5〜10μmの酸化物層が形成され、こ
の酸化物層を介して金属回路板が上記窒化けい素基板に
直接接合されていることを特徴とする。
In another embodiment, the grain boundary phase is composed of silicon nitride particles and a grain boundary phase, the crystal compound phase in the grain boundary phase accounts for 20% or more of the total grain boundary phase, and the thermal conductivity is 60 W / m. An oxide layer having a thickness of 0.5 to 10 μm is formed on the surface of the silicon nitride substrate of K or more, and the metal circuit board is directly bonded to the silicon nitride substrate through the oxide layer. It is characterized by being

【0023】さらに、金属回路板は、たとえ酸素を10
0〜1000ppm含有するタフピッチ電解銅であって
も表面に厚さ1.0μm以上の酸化銅層を有する銅回路
板であることが接合強度を向上させるために好ましい。
Further, the metal circuit board may contain oxygen even if
Even tough pitch electrolytic copper containing 0 to 1000 ppm is preferably a copper circuit board having a copper oxide layer with a thickness of 1.0 μm or more on the surface in order to improve the bonding strength.

【0024】ここで、金属回路板が銅回路板である場
合、直接接合法における結合剤は酸素であるので、この
銅回路板はCu−O共晶化合物により窒化けい素基板に
接合されることになる。さらに金属回路板がアルミニウ
ム回路板である場合、直接接合法における結合剤はアル
ミニウムが好ましいので、このアルミニウム回路板はA
l−Si共晶化合物により窒化けい素基板に接合されて
いることが好ましい。
Here, when the metal circuit board is a copper circuit board, since the binder in the direct bonding method is oxygen, this copper circuit board should be bonded to the silicon nitride substrate by the Cu--O eutectic compound. become. Further, when the metal circuit board is an aluminum circuit board, aluminum is preferable as the binder in the direct joining method, so that the aluminum circuit board is A
It is preferably bonded to the silicon nitride substrate by an l-Si eutectic compound.

【0025】本発明に係る高熱伝導性窒化けい素回路基
板に使用される高熱伝導性窒化けい素基板は、例えば以
下の方法で製造される。すなわち、酸素を1.7重量%
以下、不純物陽イオン元素としてのLi,Na,K,F
e,Ca,Mg,Sr,Ba,Mn,Bを合計で0.3
重量%以下、α相型窒化けい素を90重量%以上含有
し、平均粒径0.8μm以下の窒化けい素粉末に、希土
類元素を酸化物に換算して2.0〜17.5重量%と、
必要に応じてアルミナおよび窒化アルミニウムの少なく
とも一方を1.0重量%以下とを添加した原料混合体を
成形して成形体を調製し、得られた成形体を脱脂後、温
度1800〜2100℃で雰囲気加圧焼結し、上記焼結
温度から、上記希土類元素により焼結時に形成された液
相が凝固する温度までに至る焼結体の冷却速度を毎時1
00℃以下に設定し、得られた焼結体を所定形状に研削
研摩加工して製造される。
The high-thermal-conductivity silicon nitride substrate used in the high-thermal-conductivity silicon nitride circuit substrate according to the present invention is manufactured, for example, by the following method. That is, 1.7% by weight of oxygen
Hereinafter, Li, Na, K, F as impurity cation elements
e, Ca, Mg, Sr, Ba, Mn, B total 0.3
2.0% to 17.5% by weight in terms of oxide of a rare earth element in a silicon nitride powder having an average particle diameter of 0.8 μm or less, containing 90% by weight or less of α-phase type silicon nitride. When,
A raw material mixture to which at least one of alumina and aluminum nitride is added in an amount of 1.0% by weight or less is formed to prepare a formed body, and the obtained formed body is degreased at a temperature of 1800 to 2100 ° C. Atmospheric pressure sintering, the cooling rate of the sintered body from the above sintering temperature to the temperature at which the liquid phase formed by the above rare earth element during sintering solidifies 1
The temperature is set to 00 ° C. or lower, and the obtained sintered body is manufactured by grinding and grinding into a predetermined shape.

【0026】また上記製造方法において、上記原料混合
体に、さらにTi,Zr,Hf,V,Nb,Ta,C
r,Mo,Wの酸化物,炭化物、窒化物、けい化物、硼
化物からなる群より選択される少なくとも1種を0.2
〜3.0重量%を添加してもよい。
In the above manufacturing method, Ti, Zr, Hf, V, Nb, Ta and C are further added to the raw material mixture.
At least one selected from the group consisting of oxides, carbides, nitrides, suicides, and borides of r, Mo, W is 0.2
~ 3.0 wt% may be added.

【0027】上記製造方法によれば、窒化けい素結晶組
織中に希土類元素等を含む粒界相が形成され、気孔率が
2.5%以下、熱伝導率が60W/m・K以上、三点曲
げ強度が室温で650MPa以上の機械的特性および熱
伝導特性が共に優れた窒化けい素基板が得られる。
According to the above manufacturing method, a grain boundary phase containing a rare earth element or the like is formed in the silicon nitride crystal structure, the porosity is 2.5% or less, the thermal conductivity is 60 W / m · K or more, and It is possible to obtain a silicon nitride substrate having a point bending strength of 650 MPa or more at room temperature and excellent mechanical properties and thermal conductivity.

【0028】本発明に使用される高熱伝導性窒化けい素
基板の主原料となる窒化けい素粉末としては、焼結性、
強度および熱伝導率を考慮して、酸素含有量が1.7重
量%以下、好ましくは0.5〜1.5重量%、Li,N
a,K,Fe,Mg,Ca,Sr,Ba,Mn,Bなど
の不純物陽イオン元素の含有量が合計で0.3重量%以
下、好ましくは0.2重量%以下に抑制されたα相型窒
化けい素を90重量%以上、好ましくは93重量%以上
含有し、平均粒径が1.0μm以下、好ましくは0.4
〜0.8μm程度の微細な窒化けい素粉末を使用する。
The silicon nitride powder which is the main raw material of the high thermal conductivity silicon nitride substrate used in the present invention has sinterability,
Considering strength and thermal conductivity, oxygen content is 1.7 wt% or less, preferably 0.5 to 1.5 wt%, Li, N
α phase in which the total content of impurity cation elements such as a, K, Fe, Mg, Ca, Sr, Ba, Mn, and B is suppressed to 0.3% by weight or less, preferably 0.2% by weight or less 90% by weight or more, preferably 93% by weight or more of type silicon nitride and having an average particle size of 1.0 μm or less, preferably 0.4
A fine silicon nitride powder of about 0.8 μm is used.

【0029】平均粒径が1.0μm以下の微細な原料粉
末を使用することにより、少量の焼結助剤であっても気
孔率が2.5%以下の緻密な焼結体を形成することが可
能であり、また焼結助剤が熱伝導特性を阻害するおそれ
も減少する。
By using a fine raw material powder having an average particle size of 1.0 μm or less, a dense sintered body having a porosity of 2.5% or less can be formed even with a small amount of a sintering aid. It is also possible to reduce the risk of the sintering aid impairing the heat conduction characteristics.

【0030】またLi,Na,K,Fe,Ca,Mg,
Sr,Ba,Mn,Bは不純物陽イオン元素として熱伝
導性を阻害する物質として作用するため、60W/m・
K以上の熱伝導率を確保するためには、上記不純物陽イ
オン元素の含有量は合計で0.3重量%以下とすること
により達成可能である。特に同様の理由により、上記不
純物陽イオン元素の含有量は合計で0.2重量%以下と
することが、さらに好ましい。ここで通常の窒化けい素
焼結体を得るために使用される窒化けい素粉末には、特
にFe,Ca,Mgが比較的に多く含有されているた
め、Fe,Ca,Mgの合計量が上記不純物陽イオン元
素の合計含有量の目安となる。
Li, Na, K, Fe, Ca, Mg,
Since Sr, Ba, Mn, and B act as substances that impair the thermal conductivity as impurity cation elements, 60 W / m ·
In order to secure the thermal conductivity of K or more, it is possible to achieve by setting the total content of the impurity cation elements to 0.3% by weight or less. Particularly, for the same reason, it is more preferable that the total content of the impurity cation elements is 0.2% by weight or less. Since the silicon nitride powder used to obtain a usual silicon nitride sintered body contains a relatively large amount of Fe, Ca, and Mg, the total amount of Fe, Ca, and Mg is the above. It is a measure of the total content of impurity cation elements.

【0031】さらに、β相型と比較して焼結性に優れた
α相型窒化けい素を90重量%以上含有する窒化けい素
原料粉末を使用することにより、高密度の焼結体を製造
することができる。
Further, by using a silicon nitride raw material powder containing 90% by weight or more of α-phase type silicon nitride, which is superior in sinterability as compared with β-phase type, a high density sintered body is manufactured. can do.

【0032】また窒化けい素原料粉末に焼結助剤として
添加する希土類元素としては、Ho,Er,Yb,Y,
La,Sc,Pr,Ce,Nd,Dy,Sm,Gdなど
の酸化物もしくは焼結操作により、これらの酸化物とな
る物質が単独で、または2種以上の酸化物を組み合せた
ものを含んでもよいが、特に酸化ホルミウム(Ho2
3 ),酸化エルビウム(Er2 3 )が好ましい。
The rare earth elements added to the silicon nitride raw material powder as a sintering aid include Ho, Er, Yb, Y,
Depending on the oxide such as La, Sc, Pr, Ce, Nd, Dy, Sm, Gd or the sintering operation, these oxide substances may be used alone or in combination of two or more kinds. Good, but especially holmium oxide (Ho 2 O
3 ) and erbium oxide (Er 2 O 3 ) are preferred.

【0033】特に希土類元素としてランタノイド系列の
元素であるHo,Er,Ybを使用することにより、焼
結性あるいは高熱伝導化が良好になり、1850℃程度
の低温度領域においても十分に緻密な焼結体が得られ
る。したがって焼成装置の設備費およびランニングコス
トを低減できる効果も得られる。これらの焼結助剤は、
窒化けい素原料粉末と反応して液相を生成し、焼結促進
剤として機能する。また後述する金属回路板接合工程に
おいて、一部が酸化層方向に拡散して酸化層内部に濃縮
するように蓄積される。
Particularly, by using the lanthanoid series elements Ho, Er, and Yb as the rare earth element, the sinterability or high thermal conductivity is improved, and the firing is sufficiently dense even in the low temperature region of about 1850 ° C. A union is obtained. Therefore, the effect of reducing the equipment cost and running cost of the firing apparatus can be obtained. These sintering aids are
It reacts with the silicon nitride raw material powder to form a liquid phase and functions as a sintering accelerator. Further, in the metal circuit board bonding process described later, a part of the metal diffuses toward the oxide layer and accumulates inside the oxide layer so as to concentrate.

