JP2000141022A - Silicon carbide composite body and its manufacture - Google Patents

Silicon carbide composite body and its manufacture

Info

Publication number
JP2000141022A
JP2000141022A JP10322055A JP32205598A JP2000141022A JP 2000141022 A JP2000141022 A JP 2000141022A JP 10322055 A JP10322055 A JP 10322055A JP 32205598 A JP32205598 A JP 32205598A JP 2000141022 A JP2000141022 A JP 2000141022A
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
composite
aluminum
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10322055A
Other languages
Japanese (ja)
Other versions
JP3698571B2 (en
Inventor
Kazuyuki Hiruta
和幸 蛭田
Hironori Nagasaki
浩徳 長崎
Ryuichi Terasaki
隆一 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP32205598A priority Critical patent/JP3698571B2/en
Publication of JP2000141022A publication Critical patent/JP2000141022A/en
Application granted granted Critical
Publication of JP3698571B2 publication Critical patent/JP3698571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide composite body having a high thermal conductivity, which is suitably used for a heat sink such as a power module. SOLUTION: Relating to a silicon carbide composite body wherein aluminum or an alloy mainly consisting of aluminum is impregnated in a porous silicon carbide molding, it has thermal conductivity of >=200 W/mK, concretely the content of oxygen is <=1.1 weight %, and a volume ratio of silicon carbide in the silicon carbide composite body is >=50%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高熱伝導性、低熱
膨張性ならびに低比重であること等の優れた特性を有す
ることから、近年、主にパワ−モジュ−ルにおけるヒ−
トシンク等に使用されつつある、アルミニウムと炭化珪
素を主成分とした複合体に関するものである。
BACKGROUND OF THE INVENTION In recent years, the present invention has been mainly used in power modules for power modules because of its excellent properties such as high thermal conductivity, low thermal expansion and low specific gravity.
The present invention relates to a composite mainly containing aluminum and silicon carbide, which is being used for tosinks and the like.

【0002】[0002]

【従来の技術】パワ−モジュ−ルにおけるヒ−トシンク
材としては従来、銅が使用されてきた。しかしながら銅
をヒ−トシンク材として使用した場合、その高い熱膨張
係数(17ppm/K)のため、ヒ−トシンク材とその
上に搭載された基板間にクラックが発生する等、信頼性
に問題があり、このような現象を発生させない低熱膨
張、高熱伝導性を有するヒ−トシンク材が要望されてい
た。
2. Description of the Related Art Conventionally, copper has been used as a heat sink material in power modules. However, when copper is used as the heat sink material, its high thermal expansion coefficient (17 ppm / K) causes a problem in reliability such as cracks occurring between the heat sink material and the substrate mounted thereon. There has been a demand for a heat sink material having low thermal expansion and high thermal conductivity that does not cause such a phenomenon.

【0003】上記の状況下において、アルミニウム−炭
化珪素系複合体は、炭化珪素の含有量を上げることによ
り、その熱膨張係数を10ppm/K以下に抑えられる
こと、高熱伝導性を発現できること、さらには低比重で
あること等から、近年、ヒ−トシンク材として注目され
ている。
[0003] Under the above circumstances, the aluminum-silicon carbide-based composite can suppress the thermal expansion coefficient to 10 ppm / K or less by increasing the content of silicon carbide, and can exhibit high thermal conductivity. Has recently attracted attention as a heat sink material because of its low specific gravity.

【0004】[0004]

【発明が解決しようとする課題】しかし、これまで開発
されてきた前記アルミニウム−炭化珪素系複合体の熱伝
導率は、いずれも室温下でたかだか170W/mK程度
であり、銅のそれ(400W/mK)には及ばず、さら
なる高熱伝導率を有するアルミニウム−炭化珪素系複合
体の開発が望まれていた。本発明は、この要望に答える
べくなされたものであり、これまでにない200W/m
K以上の熱伝導率を有する、特に熱膨張係数が銅に近い
9ppm/K以下でしかも200W/mK以上の熱伝導
率を有する前記複合体を得ることを目的とする。
However, the thermal conductivity of the aluminum-silicon carbide composites developed so far is at most about 170 W / mK at room temperature, and that of copper (400 W / mK). Development of an aluminum-silicon carbide composite having even higher thermal conductivity than mK) has been desired. The present invention has been made to meet this demand, and has achieved an unprecedented 200 W / m.
It is an object of the present invention to obtain the composite having a thermal conductivity of not less than K, in particular, a thermal expansion coefficient of 9 ppm / K or less close to that of copper and a thermal conductivity of 200 W / mK or more.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討を重ねた結果、アルミニウム−
炭化珪素系複合体(以下、炭化珪素質複合体という)の
熱伝導率が、炭化珪素の含有量ばかりでなく、複合体自
体の酸素量に大きく依存しており、特定量以下の酸素含
有量を有する複合体において200W/mK以上の熱伝
導率が発現すること、さらには複合体の酸素量が主に炭
化珪素を主成分とした合金含浸前のプリフォ−ムの酸素
量に依存し、ある特定量以下の酸素含有量を有するプリ
フォ−ムを使用すること、更に含浸するアルミニウムま
たはアルミニウムを主成分とする合金の酸素量を制限す
ることで、200W/mK以上の熱伝導率を有する前記
アルミニウム−炭化珪素系複合体が容易に得られること
を見い出し、本発明を完成させたものである。
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that
The thermal conductivity of a silicon carbide-based composite (hereinafter, referred to as a silicon carbide-based composite) largely depends not only on the content of silicon carbide but also on the oxygen content of the composite itself. In the composite having the above, a thermal conductivity of 200 W / mK or more is exhibited, and the oxygen content of the composite mainly depends on the oxygen content of the preform before the impregnation of the alloy containing silicon carbide as a main component. The use of a preform having an oxygen content of not more than a specific amount, and further limiting the oxygen content of aluminum or an alloy containing aluminum as a main component to be impregnated, whereby the aluminum having a thermal conductivity of 200 W / mK or more. -It has been found that a silicon carbide composite can be easily obtained, and the present invention has been completed.

【0006】即ち、本発明は、多孔質炭化珪素成形体に
アルミニウム又はアルミニウムを主成分とする合金を含
浸してなる炭化珪素質複合体であって、200W/mK
以上の熱伝導率を有することを特徴とする炭化珪素質複
合体であり、具体的には、酸素含有量が1.1重量%以
下であることを特徴とする前記の炭化珪素質複合体であ
り、炭化珪素質複合体中の炭化珪素の占める体積割合が
50%以上であることを特徴とする前記の炭化珪素質複
合体である。また、本発明は、室温から150℃におけ
る熱膨張係数が9ppm/K以下であることを特徴とす
る前記の炭化珪素質複合体である。
That is, the present invention relates to a silicon carbide composite obtained by impregnating a porous silicon carbide compact with aluminum or an alloy containing aluminum as a main component.
A silicon carbide composite having the above thermal conductivity, specifically, the silicon carbide composite having an oxygen content of 1.1% by weight or less. The silicon carbide composite according to the above, wherein the volume ratio of silicon carbide in the silicon carbide composite is 50% or more. Further, the present invention is the above-mentioned silicon carbide composite, wherein a thermal expansion coefficient from room temperature to 150 ° C. is 9 ppm / K or less.