【0034】上記焼結助剤の添加量は、酸化物換算で原
料粉末に対して2.0〜17.5重量%の範囲とする。
この添加量が2.0重量%未満と過少の場合は、焼結体
(窒化けい素基板)の緻密化が不充分であり、特に希土
類元素がランタノイド系元素のように原子量が大きい元
素の場合には、低強度で低熱伝導率の焼結体が形成され
る。一方、添加量が17.5重量%を超える過量となる
と、過量の粒界相が生成し、熱伝導率の低下や強度が低
下し始めるので上記範囲とする。特に同様の理由により
4〜15重量%とすることが望ましい。
The amount of the above-mentioned sintering aid added is in the range of 2.0 to 17.5% by weight based on the raw material powder in terms of oxide.
If the addition amount is less than 2.0% by weight, the sintered body (silicon nitride substrate) is insufficiently densified, especially when the rare earth element is an element having a large atomic weight such as a lanthanoid element. A sintered body having a low strength and a low thermal conductivity is formed on. On the other hand, if the addition amount exceeds 17.5% by weight, an excessive amount of grain boundary phase is generated, and the thermal conductivity and the strength start to decrease, so the above range is set. Particularly, for the same reason, it is desirable that the amount is 4 to 15% by weight.

【0035】さらに、上記製造方法において他の選択的
な添加成分としてのアルミナ(Al2 3 )は、前記希
土類元素の焼結促進剤の機能を助長する役目を果すもの
であり、特に加圧焼結を行なう場合に著しい効果を発揮
するものである。
Alumina (Al 2 O 3 ) as another selective additive component in the above-mentioned manufacturing method plays a role of promoting the function of the sintering promoter of the rare earth element, and particularly, the pressurization. It exhibits a remarkable effect when sintering is performed.

【0036】Al2 3 の添加量が0.1重量%未満の
場合においては緻密化が不充分である一方、1.0重量
%を超える過量となる場合には過量の粒界相を生成した
り、または窒化けい素に固溶し始め、熱伝導の低下が起
こるため、添加量は1.0重量%以下、好ましくは0.
1〜0.75重量%の範囲に設定される。特に強度、熱
伝導率共に良好な性能を確保するためには添加量を0.
2〜0.6重量%の範囲に設定することが望ましい。
When the amount of Al 2 O 3 added is less than 0.1% by weight, the densification is insufficient, while when it exceeds 1.0% by weight, an excessive amount of grain boundary phase is produced. Or begins to form a solid solution in silicon nitride and causes a decrease in thermal conductivity. Therefore, the addition amount is 1.0% by weight or less, preferably 0.
It is set in the range of 1 to 0.75% by weight. In particular, in order to secure good performances in both strength and thermal conductivity, the addition amount should be 0.
It is desirable to set in the range of 2 to 0.6% by weight.

【0037】また、後述するAlNと併用する場合に
は、その合計添加量は1.0重量%以下に設定すること
が望ましい。
When used in combination with AlN, which will be described later, it is desirable to set the total amount added to 1.0% by weight or less.

【0038】さらに他の添加成分としての窒化アルミニ
ウム(AlN)は焼結過程における窒化けい素の蒸発な
どを抑制するとともに、上記希土類元素の焼結促進剤と
しての機能をさらに助長する役目を果すものである。
Further, aluminum nitride (AlN) as another additive component suppresses the evaporation of silicon nitride in the sintering process and also promotes the function of the above rare earth element as a sintering accelerator. Is.

【0039】AlNの添加量が0.1重量%未満(アル
ミナと併用する場合では0.05重量%未満)の場合に
おいては緻密化が不充分となり易い一方、1.0重量%
を超える過量となる場合には過量の粒界相を生成した
り、または窒化けい素に固溶し始め、熱伝導の低下が起
こるため、添加量は0.1〜1.0重量%の範囲とす
る。特に強度、熱伝導率共に良好な性能を確保するため
には添加量を0.1〜0.5重量%の範囲に設定するこ
とが望ましい。なお前記Al2 3 と併用する場合に
は、AlNの添加量は0.05〜0.5重量%の範囲が
好ましい。
When the amount of AlN added is less than 0.1% by weight (less than 0.05% by weight when used in combination with alumina), densification tends to be insufficient, while 1.0% by weight
When the amount exceeds the above range, an excessive amount of grain boundary phase is generated or begins to form a solid solution in silicon nitride, and thermal conductivity is deteriorated. Therefore, the addition amount is in the range of 0.1 to 1.0% by weight. And In particular, in order to secure good performances in both strength and thermal conductivity, it is desirable to set the addition amount within the range of 0.1 to 0.5% by weight. When used in combination with Al 2 O 3 , the addition amount of AlN is preferably in the range of 0.05 to 0.5% by weight.

【0040】また上記製造方法において他の選択的な添
加成分として使用するTi,Zr,Hf,V,Nb,T
a,Cr,Mo,Wの酸化物,炭化物、窒化物、けい化
物、硼化物は、上記希土類元素の焼結促進剤の機能を促
進すると共に、結晶組織において分散強化の機能を果し
Si3 4 基板の機械的強度を向上させるものである。
これらの化合物の添加量が0.1重量%未満の場合にお
いては構造部材の緻密化が不充分である一方、3.0重
量%を超える過量となる場合には熱伝導率および機械的
強度や電気絶縁破壊強度の低下が起こるため、添加量は
0.1〜3.0重量%の範囲が好ましい。特に好ましく
は0.2〜2.0重量%に設定することが望ましい。
Further, Ti, Zr, Hf, V, Nb and T used as other selective addition components in the above-mentioned manufacturing method.
The oxides, carbides, nitrides, suicides, and borides of a, Cr, Mo, and W promote the function of the above-mentioned rare earth element sintering promoter and, at the same time, function as a dispersion strengthener in the crystal structure of Si 3 It is intended to improve the mechanical strength of the N 4 substrate.
When the addition amount of these compounds is less than 0.1% by weight, the densification of the structural member is insufficient, while when it exceeds 3.0% by weight, thermal conductivity and mechanical strength and Since the electrical breakdown strength decreases, the addition amount is preferably in the range of 0.1 to 3.0% by weight. Particularly preferably, it is desirable to set to 0.2 to 2.0% by weight.

【0041】また上記Ti,Zr,Hf等の化合物は窒
化けい素基板を着色し不透明性を付与する遮光剤として
も機能する。そのため、特に光によって誤動作を生じ易
い集積回路等を搭載する回路基板に適用する場合には、
上記化合物を適正に添加し、遮光性に優れた窒化けい素
基板とすることが望ましい。
The compounds such as Ti, Zr and Hf also function as a light-shielding agent that colors the silicon nitride substrate and imparts opacity. Therefore, especially when applied to a circuit board on which an integrated circuit or the like that easily causes a malfunction due to light is applied,
It is desirable to add the above compound appropriately to form a silicon nitride substrate having excellent light-shielding properties.

【0042】また窒化アルミニウム(AlN)は焼結過
程における窒化けい素の蒸発などを抑制する一方、上記
焼結促進剤の機能をさらに助長し、アルミナと同様に上
記Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W
などの酸化物の添加量を相対的に軽減する役目を果す。
これらアルミナや窒化アルミニウムなどのアルミニウム
化合物の添加量はTi,Zr,Hf,V,Nb,Ta,
Cr,Mo,Wの酸化物などの添加量と密接な関係があ
る。すなわち上記Ti化合物等の添加量が0.2重量%
未満であり、かつAl2 3 およびAlN等のアルミニ
ウム化合物が単独または併用して添加され、その添加量
が0.1重量%未満の場合においては緻密化が不充分で
ある一方、アルミニウム化合物の添加量が1.0重量%
を超える過量となる場合には過量の粒界相を生成した
り、または窒化けい素に固溶し始め、熱伝導の低下が起
こるため、添加量は0.1〜1.0重量%の範囲に設定
される。特に強度、熱伝導率共に良好な性能を確保する
ためには添加量を0.1〜0.5重量%の範囲に設定す
ることが望ましい。
While aluminum nitride (AlN) suppresses evaporation of silicon nitride in the sintering process, it further promotes the function of the above-mentioned sintering promoter, and, like alumina, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W
It serves to relatively reduce the amount of oxides added such as.
The amount of aluminum compound such as alumina or aluminum nitride added is Ti, Zr, Hf, V, Nb, Ta,
There is a close relationship with the amounts of Cr, Mo and W oxides added. That is, the addition amount of the above Ti compound is 0.2% by weight.
And an aluminum compound such as Al 2 O 3 and AlN is added alone or in combination, and the addition amount is less than 0.1% by weight, the densification is insufficient, while 1.0% by weight
When the amount exceeds the above range, an excessive amount of grain boundary phase is generated or begins to form a solid solution in silicon nitride, and thermal conductivity is deteriorated. Therefore, the addition amount is in the range of 0.1 to 1.0% by weight. Is set to. In particular, in order to secure good performances in both strength and thermal conductivity, it is desirable to set the addition amount within the range of 0.1 to 0.5% by weight.

【0043】また窒化けい素基板の気孔率は熱伝導率お
よび強度に大きく影響するため2.5%以下、望ましく
は0.5%以下に設定される。気孔率が2.5%を超え
ると熱伝導の妨げとなり、窒化けい素基板の熱伝導率が
低下するとともに、窒化けい素基板の強度低下が起こ
る。
The porosity of the silicon nitride substrate has a large effect on the thermal conductivity and strength, so it is set to 2.5% or less, preferably 0.5% or less. If the porosity exceeds 2.5%, it will hinder the heat conduction, and the thermal conductivity of the silicon nitride substrate will decrease, and the strength of the silicon nitride substrate will also decrease.

【0044】また、窒化けい素基板は組織的には窒化け
い素結晶と粒界相とから構成されるが粒界相中の結晶化
合物相の割合は窒化けい素基板の熱伝導率に大きく影響
し、本発明の高熱伝導性窒化けい素基板においては、体
積比で粒界相の20%以上とすることが必要であり、よ
り好ましくは50%以上が結晶相で占めることが望まし
い。結晶相が20%未満では熱伝導率が60W/m・K
以上となるような放熱特性に優れ、かつ高温強度に優れ
た窒化けい素基板が得られないからである。
Although the silicon nitride substrate is structurally composed of a silicon nitride crystal and a grain boundary phase, the ratio of the crystal compound phase in the grain boundary phase has a great influence on the thermal conductivity of the silicon nitride substrate. However, in the high thermal conductivity silicon nitride substrate of the present invention, it is necessary that the volume ratio is 20% or more of the grain boundary phase, and more preferably 50% or more is occupied by the crystal phase. If the crystal phase is less than 20%, the thermal conductivity will be 60 W / mK
This is because it is not possible to obtain a silicon nitride substrate having excellent heat dissipation properties and high temperature strength as described above.

【0045】さらに上記のように窒化けい素基板の気孔
率を2.5%以下にし、また窒化けい素結晶組織に形成
される粒界相の20体積%以上が結晶相で占めるように
するためには、窒化けい素成形体を温度1800〜21
00℃で2〜10時間程度、加圧焼結し、かつ焼結操作
完了直後における焼結体の冷却速度を毎時100℃以下
にして徐冷することが重要である。
Further, as described above, the porosity of the silicon nitride substrate is set to 2.5% or less, and 20% by volume or more of the grain boundary phase formed in the silicon nitride crystal structure is occupied by the crystal phase. A silicon nitride compact at a temperature of 1800 to 21
It is important to perform pressure sintering at 00 ° C. for about 2 to 10 hours and gradually cool the sintered body immediately after the completion of the sintering operation to 100 ° C. or less per hour.

【0046】焼結温度を1800℃未満に設定した場合
には、焼結体の緻密化が不充分で気孔率が2.5vol%以
上になり機械的強度および熱伝導性が共に低下してしま
う。一方焼結温度が2100℃を超えると窒化けい素成
分自体が蒸発分解し易くなる。特に加圧焼結ではなく、
常圧焼結を実施した場合には、1800℃付近より窒化
けい素の分解蒸発が始まる。
When the sintering temperature is set to less than 1800 ° C., the densification of the sintered body is insufficient, the porosity becomes 2.5 vol% or more, and both the mechanical strength and the thermal conductivity decrease. . On the other hand, if the sintering temperature exceeds 2100 ° C., the silicon nitride component itself tends to evaporate and decompose. Not especially pressure sintering,
When pressureless sintering is carried out, decomposition vaporization of silicon nitride begins at around 1800 ° C.

【0047】上記焼結操作完了直後における焼結体の冷
却速度は粒界相を結晶化させるために重要な制御因子で
あり、冷却速度が毎時100℃を超えるような急速冷却
を実施した場合には、焼結体組織の粒界相が非結晶質
(ガラス相)となり、焼結体に生成した液相が結晶相と
して粒界相に占める体積割合が20%未満となり、強度
および熱伝導性が共に低下してしまう。
The cooling rate of the sintered body immediately after the completion of the above-described sintering operation is an important control factor for crystallizing the grain boundary phase, and when the cooling rate is 100 ° C./hour or more, rapid cooling is performed. Indicates that the grain boundary phase of the sintered body structure becomes amorphous (glass phase), and the liquid phase generated in the sintered body occupies less than 20% by volume as a crystal phase in the grain boundary phase, resulting in strength and thermal conductivity. Will decrease together.

【0048】上記冷却速度を厳密に調整すべき温度範囲
は、所定の焼結温度(1800〜2100℃)から、前
記の焼結助剤の反応によって生成する液相が凝固するま
での温度範囲で充分である。ちなみに前記のような焼結
助剤を使用した場合の液相凝固点は概略1600〜15
00℃程度である。そして少なくとも焼結温度から上記
液相凝固温度に至るまでの焼結体の冷却速度を毎時10
0℃以下、好ましくは50℃以下、さらに好ましくは2
5℃以下に制御することにより、粒界相の20%以上望
ましくは50%以上が結晶相になり、熱伝導率および機
械的強度が共に優れた高熱伝導性窒化けい素基板が最終
的に得られる。
The temperature range in which the cooling rate should be strictly adjusted is a temperature range from a predetermined sintering temperature (1800 to 2100 ° C.) to the solidification of the liquid phase produced by the reaction of the above-mentioned sintering aid. Is enough. By the way, the liquidus freezing point when the above-mentioned sintering aid is used is approximately 1600 to 15
It is about 00 ° C. The cooling rate of the sintered body from at least the sintering temperature to the liquidus solidification temperature is set to 10 per hour.
0 ° C or lower, preferably 50 ° C or lower, more preferably 2
By controlling the temperature to 5 ° C or lower, 20% or more, preferably 50% or more of the grain boundary phase becomes a crystal phase, and finally a highly heat conductive silicon nitride substrate excellent in both thermal conductivity and mechanical strength is obtained. To be

【0049】本発明に使用される高熱伝導性窒化けい素
基板は、例えば以下のようなプロセスを経て製造され
る。すなわち前記所定の微細粒径を有し、また不純物含
有量が少ない微細な窒化けい素粉末に対して所定量の焼
結助剤、有機バインダ等の必要な添加剤および必要に応
じてAl2 3 やAlNまたはTi,Zr,Hf等の化
合物を加えて原料混合体を調整し、次に得られた原料混
合体を成形して所定形状の成形体を得る。原料混合体の
成形法としては、汎用の金型プレス法、あるいはドクタ
ーブレード法のようなシート成形法なども適用できる。
The high thermal conductivity silicon nitride substrate used in the present invention is manufactured, for example, through the following process. That is, with respect to the fine silicon nitride powder having a predetermined fine particle diameter and a small amount of impurities, a predetermined amount of a sintering aid, an organic binder, and other necessary additives and, if necessary, Al 2 O. The raw material mixture is adjusted by adding 3 , AlN or a compound such as Ti, Zr, Hf and the like, and then the obtained raw material mixture is molded to obtain a molded product having a predetermined shape. As a forming method of the raw material mixture, a general-purpose die pressing method, a sheet forming method such as a doctor blade method, or the like can be applied.

【0050】上記成形操作に引き続いて、成形体を非酸
化性雰囲気中で温度600〜800℃,または空気中で
温度400〜500℃で1〜2時間加熱して、予め添加
していた有機バインダ成分を充分に除去し、脱脂する。
次に脱脂処理された成形体を窒素ガス、水素ガスやアル
ゴンガスなどの不活性ガス雰囲気中で1800〜210
0℃の温度で所定時間雰囲気加圧焼結を行い、さらに得
られた焼結体を研削研摩加工して所定形状の高熱伝導性
窒化けい素基板が得られる。
Subsequent to the above molding operation, the molded body is heated in a non-oxidizing atmosphere at a temperature of 600 to 800 ° C. or in air at a temperature of 400 to 500 ° C. for 1 to 2 hours, and the organic binder added in advance is added. Remove components thoroughly and degrease.
Next, the degreased molded body is subjected to 1800 to 210 in an inert gas atmosphere such as nitrogen gas, hydrogen gas or argon gas.
Atmosphere pressure sintering is performed at a temperature of 0 ° C. for a predetermined time, and the obtained sintered body is ground and polished to obtain a high thermal conductivity silicon nitride substrate having a predetermined shape.

【0051】上記製法によって製造された高熱伝導性窒
化けい素基板は気孔率が2.5%以下、60W/m・K
(25℃)以上、さらには100W/m・K以上の高熱
伝導率を有し、また三点曲げ強度が常温で650MPa
以上、さらには800MPa以上と機械的特性にも優れ
ている。
The high thermal conductivity silicon nitride substrate manufactured by the above manufacturing method has a porosity of 2.5% or less, 60 W / m · K.
(25 ° C) or higher, further 100 W / m · K or higher, high thermal conductivity, and three-point bending strength of 650 MPa at room temperature
As described above, the mechanical properties of 800 MPa or more are excellent.

【0052】なお、低熱伝導性の窒化けい素に高熱伝導
性のSiC等を添加することにより基板全体としての熱
伝導率を60W/m・K以上にした窒化けい素基板は本
発明の範囲には含まれない。しかしながら、熱伝導率が
60W/m・K以上である窒化けい素焼結体に高熱伝導
性のSiC等を複合させた窒化けい素系基板の場合に
は、窒化けい素基板自体の熱伝導率が60W/m・K以
上である限り、本発明の範囲に含まれることは言うまで
もない。
A silicon nitride substrate in which the thermal conductivity of the entire substrate is 60 W / mK or more by adding SiC having a high thermal conductivity to silicon nitride having a low thermal conductivity is within the scope of the present invention. Is not included. However, in the case of a silicon nitride based substrate in which a silicon nitride sintered body having a thermal conductivity of 60 W / m · K or more is combined with high thermal conductivity SiC or the like, the thermal conductivity of the silicon nitride substrate itself is It goes without saying that as long as it is 60 W / m · K or more, it falls within the scope of the present invention.

【0053】本発明に係る高熱伝導性窒化けい素回路基
板は、上記のように製造した窒化けい素基板の表面に、
厚さが0.5〜10μmである酸化物層を形成し、この
酸化物層を介して金属回路板を上記窒化けい素基板に直
接接合して製造される。
The high thermal conductivity silicon nitride circuit board according to the present invention is formed on the surface of the silicon nitride board manufactured as described above.
It is manufactured by forming an oxide layer having a thickness of 0.5 to 10 μm and directly bonding the metal circuit board to the silicon nitride substrate through the oxide layer.

【0054】ここで上記金属回路板は、ろう材などの接
合剤を使用せずに窒化けい素基板表面に直接的に一体に
接合される。すなわち、金属回路板の成分と基板成分と
の共晶化合物(共晶融体)を加熱により発生せしめ、こ
の共晶化合物を接合剤として両部材を接合する、いわゆ
る直接接合法を使用して接合される。
Here, the metal circuit board is directly and integrally bonded to the surface of the silicon nitride substrate without using a bonding agent such as a brazing material. That is, a eutectic compound (eutectic melt) of a component of a metal circuit board and a substrate component is generated by heating, and both members are joined using this eutectic compound as a joining agent. To be done.

【0055】まず窒化けい素基板の表面に予め酸化物層
を形成し、基板に対する濡れ性を高める。この酸化物層
は上記窒化けい素基板を、空気中などの酸化雰囲気中で
温度1000〜1400℃程度で2〜15時間加熱して
形成される。この酸化物層の厚さが0.5μm未満の場
合には、上記濡れ性の改善効果が少ない一方、10μm
を超えるように設定しても改善効果が飽和するととも
に、却って熱伝導率が低下し易くなるため、酸化物層の
厚さは0.5〜10μmの範囲が必要であり、好ましく
は1〜5μmの範囲が望ましい。
First, an oxide layer is formed in advance on the surface of the silicon nitride substrate to enhance the wettability with respect to the substrate. This oxide layer is formed by heating the silicon nitride substrate at a temperature of about 1000 to 1400 ° C. for 2 to 15 hours in an oxidizing atmosphere such as air. When the thickness of the oxide layer is less than 0.5 μm, the effect of improving the wettability is small, while 10 μm
Since the improvement effect is saturated even if it is set to exceed 10 and the thermal conductivity tends to decrease rather, the thickness of the oxide layer needs to be in the range of 0.5 to 10 μm, preferably 1 to 5 μm. The range of is desirable.

【0056】上記酸化物層は、当初Si3 4 基板成分
の酸化物であるSiO2 のみから構成されているが、加
熱による金属回路板の接合操作時において、Si3 4
基板に焼結助剤として添加されていた希土類元素酸化物
が酸化物層方向に拡散移動する結果、希土類酸化物が酸
化物層中に拡散された組成となる。例えば焼結助剤とし
てY2 3 を使用した場合には加熱接合操作後の酸化物
層は、Y2 3 を1〜20重量%程度含有するイットリ
アシリケートなどのSiO2 −Y2 3 化合物から構成
されるようになる。
Initially, the oxide layer was composed only of SiO 2 , which is an oxide of the Si 3 N 4 substrate component, but during the bonding operation of the metal circuit boards by heating, the Si 3 N 4
The rare earth element oxide added to the substrate as a sintering aid diffuses and moves toward the oxide layer, resulting in a composition in which the rare earth oxide is diffused in the oxide layer. For example, an oxide layer after heating the joining operation if as a sintering aid was used Y 2 O 3 is, Y 2 O 3 and 1-20 wt% of SiO 2 -Y 2 O 3, such as yttria silicate containing It will be composed of compounds.