【0007】加えて、本発明は、多孔質炭化珪素成形体
にアルミニウム又はアルミニウムを主成分とする合金を
含浸する炭化珪素質複合体の製造方法であって、前記多
孔質炭化珪素成形体の相対密度が50体積%以上であ
り、しかも酸素含有量が1.4重量%以下であることを
特徴とする炭化珪素質複合体の製造方法であり、好まし
くは、前記炭化珪素質成形体が、2種以上の異なる粒度
分布を有する複数の炭化珪素粉末を粒度配合して原料粉
末を得て、該原料粉末に、焼成して酸化珪素となる無機
バインダ−を添加し、成形後、必要に応じて乾燥し、し
かる後に750℃〜900℃の温度範囲で焼成してなる
ことを特徴とする前記の炭化珪素質複合体の製造方法で
あり、また、アルミニウム又はアルミニウムを主成分と
する合金が、0〜18重量%の珪素と、0.5〜2.5
重量%のマグネシウムを含有してなることを特徴とする
前記の炭化珪素質複合体の製造方法である。
In addition, the present invention relates to a method for producing a silicon carbide composite in which a porous silicon carbide molded body is impregnated with aluminum or an alloy containing aluminum as a main component. A method for producing a silicon carbide-based composite, wherein the density is 50% by volume or more and the oxygen content is 1.4% by weight or less. A plurality of types of silicon carbide powders having different particle size distributions are mixed to obtain a raw material powder, and an inorganic binder to be fired to be silicon oxide is added to the raw material powder. Drying, followed by firing at a temperature in the range of 750 ° C. to 900 ° C., wherein the method comprises the steps of: ~ 1 And the percent by weight of silicon, 0.5 to 2.5
The method for producing a silicon carbide-based composite according to the above, comprising magnesium by weight.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0009】本発明者らは、多孔質炭化珪素成形体にア
ルミニウム又はアルミニウムを主成分とする合金を含浸
してなる炭化珪素質複合体について、いろいろ検討した
結果、前記炭化珪素質複合体に於いて酸素含有量が熱伝
導率に大きく関係していること、従来の炭化珪素質複合
体に於いては、原料あるいはその製造履歴から由来する
酸素の混入があり、熱伝導率がたかだか170W/mK
程度に限定されていることを見いだし、本発明に至った
ものである。
The present inventors have conducted various studies on a silicon carbide composite obtained by impregnating a porous silicon carbide compact with aluminum or an alloy containing aluminum as a main component. And the oxygen content is greatly related to the thermal conductivity. In the conventional silicon carbide composite, oxygen derived from the raw material or its production history is mixed, and the thermal conductivity is at most 170 W / mK.
It has been found that they are limited to a certain extent, and has led to the present invention.

【0010】即ち、本発明の炭化珪素質複合体は、20
0W/mK以上の熱伝導率を有することを特徴とし、好
ましい場合においては、9ppm/K以下の熱膨張係数
を有すし、従来銅が用いられてきた、パワ−モジュ−ル
におけるヒ−トシンク材等に好ましく用いることができ
る。
That is, the silicon carbide composite of the present invention has 20
It is characterized by having a thermal conductivity of 0 W / mK or more, and in a preferable case, has a thermal expansion coefficient of 9 ppm / K or less, and is a heat sink material in a power module in which copper has been conventionally used. And the like.

【0011】本発明の炭化珪素質複合体は、上記の高熱
伝導率を達成するために、酸素量が1.1重量%以下で
ある。好ましくは、0.9重量%以下である。酸素量が
1.1重量%を越える場合には、必ずしも、200W/
mK以上の熱伝導率を得られないことがある。酸素量が
低いときに高い熱伝導率が達成される理由は明かでない
が、本発明者らは、酸素がアルミニウムと炭化珪素粒子
との界面、或いは炭化珪素粒子と炭化珪素粒子との接触
面との凝集し、これらの界面部分で熱伝達を悪くしてい
るためと推察している。
The silicon carbide composite of the present invention has an oxygen content of 1.1% by weight or less in order to achieve the above high thermal conductivity. Preferably, it is at most 0.9% by weight. When the amount of oxygen exceeds 1.1% by weight, 200 W /
In some cases, a thermal conductivity of mK or more cannot be obtained. It is not clear why the high thermal conductivity is achieved when the oxygen content is low, but the present inventors have found that oxygen is present at the interface between aluminum and silicon carbide particles or at the contact surface between silicon carbide particles and silicon carbide particles. This is presumed to be due to agglomeration and heat transfer at these interfaces.

【0012】本発明の炭化珪素質複合体について、その
炭化珪素の占める空間割合(以下、炭化珪素の含有率と
いう)が50体積%以上が好ましい。炭化珪素質複合体
の熱伝導率に及ぼすいろいろな要因の影響のしかたに
は、不明な点が多く、炭化珪素の含有率が50体積%未
満の場合には、200W/mK以上の熱伝導率が必ずし
も得ることができないことがある。
In the silicon carbide composite of the present invention, the space ratio occupied by the silicon carbide (hereinafter referred to as silicon carbide content) is preferably at least 50% by volume. There are many unclear points as to how various factors affect the thermal conductivity of the silicon carbide composite. When the content of silicon carbide is less than 50% by volume, the thermal conductivity is 200 W / mK or more. May not always be available.

【0013】又、本発明の炭化珪素質複合体に於いて、
前記炭化珪素の含有率が60体積%以上とするときに
は、室温から150℃における熱膨張係数を9ppm/
K以下に制御することもできる。そして、熱膨張率を9
ppm/K以下に制御することにより、前記したとおり
に、本発明の炭化珪素質複合体はその高熱伝導率に依り
パワーモジュール用のヒートシンク材として用いること
ができるが、特に半導体モジュ−ル用放熱板のように低
熱膨張性を要求される用途にも好ましく適用することが
できるという特徴を有する。
In the silicon carbide composite of the present invention,
When the content of silicon carbide is 60% by volume or more, the coefficient of thermal expansion from room temperature to 150 ° C. is 9 ppm /
It can be controlled to K or less. And the coefficient of thermal expansion is 9
By controlling to less than ppm / K, as described above, the silicon carbide composite of the present invention can be used as a heat sink material for power modules due to its high thermal conductivity. It has the feature that it can be preferably applied to applications requiring low thermal expansion properties, such as a plate.