【0057】また上記金属回路板を構成する金属として
は、銅,アルミニウム,鉄,ニッケル,クロム,銀,モ
リブデン,コバルトの単体またはその合金など、基板成
分との共晶化合物を生成し、直接接合法を適用できる金
属であれば特に限定されないが、特に導電性および価格
の観点から銅,アルミニウムまたはその合金が好まし
い。
As the metal constituting the above-mentioned metal circuit board, a eutectic compound with a substrate component such as a simple substance of copper, aluminum, iron, nickel, chromium, silver, molybdenum, cobalt, or an alloy thereof is formed and directly contacted. There is no particular limitation as long as it is a metal to which legality can be applied, but copper, aluminum or an alloy thereof is particularly preferable from the viewpoint of conductivity and cost.

【0058】金属回路板の厚さは、通電容量等を勘案し
て決定されるが、窒化けい素基板の厚さを0.25〜
1.2mmの範囲とする一方、金属回路板の厚さを0.1
〜0.5mmの範囲に設定して両者を組み合せると熱膨張
差による変形などの影響を受けにくくなる。
The thickness of the metal circuit board is determined in consideration of the current-carrying capacity and the like, but the thickness of the silicon nitride substrate is 0.25 to 0.25.
The range of 1.2mm, while the thickness of the metal circuit board is 0.1
When set in the range of up to 0.5 mm and combining the two, they are less likely to be affected by deformation due to the difference in thermal expansion.

【0059】特に金属回路板として銅回路板を使用する
場合には、酸素を100〜1000ppm含有するタフ
ピッチ電解銅から成る銅回路板を使用するか、あるいは
酸素含有量が100ppm未満の銅材や無酸素銅から成
る銅回路板を使用する場合には、後述するように銅回路
板表面に所定厚さの酸化銅層を予め形成することによ
り、直接接合により接合することができる。ただし、上
記タフピッチ電解銅から成る銅回路板を使用する場合で
も発生するCu−O共晶の量を増加させ、基板と銅回路
板との接合強度を向上させるために、銅回路板表面に所
定厚さの酸化銅層を予め形成することが望ましい。
Particularly when a copper circuit board is used as the metal circuit board, a copper circuit board made of tough pitch electrolytic copper containing 100 to 1000 ppm of oxygen is used, or a copper material having an oxygen content of less than 100 ppm or no copper material is used. When a copper circuit board made of oxygen copper is used, a copper oxide layer having a predetermined thickness is formed in advance on the surface of the copper circuit board, as described later, so that the copper circuit board can be bonded by direct bonding. However, in order to increase the amount of Cu-O eutectic that is generated even when using the copper circuit board made of the above-mentioned tough pitch electrolytic copper, and to improve the bonding strength between the substrate and the copper circuit board, the surface of the copper circuit board is predetermined. It is desirable to pre-form a thick copper oxide layer.

【0060】上記酸化銅層は、例えば金属回路板を大気
中において温度150〜360℃の範囲にて20〜12
0秒間加熱する表面酸化処理を実施することによって形
成される。ここで、酸化銅層の厚さが1μm未満の場合
は、Cu−O共晶の発生量が少なくなるため、基板と銅
回路板との未接合部分が増大し、充分な接合強度が得ら
れない。一方、酸化銅層の厚さが10μmを超えるよう
に過大にしても、接合強度の改善効果が少なく、却って
銅回路板の導電特性を阻害することになる。したがっ
て、銅回路板表面に形成する酸化銅層の厚さは1〜10
μmの範囲が好ましい。そして同様の理由により1〜5
μmの範囲がより望ましい。
The copper oxide layer has a thickness of, for example, 20 to 12 at a temperature of 150 to 360 ° C. in the atmosphere of a metal circuit board.
It is formed by performing a surface oxidation treatment of heating for 0 seconds. Here, when the thickness of the copper oxide layer is less than 1 μm, the amount of Cu—O eutectic generated is small, so that the unbonded portion between the substrate and the copper circuit board increases, and sufficient bonding strength is obtained. Absent. On the other hand, even if the thickness of the copper oxide layer is too large to exceed 10 μm, the effect of improving the bonding strength is small and the conductive characteristics of the copper circuit board are rather impaired. Therefore, the thickness of the copper oxide layer formed on the surface of the copper circuit board is 1 to 10
The range of μm is preferred. And for the same reason 1-5
The range of μm is more desirable.

【0061】また、上記銅回路板の表面が平滑である場
合よりも、粗面である方が接合強度が高くなる傾向があ
る。なお、上記表面酸化処理において、加熱温度を高め
たり、処理時間を長くすることにより、銅回路板の表面
粗さを増加させることができる。上記表面酸化処理後に
おける銅回路板の表面粗さは、中心線平均粗さ(Ra)
が5〜10μmの範囲にするとよい。さらに必要に応じ
て銅回路板表面をサンドブラスト処理することによっ
て、その表面粗さを調整してもよい。
Further, the bonding strength tends to be higher when the surface of the copper circuit board is rougher than when the surface is smooth. In the surface oxidation treatment, the surface roughness of the copper circuit board can be increased by raising the heating temperature or prolonging the treatment time. The surface roughness of the copper circuit board after the surface oxidation treatment is the center line average roughness (Ra).
Is preferably in the range of 5 to 10 μm. If necessary, the surface roughness of the copper circuit board may be adjusted by sandblasting the surface of the copper circuit board.

【0062】そして、金属回路板が銅回路板である場合
には、以下のように接合操作が実施される。すなわち酸
化物層を形成した高熱伝導性窒化けい素基板の表面の所
定位置に、任意により酸化銅層を形成した銅回路板を接
触配置して基板方向に押圧した状態で、銅の融点(10
83℃)未満で銅−酸化銅の共晶温度(1065℃)以
上に加熱し、生成したCu−O共晶化合物液相(共晶融
体)を接合剤として銅回路板が窒化けい素基板表面に直
接的に接合される。この直接接合法は、いわゆる銅直接
接合法(DBC:Direct Bonding Copper 法)である。
When the metal circuit board is a copper circuit board, the joining operation is carried out as follows. That is, a copper circuit board having a copper oxide layer optionally formed thereon is placed in contact with a predetermined position on the surface of a silicon nitride substrate having a high thermal conductivity formed with an oxide layer, and the melting point of copper (10
The temperature is below 83 ° C.) and the temperature is higher than the eutectic temperature of copper-copper oxide (1065 ° C.), and the produced Cu—O eutectic compound liquid phase (eutectic melt) is used as a bonding agent to form a copper circuit board in a silicon nitride substrate Bonded directly to the surface. This direct bonding method is a so-called copper direct bonding method (DBC: Direct Bonding Copper method).

【0063】一方、金属回路板がアルミニウム回路板で
ある場合には、結合剤としてはSiが選択されSi3
4 基板表面にAl回路板を押圧した状態でアルミニウム
−けい素の共晶温度以上に加熱し、生成したAl−Si
共晶化合物液相(共晶融体)を接合剤としてAl回路板
がSi3 4 基板表面に直接的に接合され、本発明の高
熱伝導性Si3 4 回路基板が製造される。
On the other hand, when the metal circuit board is an aluminum circuit board, Si is selected as the binder and Si 3 N
4 Al-Si produced by heating the aluminum circuit board to the surface of the substrate while heating it above the eutectic temperature of aluminum-silicon
The Al circuit board is directly bonded to the surface of the Si 3 N 4 substrate by using the eutectic compound liquid phase (eutectic melt) as a bonding agent to manufacture the high thermal conductive Si 3 N 4 circuit board of the present invention.

【0064】このように直接接合法を使用して金属回路
板をSi3 4 基板表面に直接接合して形成した本発明
に係る高熱伝導性Si3 4 回路基板によれば、金属回
路板とSi3 4 基板との間に、接着剤やろう材のよう
な介在物が存在しないため、両者間の熱抵抗が小さく、
金属回路板上に設けられた半導体素子の発熱を系外に迅
速に放散させることが可能である。
According to the high thermal conductive Si 3 N 4 circuit board according to the present invention, which is formed by directly bonding the metal circuit board to the surface of the Si 3 N 4 board using the direct bonding method as described above, Since there is no inclusion such as adhesive or brazing material between the Si 3 N 4 substrate and the Si 3 N 4 substrate, the thermal resistance between the two is small,
It is possible to quickly dissipate the heat generated by the semiconductor element provided on the metal circuit board outside the system.

【0065】本発明に係る高熱伝導性窒化けい素回路基
板によれば、窒化けい素焼結体が本来的に有する高強度
高靭性特性に加えて熱伝導率を大幅に改善した高熱伝導
性窒化けい素基板表面に酸化皮膜を形成し、金属回路板
を直接接合法によって一体に接合して形成されているた
め、アッセンブリ工程において回路基板の締め付け割れ
が発生せず、回路基板を用いた半導体装置を高い製造歩
留りで量産することが可能になる。
According to the high-thermal-conductivity silicon nitride circuit board according to the present invention, in addition to the high-strength and high-toughness characteristics originally possessed by the silicon-nitride sintered body, the high-thermal-conductivity silicon nitride is significantly improved. Since an oxide film is formed on the surface of the base board and the metal circuit boards are integrally bonded by the direct bonding method, the circuit board does not suffer from tightening cracks during the assembly process, and a semiconductor device using the circuit board can be manufactured. Mass production is possible with high manufacturing yield.

【0066】また窒化けい素基板の靭性値が高いため、
熱サイクルによって基板に割れが発生することが少な
く、耐熱サイクル特性が著しく向上し、耐久性および信
頼性に優れた半導体装置を提供することができる。
Since the toughness value of the silicon nitride substrate is high,
It is possible to provide a semiconductor device in which cracks are less likely to occur in a substrate due to heat cycle, heat cycle characteristics are remarkably improved, and durability and reliability are excellent.

【0067】さらに高い熱伝導率を有する窒化けい素基
板を使用しているため、高出力化および高集積化を指向
する半導体素子を搭載した場合においても、熱抵抗特性
の劣化が少なく、優れた放熱特性を発揮する。
Since a silicon nitride substrate having a higher thermal conductivity is used, even when a semiconductor element aiming at higher output and higher integration is mounted, the thermal resistance characteristic is less deteriorated and excellent. Exhibits heat dissipation characteristics.

【0068】特に窒化けい素基板自体の機械的強度が優
れているため、要求される機械的強度特性を一定とした
場合に、他のセラミックス基板と比較して基板厚さをよ
り低減することが可能となる。この基板厚さを低減でき
ることから熱抵抗値をより小さくでき、放熱特性をさら
に改善することができる。また要求される機械的特性に
対して、従来より薄い基板でも充分に対応可能となるた
め、回路基板の高密度実装も可能となり、半導体装置を
より小型化することが可能となる。
Particularly, since the silicon nitride substrate itself has excellent mechanical strength, it is possible to further reduce the substrate thickness as compared with other ceramic substrates when the required mechanical strength characteristics are kept constant. It will be possible. Since the substrate thickness can be reduced, the thermal resistance value can be further reduced, and the heat dissipation characteristics can be further improved. Further, since it is possible to sufficiently meet the required mechanical characteristics even with a substrate thinner than before, it is possible to mount the circuit board at a high density and further downsize the semiconductor device.

【0069】[0069]

【発明の実施の形態】次に本発明の実施形態について以
下に示す実施例を参照して具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be specifically described with reference to the following examples.

【0070】まず、各回路基板を構成する窒化けい素基
板について説明し、しかる後に、この窒化けい素基板を
用いた回路基板について説明する。
First, a silicon nitride substrate forming each circuit board will be described, and then a circuit board using this silicon nitride substrate will be described.

【0071】実施例1〜3 酸素を1.3重量%、不純物陽イオン元素としてLi,
Na,K,Fe,Ca,Mg,Sr,Ba,Mn,Bを
合計で0.15重量%含有し、α相型窒化けい素97%
を含む平均粒径0.55μmの窒化けい素原料粉末に対
して、焼結助剤として平均粒径0.7μmのY2
3 (酸化イットリウム)粉末5重量%、平均粒径0.5
μmのAl2 3 (アルミナ)粉末1.0重量%を添加
し、エチルアルコール中で24時間湿式混合した後に乾
燥して原料粉末混合体を調整した。
Examples 1 to 3 1.3 wt% oxygen, Li as the impurity cation element,
Containing 0.15 wt% of Na, K, Fe, Ca, Mg, Sr, Ba, Mn and B in total, and 97% of α-phase type silicon nitride
With respect to the average particle size silicon nitride material powder of 0.55μm comprising, an average particle size of 0.7μm as a sintering aid Y 2 O
3 (yttrium oxide) powder 5% by weight, average particle size 0.5
1.0 wt% of Al 2 O 3 (alumina) powder of μm was added, wet-mixed in ethyl alcohol for 24 hours, and then dried to prepare a raw material powder mixture.

【0072】次に得られた原料粉末混合体に有機バイン
ダを所定量添加して均一に混合した後に、1000kg/
cm2 の成形圧力でプレス成形し、成形体を多数製作し
た。次に得られた成形体を700℃の雰囲気ガス中にお
いて2時間脱脂した後に、この脱脂体を窒素ガス雰囲気
中9気圧にて1900℃で6時間保持し、緻密化焼結を
実施した後に、焼結炉に付設した加熱装置への通電量を
制御して焼結炉内温度が1500℃まで降下するまでの
間における焼結体の冷却速度がそれぞれ100℃/hr
(実施例1用)、50℃/hr(実施例2用)、25℃/
hr(実施例3用)となるように調整して焼結体を冷却
し、さらに得られた各焼結体を研摩加工してそれぞれ実
施例1〜3用の窒化けい素基板を調製した。
Next, a predetermined amount of an organic binder was added to the obtained raw material powder mixture and the mixture was uniformly mixed.
A large number of compacts were produced by press molding with a compacting pressure of cm 2 . Next, after degreasing the obtained molded body in an atmospheric gas at 700 ° C. for 2 hours, the degreased body was held at 1900 ° C. for 6 hours at 9 atm in a nitrogen gas atmosphere, and after performing densification sintering, The cooling rate of the sintered body is 100 ° C / hr until the temperature inside the sintering furnace drops to 1500 ° C by controlling the amount of electricity supplied to the heating device attached to the sintering furnace.
(For Example 1), 50 ° C / hr (for Example 2), 25 ° C /
The sintered body was cooled after adjusting to hr (for Example 3), and the obtained sintered body was subjected to polishing to prepare silicon nitride substrates for Examples 1 to 3, respectively.

【0073】比較例1 一方、緻密化焼結完了直後に、加熱装置電源をOFFに
し、従来の炉冷による冷却速度(約500℃/hr)で焼
結体を冷却した点以外は実施例1と同一条件2で焼結処
理して比較例1用の窒化けい素基板を調製した。
Comparative Example 1 On the other hand, immediately after the completion of the densification sintering, the heating apparatus power supply was turned off, and the sintered body was cooled at the conventional cooling rate (about 500 ° C./hr) for cooling the sintered body. A silicon nitride substrate for Comparative Example 1 was prepared by performing a sintering treatment under the same condition 2 as described above.

【0074】比較例2 酸素を1.5重量%、不純物陽イオン元素としてLi,
Na,K,Fe,Ca,Mg,Sr,Ba,Mn,Bを
合計で0.6重量%含有し、α相型窒化けい素93%を
含む平均粒径0.60μmの窒化けい素原料粉末を用い
た点以外は実施例1と同一条件で処理し、比較例2用の
窒化けい素基板を調製した。
Comparative Example 2 1.5 wt% oxygen, Li as the impurity cation element,
A silicon nitride raw material powder having an average particle size of 0.60 μm, containing Na, K, Fe, Ca, Mg, Sr, Ba, Mn and B in a total amount of 0.6% by weight and including α-phase type silicon nitride 93%. Was treated under the same conditions as in Example 1 except for using, to prepare a silicon nitride substrate for Comparative Example 2.

【0075】比較例3 酸素を1.7重量%、不純物陽イオン元素としてLi,
Na,K,Fe,Ca,Mg,Sr,Ba,Mn,Bを
合計で0.7重量%含有し、α相型窒化けい素91%を
含む平均粒径1.1μmの窒化けい素原料粉末を用いた
点以外は実施例1と同一条件で処理し、比較例3用の窒
化けい素基板を調製した。
Comparative Example 3 1.7% by weight of oxygen, Li as an impurity cation element,
Raw material powder of silicon nitride having an average particle size of 1.1 μm, containing 0.7% by weight of Na, K, Fe, Ca, Mg, Sr, Ba, Mn, and B in total and containing 91% of α-phase type silicon nitride. Was treated under the same conditions as in Example 1 except for using, to prepare a silicon nitride substrate for Comparative Example 3.

【0076】こうして得た実施例1〜3用および比較例
1〜3用の窒化けい素基板について気孔率および25℃
における熱伝導率を測定した。さらに、各Si3 4
板についてX線回折法によって粒界相に占める結晶相の
割合(体積比)を測定し、下記表1に示す結果を得た。
With respect to the silicon nitride substrates thus obtained for Examples 1 to 3 and Comparative Examples 1 to 3, porosity and 25 ° C.
Was measured. Further, the ratio (volume ratio) of the crystal phase in the grain boundary phase was measured for each Si 3 N 4 substrate by the X-ray diffraction method, and the results shown in Table 1 below were obtained.

【0077】[0077]

【表1】 [Table 1]

【0078】表1に示す結果から明らかなように実施例
1〜3用の窒化けい素基板においては、比較例1と比較
して緻密化焼結完了直後における焼結体の冷却速度を従
来より低く設定しているため、粒界相に結晶相を含み、
結晶相の占める割合が高い程、高熱伝導率を有する放熱
性の高い高強度Si3 4 基板が得られた。
As is clear from the results shown in Table 1, in the silicon nitride substrates for Examples 1 to 3, as compared with Comparative Example 1, the cooling rate of the sintered body immediately after the completion of the densification sintering was higher than that of the conventional one. Since it is set low, the grain boundary phase contains a crystalline phase,
The higher the proportion of the crystal phase, the higher the strength of the heat-dissipating Si 3 N 4 substrate having high heat conductivity.

【0079】一方、比較例1のように焼結体の冷却速度
を大きく設定し、急激に冷却した場合は粒界相が全て非
結晶質で形成され熱伝導率が低下した。また、比較例2
のように不純物陽イオン元素を0.6重量%と多く含有
した窒化けい素粉末を用いた場合は焼結体の冷却速度を
実施例1と同一にしても粒界相が全て非結晶質で形成さ
れ熱伝導率が低下した。
On the other hand, when the cooling rate of the sintered body was set high as in Comparative Example 1 and was rapidly cooled, the grain boundary phase was entirely amorphous and the thermal conductivity decreased. In addition, Comparative Example 2
When the silicon nitride powder containing a large amount of the impurity cation element as much as 0.6% by weight is used as described above, even if the cooling rate of the sintered body is the same as in Example 1, all the grain boundary phases are amorphous. It formed and the thermal conductivity fell.

【0080】さらに比較例3のように平均粒径が1.1
μmと粗い窒化けい素粉末を用いた場合は、焼結におい
て緻密化が不充分で強度、熱伝導率とも低下した。
Further, as in Comparative Example 3, the average particle size is 1.1.
In the case of using a silicon nitride powder having a coarseness of μm, the densification was insufficient in the sintering and both the strength and the thermal conductivity decreased.

【0081】次に上記のように調整した実施例1〜3用
のSi3 4 基板の板厚を0.635mmおよび0.4mm
にそれぞれ加工する一方、比較例1〜3用のSi3 4
基板の板厚を0.635mmに加工し、各Si3 4 基板
を酸化炉中で温度1300℃で12時間加熱することに
より、基板の全表面を酸化し、厚さ2μmの酸化物層を
形成した。
Next, the thickness of the Si 3 N 4 substrate for Examples 1 to 3 adjusted as described above was changed to 0.635 mm and 0.4 mm.
While being processed into Si 3 N 4 for Comparative Examples 1 to 3,
By processing the substrate thickness to 0.635 mm and heating each Si 3 N 4 substrate at a temperature of 1300 ° C. for 12 hours in an oxidation furnace, the entire surface of the substrate is oxidized to form a 2 μm thick oxide layer. Formed.

【0082】次に酸化物層を形成した各Si3 4 基板
表面側に、厚さ0.3mmのタフピッチ電解銅から成る銅
回路板を接触配置する一方、背面側に厚さ0.25mmの
タフピッチ銅から成る銅回路板を裏当て材として接触配
置させて積層体とし、この積層体を窒素ガス雰囲気に調
整した温度1075℃に設定した加熱炉に挿入して1分
間加熱することにより、各Si3 4 基板の両面に銅回
路板を直接接合したSi3 4 回路基板をそれぞれ調製
した。
Next, a copper circuit board made of tough pitch electrolytic copper having a thickness of 0.3 mm is placed in contact with the surface side of each Si 3 N 4 substrate on which an oxide layer has been formed, while a 0.25 mm thickness is provided on the back side. A copper circuit board made of tough pitch copper is placed as a backing material in contact with each other to form a laminated body, and the laminated body is inserted into a heating furnace set to a temperature of 1075 ° C. adjusted to a nitrogen gas atmosphere and heated for 1 minute, thereby Si 3 N 4 circuit boards were prepared by directly bonding copper circuit boards to both sides of the Si 3 N 4 board.