【0014】次に、本発明の炭化珪素質複合体を得る方
法について、溶湯鍛造法による方法を例示するが、本発
明の炭化珪素質複合体はこれに限定されるものではな
い。溶湯鍛造法は、プリフォ−ムを金型内に設置し、ア
ルミニウム合金を投入後、機械的圧力で加圧する方法で
あり、作業が容易で、かつ、例えばプリフォ−ムの余熱
処理を空気中で行う場合、その余熱がプリフォ−ムに大
きな酸化を起こさせない温度条件で、アルミニウム合金
を含浸できるからである。このような溶湯鍛造法にあっ
て、上記したアルミニウム合金を含浸させる際の条件と
しては、溶融アルミニウム合金温度が、700〜850
℃、含浸時の圧力としては30MPa以上などである。
Next, as a method for obtaining the silicon carbide composite of the present invention, a method using a molten metal forging method will be exemplified, but the silicon carbide composite of the present invention is not limited thereto. The molten metal forging method is a method in which a preform is placed in a mold, an aluminum alloy is charged, and then pressurized by a mechanical pressure. This is because, when it is performed, the aluminum alloy can be impregnated under such a temperature condition that the residual heat does not cause large oxidation of the preform. In such a molten metal forging method, the conditions for impregnating the above aluminum alloy are as follows: the temperature of the molten aluminum alloy is 700 to 850.
° C and the pressure at the time of impregnation are 30 MPa or more.

【0015】本発明に用いる多孔質炭化珪素成形体(以
下、プリフォームという)については、原料として、通
常、粉末やウィスカが使用され、いずれにも限定される
ものではなく、炭化珪素質であればよいが、好ましく
は、炭化珪素質複合体中の炭化珪素含有量が50体積%
以上、更に好ましくは、60体積%以上が達成されるも
のが選択される。
As the raw material for the porous silicon carbide molded body (hereinafter, referred to as a preform) used in the present invention, powder or whisker is usually used as a raw material. Preferably, the silicon carbide content in the silicon carbide composite is 50% by volume.
As described above, more preferably, those achieving 60% by volume or more are selected.

【0016】また、プリフォ−ムを作製するに際して
は、その成形方法として、プレス成形法、鋳込み成形
法、押し出し成形法等公知の成形法が採用できるととも
に、成形に際してはメチルセルロ−ス、PVA等の有機
バインダ−やコロイダルシリカ等の通常の無機バインダ
−、さらには溶媒として水や有機溶剤等を使用すること
に何ら問題はなく、含浸前の状態におけるプリフォ−ム
中の酸素量を1.4wt%以下にできればよい。含浸直
前のプリフォームの酸素量が1.4重量%を越える場合
には、含浸工程での含浸される金属等から混入される酸
素量と合わせて、得られる炭化珪素質複合体中の酸素量
が1.1重量%を越えてしまい、その結果、200W/
mK以上の熱伝導率を有する炭化珪素質複合体が得られ
ないことがある。
In producing the preform, known molding methods such as a press molding method, a casting molding method, and an extrusion molding method can be adopted as the molding method, and a molding method such as methylcellulose, PVA or the like can be employed. There is no problem in using water, an organic solvent, or the like as a solvent, as well as an ordinary inorganic binder such as an organic binder or colloidal silica, and the amount of oxygen in the preform before impregnation is 1.4 wt%. The following should be possible. When the oxygen content of the preform immediately before the impregnation exceeds 1.4% by weight, the oxygen content in the obtained silicon carbide composite is adjusted together with the oxygen content mixed from the metal or the like to be impregnated in the impregnation step. Exceeds 1.1% by weight, and as a result, 200 W /
In some cases, a silicon carbide composite having a thermal conductivity of mK or more cannot be obtained.

【0017】酸素量が1.4重量%以下のプリフォ−ム
を得るには、使用する原料炭化珪素の粉末やウィスカ−
の酸素量、焼成時におけるこれらの酸化、更にコロイダ
ルシリカ等の無機バインダ−からの酸素混入を考慮し、
適正化を図ることで達成される。特に、炭化珪素粉末か
らプリフォ−ムを作製するに際しては、低酸素量の炭化
珪素の粗粉を多量に使用することが好ましいが、酸素量
の多い微粉を用いて、後の加熱処理において還元するこ
とによっても、1.4重量%以下のプリフォ−ムとする
ことができることはいうまでもない。
In order to obtain a preform having an oxygen content of 1.4% by weight or less, the raw material silicon carbide powder or whisker
In consideration of the amount of oxygen, oxidation of these during firing, and oxygen contamination from inorganic binders such as colloidal silica,
Achieved by optimizing. In particular, when preparing a preform from silicon carbide powder, it is preferable to use a large amount of low-oxygen-content silicon carbide coarse powder, but using a fine powder having a high oxygen content to reduce in a subsequent heat treatment. It is needless to say that a preform of 1.4% by weight or less can be obtained.

【0018】本発明において、上記の酸素量ばかりでな
く、プリフォ−ムの炭化珪素充填度(即ち、炭化珪素質
複合体中の炭化珪素充填率に相当する)を50体積%以
上にすることが好ましい。50体積%未満であると、2
00W/mK以上の熱伝導率を有する炭化珪素質複合体
が得られなくなることがあるからである。
In the present invention, not only the amount of oxygen but also the filling degree of silicon carbide in the preform (that is, the filling rate of silicon carbide in the silicon carbide composite) is set to 50% by volume or more. preferable. If it is less than 50% by volume, 2
This is because a silicon carbide composite having a thermal conductivity of 00 W / mK or more may not be obtained.

【0019】50体積%以上の炭化珪素含有率を達成す
るプリフォ−ムを作製するには、使用する炭化珪素粉末
やウィスカの粒径、長さ/径の比率の調整、添加する有
機バインダ−や無機バインダ−の種類と量、さらには成
形時の流動性を調整する溶媒の種類や量を調整すること
により達成される。特に、炭化珪素粉末を使用してプリ
フォ−ムを形成する際には、一般に、粗粉のみでは、5
0体積%以上の含有率を達成することが容易でない。そ
こで、適当なサイズの粗粉と微粉とを適当量組み合わせ
る、いわゆる粒度配合を行うことがより効果的である。
In order to prepare a preform that achieves a silicon carbide content of 50% by volume or more, it is necessary to adjust the particle size and length / diameter ratio of the silicon carbide powder and whisker to be used, and to add an organic binder and This can be achieved by adjusting the type and amount of the inorganic binder and the type and amount of the solvent for adjusting the fluidity during molding. In particular, when forming a preform using silicon carbide powder, generally only coarse powder is used.
It is not easy to achieve a content of 0% by volume or more. Therefore, it is more effective to combine so-called particle sizes, that is, combine appropriate amounts of coarse powder and fine powder in appropriate sizes.