【0083】各Si3 4 回路基板1は、図1に示すよ
うにSi3 4 基板2の全表面に酸化物層3が形成され
ており、Si3 4 基板2の表面側に金属回路板として
の銅回路板4が直接接合される一方、背面側に裏銅板と
しての銅回路板5が同様に直接接合され、さらに表面側
の銅回路板4の所定位置に図示しない半田層を介して半
導体素子6が一体に接合された構造を有する。なおSi
3 4 基板2の両面に銅回路板4,5を接合した場合、
裏銅板としての銅回路板5は放熱促進および反り防止に
寄与するので有効である。
[0083] Each Si 3 N 4 circuit board 1, the oxide layer 3 is formed on the entire surface the Si 3 N 4 substrate 2 as shown in FIG. 1, metal surface the Si 3 N 4 substrate 2 While the copper circuit board 4 as a circuit board is directly joined, the copper circuit board 5 as a back copper board is similarly directly joined on the back side, and a solder layer (not shown) is further provided at a predetermined position on the front side copper circuit board 4. It has a structure in which the semiconductor element 6 is integrally bonded via the via. Si
When copper circuit boards 4 and 5 are bonded to both sides of 3 N 4 substrate 2,
The copper circuit board 5 as the back copper plate is effective because it contributes to promotion of heat dissipation and prevention of warpage.

【0084】比較例4 一方、実施例におけるSi3 4 基板に変えて、厚さが
0.635mmであり、熱伝導率が170W/m・Kであ
る窒化アルミニウム(AlN)基板を使用した以外は実
施例と同様に酸化層を形成し、さらに銅回路板を直接接
合法を使用してAlN基板に一体に接合して比較例4に
係るAlN回路基板を製造した。
Comparative Example 4 On the other hand, instead of the Si 3 N 4 substrate in the example, an aluminum nitride (AlN) substrate having a thickness of 0.635 mm and a thermal conductivity of 170 W / m · K was used. An oxide layer was formed in the same manner as in Example, and a copper circuit board was further integrally bonded to the AlN substrate by using a direct bonding method to manufacture an AlN circuit board according to Comparative Example 4.

【0085】比較例5 また、実施例におけるSi3 4 基板に変えて、厚さが
0.8mmであり、熱伝導率が70W/m・Kである窒化
アルミニウム(AlN)基板を使用した以外は実施例と
同様に酸化層を形成し、さらに銅回路板を直接接合法を
使用してAlN基板に一体に接合して比較例5に係るA
lN回路基板を製造した。
Comparative Example 5 Further, instead of the Si 3 N 4 substrate in the example, an aluminum nitride (AlN) substrate having a thickness of 0.8 mm and a thermal conductivity of 70 W / m · K was used. A comparative example 5 was prepared by forming an oxide layer in the same manner as in the example, and further integrally bonding a copper circuit board to an AlN substrate using a direct bonding method.
An IN circuit board was manufactured.

【0086】上記のように調製した実施例および比較例
に係る各回路基板の強度特性,靭性および耐熱サイクル
特性を評価するため、各回路基板の3点曲げ強度および
最大たわみ量を測定するとともに、耐熱サイクル試験
(TCT)を実施し、回路基板におけるクラックの発生
状況を調査した。
In order to evaluate the strength characteristics, toughness, and heat cycle characteristics of the circuit boards according to the examples and comparative examples prepared as described above, the three-point bending strength and the maximum deflection amount of each circuit board were measured, and A thermal cycle test (TCT) was carried out to investigate the occurrence of cracks on the circuit board.

【0087】最大たわみ量は、支持スパン50mmで各回
路基板を支持した状態で中央部に荷重を付加し、Si3
4 基板またはAlN基板が破断に至るまでの最大たわ
み高さとして測定した。
[0087] maximum deflection amount adds a load to the central portion while supporting each circuit board support span 50 mm, Si 3
It was measured as the maximum deflection height until the N 4 substrate or the AlN substrate was broken.

【0088】また耐熱サイクル試験は、各回路基板につ
いて−45℃から室温(RT)まで加熱し、引き続き室
温から+125℃まで加熱した後に、室温を経て再び−
45℃に冷却するまでを1サイクルとする昇温−降温サ
イクルを繰り返して付加し、基板部にクラック等が発生
するまでのサイクル数を測定する条件で実施した。
In the heat resistance cycle test, each circuit board was heated from −45 ° C. to room temperature (RT), then from room temperature to + 125 ° C., and then again at room temperature.
A temperature rising / falling cycle was repeated by repeating one cycle until cooling to 45 ° C., and the number of cycles until cracks and the like occurred in the substrate was measured.

【0089】各測定結果を下記表2に示す。The results of each measurement are shown in Table 2 below.

【0090】[0090]

【表2】 [Table 2]

【0091】上記表2に示す結果から明らかなように、
各実施例に係るSi3 4 回路基板によれば、曲げ強度
および最大たわみ量が、比較例と比較して大きい。した
がって、回路基板のアッセンブリ工程における締め付け
割れが発生することが少なく、回路基板を使用した半導
体装置の製造歩留りを大幅に改善できることが実証され
た。
As is clear from the results shown in Table 2 above,
According to the Si 3 N 4 circuit board according to each example, the bending strength and the maximum deflection amount are large as compared with the comparative example. Therefore, it has been proved that tightening cracks are less likely to occur in the assembly process of the circuit board, and the manufacturing yield of the semiconductor device using the circuit board can be significantly improved.

【0092】さらに耐熱サイクル試験において各実施例
のSi3 4 回路基板は、1000サイクル経過後にお
いても、Si3 4 基板の割れや金属回路板(Cu回路
板)の剥離が皆無であり、優れた耐久性と信頼性とを有
することが確認された。また1000サイクル経過後に
おいても耐電圧特性の低下は発生しなかった。
Further, in the heat resistance cycle test, the Si 3 N 4 circuit board of each example was free from cracks of the Si 3 N 4 board and peeling of the metal circuit board (Cu circuit board) even after 1000 cycles. It was confirmed to have excellent durability and reliability. In addition, the withstand voltage characteristics did not deteriorate even after 1000 cycles.

【0093】一方、比較例1〜3に係るSi3 4 回路
基板においては、3点曲げ強度,たわみ量および耐熱サ
イクル特性において良好ではあるが、Si3 4 基板の
熱伝導率が60W/m・K未満と相対的に低いため、高
出力化も指向した半導体装置には不適であることが判明
した。
On the other hand, in the Si 3 N 4 circuit boards according to Comparative Examples 1 to 3 , although the three-point bending strength, the amount of flexure and the heat resistance cycle characteristics are good, the thermal conductivity of the Si 3 N 4 board is 60 W / Since it is relatively low at less than m · K, it has been found to be unsuitable for a semiconductor device that is also aimed at high output.

【0094】また比較例4に係るAlN回路基板におい
ては、熱伝導性が高いAlN基板を使用しているため、
放熱特性は優れている反面、強度およびたわみ量が小さ
く、アッセンブリ工程における締め付け割れやハンドリ
ング時の衝撃に耐え難いことが確認された。また耐熱サ
イクル試験では、100サイクルでクラックが発生し、
耐電圧特性も低下することが判明した。
Further, in the AlN circuit board according to Comparative Example 4, since the AlN board having high thermal conductivity is used,
Although it has excellent heat dissipation characteristics, it was confirmed that the strength and deflection were small, and it was difficult to withstand tightening cracks in the assembly process and impact during handling. Also, in the heat resistance cycle test, cracks occurred after 100 cycles,
It has been found that the withstand voltage characteristic is also deteriorated.

【0095】さらに比較例5に係るAlN回路基板にお
いては、従来のSi3 4 基板よりも高い熱伝導率を有
しているため放熱性は良好である反面、強度およびたわ
み量が不充分である。また耐熱サイクル試験では150
サイクル経過後にクラックが発生し、耐電圧特性が低下
することが判明した。
Further, the AlN circuit board according to Comparative Example 5 has a higher thermal conductivity than the conventional Si 3 N 4 board, and therefore has good heat dissipation, but has insufficient strength and deflection. is there. In the heat resistance cycle test, 150
It was found that cracks occurred after the cycle and the withstand voltage characteristics deteriorated.

【0096】次に種々の組成および特性値を有する他の
窒化けい素基板を使用した回路基板の実施形態について
以下に示す実施例4を参照して具体的に説明する。
Next, an embodiment of a circuit board using another silicon nitride substrate having various compositions and characteristic values will be specifically described with reference to Example 4 below.

【0097】実施例4 まず回路基板の構成材となる各種窒化けい素基板を以下
の手順で製造した。
Example 4 First, various silicon nitride substrates which are constituent materials of a circuit board were manufactured by the following procedure.

【0098】すなわち酸素を1.3重量%、前記不純物
陽イオン元素を合計で0.15重量%含有し、α相型窒
化けい素97%を含む平均粒径0.55μmの窒化けい
素原料粉末に対して、表3〜5に示すように、焼結助剤
としてのY2 3 ,Ho2 3 などの希土類酸化物と、
必要に応じてTi,Hf化合物,Al2 3粉末,Al
N粉末とを添加し、エチルアルコール中で窒化けい素製
ボールを用いて72時間湿式混合した後に乾燥して原料
粉末混合体をそれぞれ調整した。次に得られた各原料粉
末混合体に有機バインダを所定量添加して均一に混合し
た後に、1000kg/cm2 の成形圧力でプレス成形し、
各種組成を有する成形体を多数製作した。
That is, a silicon nitride raw material powder having an average particle diameter of 0.55 μm, containing 1.3% by weight of oxygen, 0.15% by weight of the impurity cation elements in total, and 97% of α-phase type silicon nitride. On the other hand, as shown in Tables 3 to 5, rare earth oxides such as Y 2 O 3 and Ho 2 O 3 as sintering aids,
If necessary, Ti, Hf compound, Al 2 O 3 powder, Al
N powder was added, and the mixture was wet-mixed in ethyl alcohol for 72 hours using a silicon nitride ball and then dried to prepare raw material powder mixtures. Next, a predetermined amount of an organic binder was added to each of the obtained raw material powder mixtures and uniformly mixed, followed by press molding at a molding pressure of 1000 kg / cm 2 .
Many molded articles having various compositions were manufactured.

【0099】次に得られた各成形体を700℃の雰囲気
ガス中において2時間脱脂した後に、この脱脂体を表3
〜5に示す焼結条件で緻密化焼結を実施した後に、焼結
炉に付設した加熱装置への通電量を制御して焼結炉内温
度が1500℃まで降下するまでの間における焼結体の
冷却速度がそれぞれ表3〜5に示す値となるように調整
して焼結体を冷却し、それぞれ試料1〜51に係る窒化
けい素焼結体を調製した。
Next, each molded body obtained was degreased for 2 hours in an atmosphere gas at 700 ° C.
After performing the densification sintering under the sintering conditions shown in to 5, the amount of electricity supplied to the heating device attached to the sintering furnace is controlled to perform the sintering until the temperature inside the sintering furnace drops to 1500 ° C. The sintered bodies were cooled by adjusting the cooling rates of the bodies to the values shown in Tables 3 to 5, and the silicon nitride sintered bodies of Samples 1 to 51 were prepared.

【0100】こうして得た試料1〜51に係る各窒化け
い素焼結体について気孔率、熱伝導率(25℃)、室温
での三点曲げ強度の平均値を測定した。さらに、各焼結
体についてX線回折法によって粒界相に占める結晶相の
割合(面積比)を測定し、下記表3〜5に示す結果を得
た。
With respect to each of the silicon nitride sintered bodies according to Samples 1 to 51 thus obtained, the average value of porosity, thermal conductivity (25 ° C.) and three-point bending strength at room temperature was measured. Furthermore, the ratio (area ratio) of the crystal phase in the grain boundary phase was measured for each sintered body by the X-ray diffraction method, and the results shown in Tables 3 to 5 below were obtained.

【0101】[0101]

【表3】 [Table 3]

【0102】[0102]

【表4】 [Table 4]

【0103】[0103]

【表5】 [Table 5]

【0104】表3〜5に示す結果から明らかなように試
料1〜51に係る窒化けい素焼結体においては、原料組
成を適正に制御し、従来例と比較して緻密化焼結完了直
後における焼結体の冷却速度を従来より低く設定してい
るため、粒界相に結晶相を含み、結晶相の占める割合が
高い程、高熱伝導率を有する放熱性の高い高強度窒化け
い素焼結体が得られた。
As is clear from the results shown in Tables 3 to 5, in the silicon nitride sintered bodies according to Samples 1 to 51, the raw material composition was appropriately controlled, and immediately after the densification and sintering was completed as compared with the conventional example. Since the cooling rate of the sintered body is set lower than before, the higher the ratio of the crystal phase in the grain boundary phase and the higher the proportion of the crystal phase, the higher the heat dissipation and the high strength silicon nitride sintered body with high heat dissipation. was gotten.

【0105】これに対して酸素を1.3〜1.5重量
%,前記不純物陽イオン元素を合計で0.13〜0.1
6重量%含有し、α相型窒化けい素を93%含む平均粒
径0.60μmの窒化けい素原料粉末を用い、この窒化
けい素粉末に対してY2 3 (酸化イットリウム)粉末
を3〜6重量と、アルミナ粉末を1.3〜1.6重量%
添加した原料粉末を成形,脱脂後、1900℃で6時間
焼結し、炉冷(冷却速度:毎時400℃)して得た焼結
体の熱伝導率は25〜28W/m・Kと低く、従来の一
般的な製法によって製造された窒化けい素焼結体の熱伝
導率に近い値になった。
On the other hand, 1.3 to 1.5% by weight of oxygen and 0.13 to 0.1% by weight of the above impurity cation elements are included.
A silicon nitride raw material powder containing 6% by weight and containing 93% of α-phase type silicon nitride and having an average particle size of 0.60 μm was used, and 3% of Y 2 O 3 (yttrium oxide) powder was added to the silicon nitride powder. ~ 6 wt% and 1.3-1.6 wt% alumina powder
The added raw material powder is shaped and degreased, then sintered at 1900 ° C. for 6 hours, and cooled in a furnace (cooling rate: 400 ° C./hour) to obtain a sintered body having a low thermal conductivity of 25 to 28 W / m · K. The thermal conductivity was close to that of the silicon nitride sintered body manufactured by the conventional general manufacturing method.

【0106】次に得られた試料1〜51に係る各窒化け
い素焼結体を研磨加工することにより、実施例1〜3と
同様に、厚さ0.4mmおよび0.635mmの窒化けい素
基板をそれぞれ調製した。
Then, the silicon nitride sintered bodies according to Samples 1 to 51 thus obtained were polished to give silicon nitride substrates having a thickness of 0.4 mm and 0.635 mm, as in Examples 1 to 3. Were prepared respectively.

【0107】さらに、各窒化けい素基板を酸化炉中で温
度1300℃で12時間加熱することにより、基板の全
表面を酸化し、厚さ2μmの酸化物層を形成した。
Further, each silicon nitride substrate was heated in an oxidation furnace at a temperature of 1300 ° C. for 12 hours to oxidize the entire surface of the substrate to form an oxide layer having a thickness of 2 μm.

【0108】一方、実施例1〜3において調製した厚さ
0.3mmおよび0.25mmの銅回路板を大気に接するホ
ットプレート上で温度250℃で30秒間加熱して表面
酸化処理を行ない、その表面に厚さ1.5μmの酸化銅
層を一体に形成した。
On the other hand, the copper circuit boards with thicknesses of 0.3 mm and 0.25 mm prepared in Examples 1 to 3 were heated at a temperature of 250 ° C. for 30 seconds on a hot plate in contact with the atmosphere for surface oxidation treatment. A copper oxide layer having a thickness of 1.5 μm was integrally formed on the surface.

【0109】次に、上記酸化物層を形成した各窒化けい
素基板の表面に、実施例1〜3と同様に直接接合法(D
BC法)を使用して上記銅回路板等を一体に接合するこ
とにより図2に示すような実施例4に係る窒化けい素回
路基板をそれぞれ調製した。
Next, a direct bonding method (D) was applied to the surface of each silicon nitride substrate on which the above oxide layer was formed in the same manner as in Examples 1 to 3.
A silicon nitride circuit board according to Example 4 as shown in FIG. 2 was prepared by integrally bonding the copper circuit boards and the like using the BC method).

【0110】各Si3 4 回路基板1aにおいては、図
2に示すようにSi3 4 基板2aの全表面に酸化物層
3が形成され、銅回路板4,5の接合面側には酸化銅層
7,7がそれぞれ形成されており、Si3 4 基板2a
の表面側に金属回路板としての銅回路板4が直接接合さ
れる一方、背面側に裏銅板としての銅回路板5が同様に
直接接合され、さらに表面側の銅回路板4の所定位置に
図示しない半田層を介して半導体素子6が一体に接合さ
れた構造を有する。
In each Si 3 N 4 circuit board 1a, as shown in FIG. 2, an oxide layer 3 is formed on the entire surface of the Si 3 N 4 board 2a, and on the bonding surface side of the copper circuit boards 4 and 5. Copper oxide layers 7 and 7 are formed on the Si 3 N 4 substrate 2a.
While the copper circuit board 4 as a metal circuit board is directly joined to the front surface side, the copper circuit board 5 as a back copper plate is similarly directly joined to the back surface side, and further at a predetermined position of the copper circuit board 4 on the front surface side. It has a structure in which the semiconductor elements 6 are integrally joined via a solder layer (not shown).

【0111】上記のようにDBC法によって回路層を形
成した実施例4に係る各Si3 4回路基板の最大たわ
み量,抗折強度は実施例1〜3と同等以上であり、また
耐熱サイクル試験において1000サイクル経過後にお
いてもSi3 4 基板の割れや回路層の剥離は皆無であ
り、優れた耐熱サイクル特性が得られた。
The maximum deflection amount and bending strength of each Si 3 N 4 circuit board according to Example 4 in which the circuit layer was formed by the DBC method as described above are equal to or higher than those in Examples 1 to 3, and the heat cycle Even after 1000 cycles in the test, there was no cracking of the Si 3 N 4 substrate or peeling of the circuit layer, and excellent heat cycle characteristics were obtained.

【0112】特に窒化けい素基板2aの表面に酸化物層
3を形成した上に、さらに銅回路板4,5表面にも酸化
銅層7を形成しているために、DBC法による接合時に
発生するCu−O共晶化合物量が増加し、基板2aと銅
回路板4,5との接合強度を、さらに向上させることが
できた。具体的には、実施例4における銅回路板4,5
の未接合部の面積率はそれぞれ5.2%,5.6%であ
り、実施例1〜3(実施例1:9.8%,11.2%、
実施例2:13.8%,11.5%、実施例3:11.
6%,14.6%)と比較して大幅に減少し、銅回路板
の接合強度(ピール強度)は20〜30%上昇した。
In particular, since the oxide layer 3 is formed on the surface of the silicon nitride substrate 2a and the copper oxide layer 7 is further formed on the surfaces of the copper circuit boards 4 and 5, this occurs at the time of bonding by the DBC method. The amount of Cu—O eutectic compound to be used was increased, and the bonding strength between the substrate 2a and the copper circuit boards 4 and 5 could be further improved. Specifically, the copper circuit boards 4 and 5 in Example 4
The area ratios of the non-bonded portions of Nos. 1 and 2 are 5.2% and 5.6%, respectively.
Example 2: 13.8%, 11.5%, Example 3: 11.
6%, 14.6%), and the bonding strength (peel strength) of the copper circuit board was increased by 20 to 30%.

【0113】[0113]

【発明の効果】以上説明の通り、本発明に係る高熱伝導
性窒化けい素回路基板によれば、窒化けい素焼結体が本
来的に有する高強度高靭性特性に加えて熱伝導率を大幅
に改善した窒化けい素基板表面に酸化皮膜を形成し、金
属回路板を直接接合法によって一体に接合して形成され
ているため、アッセンブリ工程において回路基板の締め
付け割れが発生せず、回路基板を用いた半導体装置を高
い製造歩留りで量産することが可能になる。
As described above, according to the high thermal conductive silicon nitride circuit board of the present invention, the thermal conductivity is significantly increased in addition to the high strength and high toughness characteristic inherent in the silicon nitride sintered body. Since an oxide film is formed on the surface of the improved silicon nitride board and the metal circuit board is integrally bonded by the direct bonding method, the circuit board does not suffer from cracking due to tightening during the assembly process. It becomes possible to mass-produce existing semiconductor devices with a high manufacturing yield.

【0114】さらに金属回路板として、表面に所定厚さ
の酸化銅層を予め形成した銅回路板を使用することによ
り、基板と銅回路板との接合強度をさらに高めることが
できる。
Furthermore, as the metal circuit board, by using a copper circuit board having a copper oxide layer having a predetermined thickness formed in advance on the surface thereof, the bonding strength between the substrate and the copper circuit board can be further increased.

【0115】また窒化けい素基板の靭性値が高いため、
熱サイクルによって基板に割れが発生することが少な
く、耐熱サイクル特性が著しく向上し、耐久性および信
頼性に優れた半導体装置を提供することができる。
Since the toughness value of the silicon nitride substrate is high,
It is possible to provide a semiconductor device in which cracks are less likely to occur in a substrate due to heat cycle, heat cycle characteristics are remarkably improved, and durability and reliability are excellent.

【0116】さらに高い熱伝導率を有する窒化けい素基
板を使用しているため、高出力化および高集積化を指向
する半導体素子を搭載した場合においても、熱抵抗特性
の劣化が少なく、優れた放熱特性を発揮する。
Since a silicon nitride substrate having a higher thermal conductivity is used, the thermal resistance characteristics are less deteriorated even when a semiconductor element for high output and high integration is mounted, which is excellent. Exhibits heat dissipation characteristics.

【0117】特に窒化けい素基板自体の機械的強度が優
れているため、要求される機械的強度特性を一定とした
場合に、他のセラミックス基板と比較して基板厚さをよ
り低減することが可能となる。この基板厚さを低減でき
ることから熱抵抗値をより小さくでき、放熱特性をさら
に改善することができる。また要求される機械的特性に
対して、従来より薄い基板でも充分に対応可能となるた
め、回路基板の高密度実装も可能となり、半導体装置を
より小型化することが可能となる。
In particular, since the silicon nitride substrate itself has excellent mechanical strength, it is possible to further reduce the substrate thickness as compared with other ceramic substrates when the required mechanical strength characteristics are kept constant. It will be possible. Since the substrate thickness can be reduced, the thermal resistance value can be further reduced, and the heat dissipation characteristics can be further improved. Further, since it is possible to sufficiently meet the required mechanical characteristics even with a substrate thinner than before, it is possible to mount the circuit board at a high density and further downsize the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る高熱伝導性窒化けい素回路基板の
構成例を示す断面図。
FIG. 1 is a cross-sectional view showing a configuration example of a high thermal conductivity silicon nitride circuit board according to the present invention.