【0020】ここで、炭化珪素粉末の粒度配合比の例を
示せば、平均粒径が110μmの炭化珪素粉末を40〜
75重量部、平均粒径が7μmの炭化珪素粉末を60〜
25重量部という組み合わせ、或いは平均粒径が90μ
mの炭化珪素粉末を65重量部、平均粒径が30μmの
炭化珪素粉末を15重量部、さらに平均粒径が10μm
の炭化珪素粉末を20重量部といった組み合わせなどが
挙げられる。
Here, an example of the particle size mixing ratio of the silicon carbide powder is as follows.
75 parts by weight of silicon carbide powder having an average particle size of 7 μm
Combination of 25 parts by weight or average particle size of 90μ
m silicon carbide powder, 65 parts by weight, average particle diameter of 30 μm, 15 parts by weight, and average particle diameter of 10 μm
Of silicon carbide powder of 20 parts by weight.

【0021】上記に例示した粒度配合をもつ炭化珪素原
料粉末を用いて、プリフォ−ムを形成するにあたって
は、いずれの成形法を採用するにしても、焼成後のプリ
フォ−ム強度を発現させるために、通常コロイダルシリ
カ、アルミナゾル等の無機バインダ−が添加される。こ
のうちコロイダルシリカは焼成により、シリカとなり炭
化珪素粒子を結合し、十分なプリフォ−ム強度を発現さ
せものであるが、これら無機バインダ−の添加によりプ
リフォーム中に無機バインダ−に由来する酸素増量が発
生することがある。無機バインダーとしては、焼成して
酸化珪素或いは酸化アルミニウムとなるものであればよ
く、例えば珪素、窒化珪素などの珪素含有化合物やアル
ミニウム、窒化アルミニウムなどのアルミニウム含有化
合物も用いることが出来る。
In forming a preform using the silicon carbide raw material powder having the above-mentioned particle size composition, no matter which molding method is adopted, the preform strength after firing must be exhibited. In general, an inorganic binder such as colloidal silica and alumina sol is added. Of these, colloidal silica becomes silica by firing and binds silicon carbide particles to develop sufficient preform strength. However, the addition of these inorganic binders increases the amount of oxygen derived from the inorganic binder in the preform. May occur. Any inorganic binder may be used as long as it becomes silicon oxide or aluminum oxide by firing. For example, a silicon-containing compound such as silicon or silicon nitride or an aluminum-containing compound such as aluminum or aluminum nitride can be used.

【0022】無機バインダーを含有するプリフォーム
は、必要に応じて乾燥し、焼成されて、強度が発現す
る。焼成は大気中等の酸化性雰囲気下で行われることが
多く、このときに炭化珪素粉末の酸化による酸素増量も
発生することがある。このため、大気中での焼成は、そ
の保持時間にもよるが、950℃未満の温度で行い、酸
素増量を少なくすることが好ましい。発現される強度と
酸素増量の兼ね合いから、750℃〜900℃が好まし
い温度範囲である。
The preform containing an inorganic binder is dried and fired as necessary to develop strength. Firing is often performed in an oxidizing atmosphere such as in the air, and at this time, an increase in oxygen due to oxidation of the silicon carbide powder may also occur. For this reason, although it depends on the holding time, baking in the air is preferably performed at a temperature lower than 950 ° C. to reduce the increase in oxygen. A temperature range of 750 ° C. to 900 ° C. is a preferable temperature range in view of the balance between the developed strength and the increase in oxygen.

【0023】プリフォ−ムに、アルミニウム又はアルミ
ニウムを主成分とする合金(以下、両者を併せてアルミ
ニウム合金という)を含浸する方法としては、溶湯鍛造
法、ダイカスト法ならびにそれらを改良した方法等、公
知の方法が使用できる。なお、含浸時には通常、その予
備工程としてアルミニウム合金が浸透しやすいよう、プ
リフォ−ムの予熱処理が行うことが好ましい。本発明に
あっては、温度、時間並びに雰囲気等の予熱処理条件に
ついても、プリフォ−ムの酸素量が所定量範囲に収まる
ようにする必要がある。
As a method for impregnating the preform with aluminum or an alloy containing aluminum as a main component (hereinafter, both are collectively referred to as an aluminum alloy), there are known methods such as a molten metal forging method, a die casting method and a method of improving them. Can be used. During the impregnation, it is usually preferable to carry out a pre-heating of the preform as a preliminary step so that the aluminum alloy can easily penetrate. In the present invention, it is necessary that the pre-heat treatment conditions such as temperature, time, atmosphere, etc., are such that the oxygen amount of the preform falls within a predetermined amount range.

【0024】本発明におけるアルミニウムを主成分とす
る合金としては、通常のアルミニウム−炭化珪素質複合
体を作製する際に使用される、アルミニウム−珪素系、
アルミニウム−珪素−マグネシウム系、並びにアルミニ
ウム−マグネシウム系の合金が挙げられる。このなかに
あっては、アルミニウム合金の融点が低下できるアルミ
ニウム−珪素−マグネシウム系合金が作業性の点で好ま
しく、また熱伝導率向上の点からはアルミニウム−マグ
ネシウム系合金が好ましい。特に前者にあっては、珪素
は熱伝導率を低下させる原因となることから、その量を
18wt%以下とすることがよい。また、マグネシウム
量については、その量が少ないと合金の融点が低下せず
作業性が悪化する点があること、その量が多いと熱伝導
率低下の原因となること等を考慮し、0.5〜2.5w
t%とするのがよい。
As the alloy containing aluminum as a main component in the present invention, an aluminum-silicon-based alloy used for producing a usual aluminum-silicon carbide composite is used.
Aluminum-silicon-magnesium alloys and aluminum-magnesium alloys may be mentioned. Among these, an aluminum-silicon-magnesium alloy capable of lowering the melting point of the aluminum alloy is preferable from the viewpoint of workability, and an aluminum-magnesium alloy is preferable from the viewpoint of improving thermal conductivity. In particular, in the former case, since silicon causes a decrease in thermal conductivity, its amount is preferably 18 wt% or less. Further, regarding the amount of magnesium, it is considered that if the amount is small, the melting point of the alloy is not lowered and the workability is deteriorated, and if the amount is large, the thermal conductivity is reduced. 5-2.5w
It is good to be t%.