【図2】本発明に係る高熱伝導性窒化けい素回路基板の
他の構成例を示す断面図。
FIG. 2 is a cross-sectional view showing another configuration example of the high thermal conductivity silicon nitride circuit board according to the present invention.

【符号の説明】[Explanation of symbols]

1,1a 高熱伝導性窒化けい素回路基板(Si3 4
回路基板) 2,2a 窒化けい素(Si3 4 )基板 3 酸化物層(SiO2 皮膜) 4 金属回路板(Cu回路板) 5 金属回路板(裏銅板) 6 半導体素子(チップ) 7 酸化銅層
1,1a High thermal conductivity silicon nitride circuit board (Si 3 N 4
Circuit board) 2,2a Silicon nitride (Si 3 N 4 ) board 3 Oxide layer (SiO 2 film) 4 Metal circuit board (Cu circuit board) 5 Metal circuit board (back copper plate) 6 Semiconductor element (chip) 7 Oxidation Copper layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05K 3/20 C04B 35/58 102Y 3/38 H01L 23/36 M (72)発明者 水野谷 信幸 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 小森田 裕 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (72)発明者 佐藤 孔俊 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 横浜事業所内 (72)発明者 日野 高志 神奈川県横浜市鶴見区末広町2の4 株 式会社東芝 京浜事業所内 (56)参考文献 特開 平3−218975(JP,A) 特開 平6−135771(JP,A) 特開 昭59−3077(JP,A) 特表 平5−504933(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H05K 3/20 C04B 35/58 102Y 3/38 H01L 23/36 M (72) Inventor Nobuyuki Mizutani Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 2-4 Stock company Toshiba Keihin Office (72) Inventor Yu Komorida Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 2-4 Stock Company Toshiba Keihin Office (72) Inventor Satoshi Satoshi Shinsugita, Isogo-ku, Yokohama-shi, Kanagawa Town No. 8 Toshiba Corporation Yokohama Works (72) Inventor Takashi Hino 4 Keio Works, Toshiba Corporation, 2 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa (56) Reference JP-A-3-218975 (JP, A) JP-A-6-135771 (JP, A) JP-A-59-3077 (JP, A) JP-A-5-504933 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類元素を酸化物に換算して2.0〜
17.5重量%、不純物陽イオン元素としてのLi,N
a,K,Fe,Ca,Mg,Sr,Ba,Mn,Bを合
計で0.3重量%以下含有し、熱伝導率が60W/m・
K以上であり、厚さが0.25〜1.2mmである窒化
けい素基板の表面に、SiOを主成分とする厚さが
0.5〜10μmの酸化物層が形成され、この酸化物層
を介して金属回路板が上記窒化けい素基板に直接接合さ
れており、この窒化けい素回路基板を支持スパン50m
mで支持した状態で中央部に荷重を付加し、窒化けい素
基板が破断に至るまでの最大たわみ量が1.0〜1.5
mmであることを特徴とする高熱伝導性窒化けい素回路
基板。
1. A rare earth element converted into an oxide of 2.0 to 2.0.
17.5 wt%, Li, N as impurity cation element
a, K, Fe, Ca, Mg, Sr, Ba, Mn, and B are contained in a total amount of 0.3 wt% or less, and the thermal conductivity is 60 W / m.
An oxide layer containing SiO 2 as a main component and having a thickness of 0.5 to 10 μm is formed on the surface of a silicon nitride substrate having a thickness of K or more and a thickness of 0.25 to 1.2 mm. A metal circuit board is directly bonded to the silicon nitride substrate through a material layer, and the silicon nitride circuit substrate has a supporting span of 50 m.
With a load applied to the central part while being supported by m,
The maximum deflection until the substrate breaks is 1.0 to 1.5
mm , high thermal conductivity silicon nitride circuit board.
【請求項2】 窒化けい素粒子および粒界相により構成
され、粒界相中における結晶化合物相が粒界相全体に対
する割合で20%以上を占め、熱伝導率が60W/m・
K以上であり、厚さが0.25〜1.2mmである窒化
けい素基板の表面に、SiOを主成分とする厚さが
0.5〜10μmの酸化物層が形成され、この酸化物層
を介して金属回路板が上記窒化けい素基板に直接接合さ
れており、この窒化けい素回路基板を支持スパン50m
mで支持した状態で中央部に荷重を付加し、窒化けい素
基板が破断に至るまでの最大たわみ量が1.0〜1.5
mmであることを特徴とする高熱伝導性窒化けい素回路
基板。
2. A silicon nitride particle and a grain boundary phase, wherein the crystal compound phase in the grain boundary phase accounts for 20% or more of the total grain boundary phase, and the thermal conductivity is 60 W / m.multidot.
An oxide layer containing SiO 2 as a main component and having a thickness of 0.5 to 10 μm is formed on the surface of a silicon nitride substrate having a thickness of K or more and a thickness of 0.25 to 1.2 mm. A metal circuit board is directly bonded to the silicon nitride substrate through a material layer, and the silicon nitride circuit substrate has a supporting span of 50 m.
With a load applied to the central part while being supported by m,
The maximum deflection until the substrate breaks is 1.0 to 1.5
mm , high thermal conductivity silicon nitride circuit board.
【請求項3】 金属回路板は、表面に厚さ1.0μm以
上の酸化銅層を有する銅回路板であることを特徴とする
請求項1または2記載の高熱伝導性窒化けい素回路基
板。
3. The high heat conductive silicon nitride circuit board according to claim 1, wherein the metal circuit board is a copper circuit board having a copper oxide layer with a thickness of 1.0 μm or more on the surface.
【請求項4】 窒化けい素基板の熱伝導率が100W/
m・K以上であることを特徴する請求項1または2記載
の高熱伝導性窒化けい素回路基板。
4. The thermal conductivity of a silicon nitride substrate is 100 W /
The high thermal conductivity silicon nitride circuit board according to claim 1 or 2, characterized in that it is at least m · K.
【請求項5】 金属回路板が酸素を100〜1000p
pm含有するタフピッチ電解銅から成ることを特徴とす
る請求項1または2記載の高熱伝導性窒化けい素回路基
板。
5. The metal circuit board contains oxygen of 100 to 1000 p.
3. A high thermal conductivity silicon nitride circuit board according to claim 1, which is made of tough pitch electrolytic copper containing pm.
【請求項6】 窒化けい素基板は粗面化加工された表面
を有することを特徴とする請求項1または2記載の高熱
伝導性窒化けい素回路基板。
6. The high-thermal-conductivity silicon nitride circuit board according to claim 1, wherein the silicon nitride board has a roughened surface.
【請求項7】 金属回路板が銅回路板であり、この銅回
路板がCu−O共晶化合物により窒化けい素基板に接合
されていることを特徴とする請求項1または2記載の高
熱伝導性窒化けい素回路基板。
7. The high thermal conductivity according to claim 1, wherein the metal circuit board is a copper circuit board, and the copper circuit board is bonded to the silicon nitride substrate by a Cu—O eutectic compound. Silicon nitride circuit board.
【請求項8】 金属回路板がアルミニウム回路板であ
り、このアルミニウム回路板がAl−Si共晶化合物に
より窒化けい素基板に接合されていることを特徴とする
請求項1または2記載の高熱伝導性窒化けい素回路基
板。
8. The high thermal conductivity according to claim 1, wherein the metal circuit board is an aluminum circuit board, and the aluminum circuit board is bonded to the silicon nitride substrate by an Al—Si eutectic compound. Silicon nitride circuit board.
JP03493396A 1995-03-20 1996-02-22 High thermal conductive silicon nitride circuit board Expired - Lifetime JP3450570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03493396A JP3450570B2 (en) 1995-03-20 1996-02-22 High thermal conductive silicon nitride circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6126595 1995-03-20
JP7-61265 1995-03-20
JP03493396A JP3450570B2 (en) 1995-03-20 1996-02-22 High thermal conductive silicon nitride circuit board

Publications (2)

Publication Number Publication Date
JPH08319187A JPH08319187A (en) 1996-12-03
JP3450570B2 true JP3450570B2 (en) 2003-09-29

Family

ID=26373806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03493396A Expired - Lifetime JP3450570B2 (en) 1995-03-20 1996-02-22 High thermal conductive silicon nitride circuit board

Country Status (1)

Country Link
JP (1) JP3450570B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912066A (en) * 1996-03-27 1999-06-15 Kabushiki Kaisha Toshiba Silicon nitride circuit board and producing method therefor
EP0963965A4 (en) * 1997-09-03 2001-03-21 Sumitomo Electric Industries Silicon nitride sinter having high thermal conductivity and process for preparing the same
DE19859119B4 (en) * 1997-12-22 2010-06-02 Kyocera Corp. Printed circuit board with very good heat radiation, process for its preparation and its use
JP4346151B2 (en) 1998-05-12 2009-10-21 株式会社東芝 High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
JP4649027B2 (en) * 1999-09-28 2011-03-09 株式会社東芝 Ceramic circuit board
DE10165080B4 (en) 2000-09-20 2015-05-13 Hitachi Metals, Ltd. Silicon nitride powder and sintered body and method of making the same and printed circuit board therewith
DE102009015520A1 (en) * 2009-04-02 2010-10-07 Electrovac Ag Metal-ceramic substrate
JP6319643B2 (en) * 2012-02-29 2018-05-09 日立金属株式会社 Ceramics-copper bonded body and method for manufacturing the same
JP6124103B2 (en) * 2012-02-29 2017-05-10 日立金属株式会社 Silicon nitride circuit board and manufacturing method thereof
CN116782494B (en) * 2023-07-25 2024-02-20 广州方邦电子股份有限公司 Composite substrate, preparation method thereof and circuit board

Also Published As

Publication number Publication date
JPH08319187A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
KR100232660B1 (en) Silicon nitride circuit board
US6613443B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
JP5023165B2 (en) Ceramic circuit board
JP3797905B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP4346151B2 (en) High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same
JPH1084059A (en) Silicon nitride circuit board
JP2698780B2 (en) Silicon nitride circuit board
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JP5039097B2 (en) Power module
JP3539634B2 (en) Silicon nitride substrate for circuit mounting and circuit substrate
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP6124103B2 (en) Silicon nitride circuit board and manufacturing method thereof
JP2772273B2 (en) Silicon nitride circuit board
JP3193305B2 (en) Composite circuit board
JP2939444B2 (en) Multilayer silicon nitride circuit board
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP2772274B2 (en) Composite ceramic substrate
JP2677748B2 (en) Ceramics copper circuit board
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP4221006B2 (en) Silicon nitride ceramic circuit board
JP2003192445A (en) Silicon nitride substrate, method of producing the same and silicon nitride substrate having thin film obtained by using the substrate
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JPH0964235A (en) Silicon nitride circuit board
JP5289184B2 (en) Method for producing high thermal conductivity silicon nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term