【0025】以下、本発明を実施例に基づき、より詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0026】[0026]

【実施例】[実施例1]平均粒径110μmの炭化珪素
粉末65重量部、平均粒径7μmの炭化珪素粉末35重
量部及びコロイダルシリカ(シリカ換算でシリカを20
重量%含有)を6重量部、水を12重量部秤量し、これ
らを混合してスラリ−を調整した。このスラリ−を石膏
型に流し込み放置した後、脱型、乾燥し複数の成形体を
得た。成形体はいずれも空気中、850℃で2時間焼成
し、プリフォ−ムとした。尚、使用した炭化珪素粉末
は、平均粒径7μmのものは屋久島電工(株)製であ
り、前記以外の炭化珪素粉末は大平洋ランダム(株)製
であり、コロイダルシリカは日産化学(株)製である。
EXAMPLES Example 1 65 parts by weight of silicon carbide powder having an average particle diameter of 110 μm, 35 parts by weight of silicon carbide powder having an average particle diameter of 7 μm, and colloidal silica (silica equivalent was 20 parts by weight)
6% by weight) and 12 parts by weight of water were weighed and mixed to prepare a slurry. The slurry was poured into a gypsum mold and allowed to stand, then removed from the mold and dried to obtain a plurality of molded products. Each of the compacts was fired in air at 850 ° C. for 2 hours to obtain a preform. The silicon carbide powder used had an average particle size of 7 μm and was manufactured by Yakushima Denko Co., Ltd., and the other silicon carbide powders were manufactured by Taiheiyo Random Co., Ltd., and colloidal silica was manufactured by Nissan Chemical Co., Ltd. It is made.

【0027】前記プリフォ−ムの一部について、LEC
O社製窒素/酸素分析計TC−436を用いて、プリフ
ォーム中の酸素量を測定するとともに、密度を測定する
ために、直径20mm、厚み3mmに加工した。プリフ
ォ−ムの炭化珪素充填度については、上記加工品の密度
を炭化珪素の理論密度3.21g/cm3で除し、百分
率で定義した。この結果、プリフォ−ムの炭化珪素の充
填度は65体積%であり、その酸素量は0.92重量%
であった。残りのプリフォ−ムについて、前述した溶湯
鍛造法により、アルミニウム合金を含浸した。
A part of the preform is LEC
Using a nitrogen / oxygen analyzer TC-436 manufactured by Company O, the preform was processed to have a diameter of 20 mm and a thickness of 3 mm for measuring the density while measuring the density. The silicon carbide filling degree of the preform was defined as a percentage by dividing the density of the processed product by the theoretical density of silicon carbide of 3.21 g / cm 3 . As a result, the filling degree of silicon carbide in the preform was 65% by volume, and the oxygen content was 0.92% by weight.
Met. The remaining preform was impregnated with an aluminum alloy by the aforementioned melt forging method.

【0028】含浸の方法は、次の通りである。まず、前
記プリフォ−ムを空気中650℃で1h焼成し、予熱処
理を行った。予熱後、すぐにプリフォ−ムを金型内に設
置した後、珪素12wt%、マグネシム1wt%を含
み、850℃で溶融しているアルミニウム合金をプリフ
ォ−ムの前面が十分隠れるように、金型内に投入した。
その後、速やかにパンチにより70MPaの圧力で5分
間プレスし、冷却後、金型内からアルミニウム−炭化珪
素系複合体を含む、アルミニウム合金塊を取り出した。
この塊からアルミニウム−炭化珪素系複合体部分を機械
加工法により切り出した。
The method of impregnation is as follows. First, the preform was fired in air at 650 ° C. for 1 hour, and a pre-heat treatment was performed. Immediately after preheating, the preform was placed in the mold, and an aluminum alloy containing 12 wt% of silicon and 1 wt% of magnesium and melted at 850 ° C. was molded so that the front surface of the preform was sufficiently hidden. I put it in.
Then, it was quickly pressed by a punch at a pressure of 70 MPa for 5 minutes, and after cooling, an aluminum alloy lump containing the aluminum-silicon carbide composite was taken out of the mold.
An aluminum-silicon carbide-based composite portion was cut out from this lump by a machining method.

【0029】上記操作で得た複合体について、室温での
熱伝導率を測定するため、一部を直径10mm、厚み3
mmに加工し試料とした。試料の比重及び熱拡散率、さ
らに比熱を測定し、熱伝導率を算出した結果、その熱伝
導率は218W/mKであった。尚、熱拡散率について
は、レ−ザ−フラッシュ法(リガク社製「LF/TCM
−FA8510B」)により、比熱はDSC(セイコー
電子社製「DSC200」)での測定である。
The composite obtained by the above operation was partially measured to have a diameter of 10 mm and a thickness of 3 to measure the thermal conductivity at room temperature.
mm and used as a sample. The specific gravity, thermal diffusivity, and specific heat of the sample were measured, and the thermal conductivity was calculated. As a result, the thermal conductivity was 218 W / mK. The thermal diffusivity was measured by a laser flash method ("LF / TCM" manufactured by Rigaku Corporation).
-FA8510B "), the specific heat is measured by DSC (" DSC200 "manufactured by Seiko Instruments Inc.).

【0030】更に、熱伝導率測定後の試料については、
前記した方法により、その酸素含有量を測定し、複合体
の酸素量を求めた。その結果、複合体の酸素量は0.7
8重量%であった。また、上記複合体から熱膨張係数測
定用試料をあらたに切り出し、室温から150℃での熱
膨張係数を測定した(セイコー電子社製「TMA30
0」)ところ、7.9ppm/Kであった。又、前記ア
ルミニウム合金塊の機械加工の際の切りくずを用いて、
アルミニウム合金中の酸素量も測定した。上記いろいろ
な条件並びに結果を表1、表2に示した。
Further, regarding the sample after the measurement of the thermal conductivity,
The oxygen content was measured by the method described above, and the oxygen content of the composite was determined. As a result, the oxygen content of the composite was 0.7
It was 8% by weight. Further, a sample for measuring thermal expansion coefficient was newly cut out from the above composite, and the thermal expansion coefficient from room temperature to 150 ° C. was measured (“TMA30” manufactured by Seiko Instruments Inc.).
0 "), however, it was 7.9 ppm / K. Also, using the chips at the time of machining of the aluminum alloy ingot,
The oxygen content in the aluminum alloy was also measured. Tables 1 and 2 show the above various conditions and results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[実施例2]炭化珪素粉末を平均粒径20
0μmのもの70重量部、平均粒径30μmのもの30
重量部とした以外は、実施例1と同じ方法でプリフォ−
ム及び複合体を作製した。この結果を表1、表2に示
す。
Example 2 Silicon Carbide Powder was Prepared with an Average Particle Size of 20
70 parts by weight of 0 μm, 30 with an average particle size of 30 μm
A preform was prepared in the same manner as in Example 1 except that the
And composites were made. The results are shown in Tables 1 and 2.

【0034】[実施例3]炭化珪素粉末を平均粒径60
μmのもの45重量部、平均粒径7μmのもの55重量
部とした以外は、実施例1と同じ方法でプリフォ−ム及
び複合体を作製した。結果を表1、表2に示す。
Example 3 Silicon Carbide Powder was Prepared with an Average Particle Size of 60
A preform and a composite were prepared in the same manner as in Example 1 except that the composition was 45 parts by weight and the average particle size was 55 parts by weight. The results are shown in Tables 1 and 2.

【0035】[実施例4]炭化珪素粉末を平均粒径90
μmのもの65重量部、平均粒径30μmのもの15重
量部及び平均粒径10μmのもの20重量部としたこ
と、成形体の焼成温度を800℃としたこと以外は、実
施例1と同じ方法でプリフォ−ム及び複合体を作製し
た。結果を表1、表2に示す。
Example 4 Silicon Carbide Powder was Prepared with an Average Particle Size of 90
The same method as in Example 1 except that 65 parts by weight of μm, 15 parts by weight of 30 μm in average particle diameter, and 20 parts by weight of 10 μm in average diameter, and the firing temperature of the molded body was 800 ° C. To form a preform and a composite. The results are shown in Tables 1 and 2.

【0036】[実施例5]炭化珪素粉末を平均粒径90
μmのもの50重量部、平均粒径60μmのもの50重
量部としたこと及びコロイダルシリカ量を3部としたこ
と以外は、実施例1と同様な方法でプリフォ−ム及び複
合体を作製した。結果を表1、表2に示す。
[Example 5] Silicon carbide powder was prepared with an average particle size of 90.
A preform and a composite were prepared in the same manner as in Example 1 except that 50 parts by weight of 50 μm, 50 parts by weight of average particle diameter of 60 μm, and the amount of colloidal silica were 3 parts. The results are shown in Tables 1 and 2.

【0037】[実施例6]炭化珪素粉末を平均粒径60
μmのもの60重量部、平均粒径7μmのもの40重量
部としたこと、コロイダルシリカ量を4重量部としたこ
と、さらに成形体の焼成温度を800℃としたこと以外
は、実施例1と同じ方法でプリフォ−ム及び複合体を作
製した。結果を表1、表2に示す。
Example 6 Silicon Carbide Powder was Prepared with an Average Particle Size of 60
Example 1 was the same as Example 1 except that the amount was 60 parts by weight for μm, 40 parts by weight for an average particle diameter of 7 μm, the amount of colloidal silica was 4 parts by weight, and the firing temperature of the molded body was 800 ° C. Preforms and composites were prepared in the same manner. The results are shown in Tables 1 and 2.

【0038】[実施例7]炭化珪素粉末を平均粒径20
0μmのもの65重量部、平均粒径30μmのもの35
重量部としたこと及び成形体の焼成温度を800℃とし
たこと以外は、実施例1と同じ方法でプリフォ−ム及び
複合体を作製した。結果を表1、表2に示す。
[Example 7] Silicon carbide powder was prepared with an average particle size of 20.
65 parts by weight of 0 μm, 35 with an average particle size of 30 μm
A preform and a composite were produced in the same manner as in Example 1 except that the amount was changed to parts by weight and the firing temperature of the molded body was set to 800 ° C. The results are shown in Tables 1 and 2.

【0039】[実施例8]アルミニウム合金をマグネシ
ウム1重量%含有アルミニウム合金とした以外は、実施
例1と同じ方法でプリフォ−ム及び複合体を作製した。
結果を表1、表2に示す。
Example 8 A preform and a composite were prepared in the same manner as in Example 1 except that the aluminum alloy was an aluminum alloy containing 1% by weight of magnesium.
The results are shown in Tables 1 and 2.

【0040】[実施例9]アルミニウム合金をマグネシ
ウム1重量%含有アルミニウム合金とした以外は、実施
例2と同様な方法でプリフォ−ム及び複合体を作製し
た。結果を表1、表2に示す。
Example 9 A preform and a composite were prepared in the same manner as in Example 2 except that the aluminum alloy was an aluminum alloy containing 1% by weight of magnesium. The results are shown in Tables 1 and 2.

【0041】[実施例10]アルミニウム合金をマグネ
シウム1重量%、珪素18重量%含有アルミニウム合金
とした以外は、実施例4と同じ方法でプリフォ−ム及び
複合体を作製した。結果を表1、表2に示す。
Example 10 A preform and a composite were prepared in the same manner as in Example 4 except that the aluminum alloy was an aluminum alloy containing 1% by weight of magnesium and 18% by weight of silicon. The results are shown in Tables 1 and 2.

【0042】[実施例11]アルミニウム合金をマグネ
シウム1重量%、珪素18重量%含有アルミニウム合金
とした以外は、実施例6と同じ方法でプリフォ−ム及び
複合体を作製した。結果を表1、表2に示す。
Example 11 A preform and a composite were produced in the same manner as in Example 6, except that the aluminum alloy was an aluminum alloy containing 1% by weight of magnesium and 18% by weight of silicon. The results are shown in Tables 1 and 2.

【0043】[実施例12]アルミニウム合金をマグネ
シウム0.5重量%含有アルミニウム合金とした以外
は、実施例3と同じ方法でプリフォ−ム及び複合体を作
製した。結果を表1、表2に示す。
Example 12 A preform and a composite were produced in the same manner as in Example 3, except that the aluminum alloy was an aluminum alloy containing 0.5% by weight of magnesium. The results are shown in Tables 1 and 2.

【0044】[実施例13]アルミニウム合金をマグネ
シウム2.5重量%含有アルミニウム合金とした以外
は、実施例5と同じ方法でプリフォ−ム及び複合体を作
製した。結果を表1、表2に示す。
Example 13 A preform and a composite were produced in the same manner as in Example 5, except that the aluminum alloy was an aluminum alloy containing 2.5% by weight of magnesium. The results are shown in Tables 1 and 2.

【0045】[実施例14]アルミニウム合金の含浸
を、プリフォ−ムより若干大きな空間を有する金型にプ
リフォ−ムを設置後、溶融アルミニウム合金を急速に注
入する、いわゆるダイカスト法で実施した以外は、実施
例3と同じ方法でプリフォ−ム及び複合体を作製した。
結果を表1、表2に示す。
Example 14 The impregnation of the aluminum alloy was carried out by a so-called die casting method in which the preform was placed in a mold having a space slightly larger than the preform, and then the molten aluminum alloy was rapidly injected. A preform and a composite were prepared in the same manner as in Example 3.
The results are shown in Tables 1 and 2.

【0046】[実施例15]実施例14と同じダイカス
ト法の採用以外は、実施例6と同じ方法でプリフォ−ム
及び複合体を作製した。結果を表1、表2に示す。
Example 15 A preform and a composite were produced in the same manner as in Example 6, except that the same die casting method as in Example 14 was employed. The results are shown in Tables 1 and 2.

【0047】[実施例16]実施例5の炭化珪素粉末及
びコロイダルシリカに対し、濃度30重量%のPVA水
溶液を10重量部添加し、十分に混合し、この混合物を
適度に乾燥した後、金型に充填し圧力1000kg/c
2でプレス成形したこと以外は、実施例5と同じ方法
でプリフォ−ム及び複合体を作製した。結果を表1、表
2に示す。
Example 16 To the silicon carbide powder and colloidal silica of Example 5, 10 parts by weight of a 30% by weight aqueous solution of PVA was added, mixed well, and the mixture was dried appropriately. Filling mold and pressure 1000kg / c
A preform and a composite were produced in the same manner as in Example 5 except that the molding was performed at m 2 . The results are shown in Tables 1 and 2.

【0048】[実施例17]実施例6の炭化珪素粉末及
びコロイダルシリカに対し、濃度30重量%のPVA水
溶液を10重量部添加し十分に混合し、この混合物を適
度に乾燥した後、金型に充填し圧力1000kg/cm
2でプレス成形したこと以外は、実施例6と同じ方法で
プリフォ−ム及び複合体を作製した。結果を表1、表2
に示す。
Example 17 To the silicon carbide powder and colloidal silica of Example 6, 10 parts by weight of an aqueous PVA solution having a concentration of 30% by weight was added and thoroughly mixed. And pressure 1000kg / cm
A preform and a composite were prepared in the same manner as in Example 6, except that the press molding was performed in Step 2. Tables 1 and 2 show the results.
Shown in

【0049】[実施例18]コロイダルシリカの代わり
に、アルミナ含有量20重量%のアルミナゾルを使用し
た以外は、実施例5と同じ方法でプリフォ−ム及び複合
体を作製した。結果を表1、表2に示す。
Example 18 A preform and a composite were prepared in the same manner as in Example 5, except that alumina sol having an alumina content of 20% by weight was used instead of colloidal silica. The results are shown in Tables 1 and 2.

【0050】[実施例19]コロイダルシリカの代わり
に、アルミナ含有量20重量%のアルミナゾルを使用し
た以外は、すべて実施例6と同じ方法でプリフォ−ム及
び複合体を作製した。結果を表1、表2に示す。
Example 19 A preform and a composite were prepared in the same manner as in Example 6 except that alumina sol having an alumina content of 20% by weight was used instead of colloidal silica. The results are shown in Tables 1 and 2.

【0051】[比較例1]炭化珪素粉末を、平均粒径6
0μmのもの35重量部、平均粒径7μmのもの65重
量部とした以外は、実施例3と同じ方法でプリフォ−ム
及び複合体を作製した。結果を表1、表2に示す。
[Comparative Example 1] Silicon carbide powder having an average particle size of 6
A preform and a composite were produced in the same manner as in Example 3 except that 35 parts by weight of 0 μm and 65 parts by weight of an average particle diameter of 7 μm were used. The results are shown in Tables 1 and 2.

【0052】[比較例2]炭化珪素粉末を、平均粒径2
00μmのもの80重量部、平均粒径30μmのもの2
0重量部とした以外は、実施例2と同じ方法でプリフォ
−ム及び複合体を作製した。結果を表1、表2に示す。
[Comparative Example 2] Silicon carbide powder having an average particle size of 2
80 parts by weight of 00 μm, 2 with an average particle size of 30 μm
A preform and a composite were prepared in the same manner as in Example 2 except that the amount was 0 parts by weight. The results are shown in Tables 1 and 2.

【0053】[比較例3]成形体の焼成温度を1050
℃とした以外は、実施例1と同じ方法でプリフォ−ム及
び複合体を作製した。結果を表1、表2に示す。
Comparative Example 3 The firing temperature of the compact was 1050
A preform and a composite were prepared in the same manner as in Example 1 except that the temperature was changed to ° C. The results are shown in Tables 1 and 2.

【0054】[比較例4]成形体の焼成温度を950℃
とした以外は、実施例3と同じ方法でプリフォ−ム及び
複合体を作製した。結果を表1、表2に示す。
[Comparative Example 4] The firing temperature of the compact was 950 ° C.
A preform and a composite were prepared in the same manner as in Example 3, except that The results are shown in Tables 1 and 2.

【0055】[比較例5]コロイダルシリカ量を15重
量部とした以外は、実施例4と同じ方法でプリフォ−ム
及び複合体を作製した。結果を表1、表2に示す。
Comparative Example 5 A preform and a composite were prepared in the same manner as in Example 4 except that the amount of colloidal silica was changed to 15 parts by weight. The results are shown in Tables 1 and 2.

【0056】[比較例6]コロイダルシリカ量を20重
量部とした以外は、実施例2と同じ方法でプリフォ−ム
及び複合体を作製した。結果を表1、表2に示す。
Comparative Example 6 A preform and a composite were produced in the same manner as in Example 2 except that the amount of colloidal silica was changed to 20 parts by weight. The results are shown in Tables 1 and 2.

【0057】[0057]

【発明の効果】本発明の炭化珪素質複合体は、200W
/mK以上の高熱伝導率を有することから、また、好ま
しい場合には、9ppm/K以下の熱膨張率を有するこ
とから、半導体搭載用回路基板の放熱部材として、特に
パワーモジュール用のヒートシンク材に好適である。
The silicon carbide composite of the present invention has a capacity of 200 W
/ MK or higher, and preferably 9 ppm / K or lower, as a heat dissipating member for a circuit board for mounting a semiconductor, particularly for a heat sink for a power module. It is suitable.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】多孔質炭化珪素成形体にアルミニウム又は
アルミニウムを主成分とする合金を含浸してなる炭化珪
素質複合体であって、200W/mK以上の熱伝導率を
有することを特徴とする炭化珪素質複合体。
1. A silicon carbide composite obtained by impregnating a porous silicon carbide compact with aluminum or an alloy containing aluminum as a main component, having a thermal conductivity of 200 W / mK or more. Silicon carbide composite.
【請求項2】酸素含有量が1.1重量%以下であること
を特徴とする請求項1記載の炭化珪素質複合体。
2. The silicon carbide composite according to claim 1, wherein the oxygen content is 1.1% by weight or less.
【請求項3】炭化珪素質複合体中の炭化珪素の占める体
積割合が50%以上であることを特徴とする請求項1又
は請求項2記載の炭化珪素質複合体。
3. The silicon carbide composite according to claim 1, wherein the volume ratio of silicon carbide in the silicon carbide composite is 50% or more.
【請求項4】室温から150℃における熱膨張係数が9
ppm/K以下であることを特徴とする請求項1、請求
項2又は請求項3記載の炭化珪素質複合体。
4. A thermal expansion coefficient at room temperature to 150 ° C. of 9
The silicon carbide composite according to claim 1, wherein the content is at most ppm / K. 5.
【請求項5】多孔質炭化珪素成形体にアルミニウム又は
アルミニウムを主成分とする合金を含浸する炭化珪素質
複合体の製造方法であって、前記多孔質炭化珪素成形体
の相対密度が50体積%以上であり、しかも酸素含有量
が1.4重量%以下であることを特徴とする炭化珪素質
複合体の製造方法。
5. A method for producing a silicon carbide composite in which a porous silicon carbide molded body is impregnated with aluminum or an alloy containing aluminum as a main component, wherein the relative density of the porous silicon carbide molded body is 50% by volume. A method for producing a silicon carbide-based composite, characterized by having an oxygen content of 1.4% by weight or less.
【請求項6】前記炭化珪素質成形体が、2種以上の異な
る粒度分布を有する複数の炭化珪素粉末を粒度配合して
原料粉末を得て、該原料粉末に、焼成して酸化珪素とな
る無機バインダ−を添加し、成形後、必要に応じて乾燥
し、しかる後に750℃〜900℃の温度範囲で焼成し
てなることを特徴とする請求項5記載の炭化珪素質複合
体の製造方法。
6. A raw material powder is obtained by mixing a plurality of silicon carbide powders having two or more different particle size distributions in the silicon carbide-based molded body to obtain a raw material powder, and the raw material powder is fired to form silicon oxide. The method for producing a silicon carbide-based composite according to claim 5, wherein an inorganic binder is added, and after molding, drying is performed as necessary, and then firing is performed at a temperature in the range of 750C to 900C. .
【請求項7】アルミニウム又はアルミニウムを主成分と
する合金が、0〜18重量%の珪素と、0.5〜2.5
重量%のマグネシウムを含有してなることを特徴とする
請求項5又は請求項6記載の炭化珪素質複合体の製造方
法。
7. An aluminum or aluminum-based alloy comprising 0 to 18% by weight of silicon and 0.5 to 2.5% by weight.
The method for producing a silicon carbide-based composite according to claim 5, comprising magnesium by weight.
JP32205598A 1998-11-12 1998-11-12 Silicon carbide based composite and method for producing the same Expired - Lifetime JP3698571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32205598A JP3698571B2 (en) 1998-11-12 1998-11-12 Silicon carbide based composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32205598A JP3698571B2 (en) 1998-11-12 1998-11-12 Silicon carbide based composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000141022A true JP2000141022A (en) 2000-05-23
JP3698571B2 JP3698571B2 (en) 2005-09-21

Family

ID=18139417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32205598A Expired - Lifetime JP3698571B2 (en) 1998-11-12 1998-11-12 Silicon carbide based composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3698571B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285259A (en) * 2001-03-26 2002-10-03 Toyota Industries Corp Heat radiation member for electronic apparatus and production method therefor
JP2004128451A (en) * 2002-07-30 2004-04-22 Toyota Industries Corp Method of manufacturing low expansive material and semiconductor device using it
JP2007299789A (en) * 2006-04-27 2007-11-15 Allied Material Corp Thermal dissipation substrate and manufacturing method thereof
JP2007314423A (en) * 2007-07-25 2007-12-06 Denki Kagaku Kogyo Kk Aluminum-ceramic composite and its producing method
WO2017022012A1 (en) * 2015-07-31 2017-02-09 電気化学工業株式会社 Aluminum-silicon-carbide composite and method of manufacturing same
WO2017051992A1 (en) * 2015-09-21 2017-03-30 한국과학기술원 Hybrid composite comprising silicon carbide tile and aluminum, and manufacturing method therefor
TWI674251B (en) * 2015-08-05 2019-10-11 日商電化股份有限公司 Aluminum-carbonized tantalum composite and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285259A (en) * 2001-03-26 2002-10-03 Toyota Industries Corp Heat radiation member for electronic apparatus and production method therefor
JP2004128451A (en) * 2002-07-30 2004-04-22 Toyota Industries Corp Method of manufacturing low expansive material and semiconductor device using it
JP2007299789A (en) * 2006-04-27 2007-11-15 Allied Material Corp Thermal dissipation substrate and manufacturing method thereof
US8092914B2 (en) 2006-04-27 2012-01-10 A.L.M.T. Corp. Heat sink substrate and production method for the same
JP2007314423A (en) * 2007-07-25 2007-12-06 Denki Kagaku Kogyo Kk Aluminum-ceramic composite and its producing method
WO2017022012A1 (en) * 2015-07-31 2017-02-09 電気化学工業株式会社 Aluminum-silicon-carbide composite and method of manufacturing same
CN107848902A (en) * 2015-07-31 2018-03-27 电化株式会社 Aluminium silicon carbide matter complex and its manufacture method
US10919811B2 (en) 2015-07-31 2021-02-16 Denka Company Limited Aluminum-silicon-carbide composite and method of manufacturing same
TWI674251B (en) * 2015-08-05 2019-10-11 日商電化股份有限公司 Aluminum-carbonized tantalum composite and manufacturing method thereof
WO2017051992A1 (en) * 2015-09-21 2017-03-30 한국과학기술원 Hybrid composite comprising silicon carbide tile and aluminum, and manufacturing method therefor

Also Published As

Publication number Publication date
JP3698571B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
CN103981392B (en) A kind of preparation method of high-volume fractional diamond/metal-base composites
US8575051B2 (en) Heat sink having a high thermal conductivity
US6123895A (en) Aluminum base member for semiconductor device containing a nitrogen rich surface and method for producing the same
US10919811B2 (en) Aluminum-silicon-carbide composite and method of manufacturing same
JP4187739B2 (en) Aluminum alloy-silicon carbide silicon nitride composite
JP3698571B2 (en) Silicon carbide based composite and method for producing the same
CN111876625B (en) AlNMg composite material and preparation method thereof
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP3847009B2 (en) Method for producing silicon carbide composite
JP4233133B2 (en) Silicon carbide composite and heat dissipation component using the same
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP3948797B2 (en) Method for producing silicon carbide composite
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP3270798B2 (en) Method for producing silicon carbide sintered body
JP3959555B2 (en) Aluminum nitride powder and method for producing degreased body thereof
JP2000192182A (en) Silicon carbide composite material and its production
JPH11116361A (en) Silicon carbide-based composite and heat radiating part using the same
JP4850357B2 (en) Method for producing high thermal conductivity material
JP4269853B2 (en) Composite material for substrate for mounting semiconductor element and method for manufacturing the same
EP4130307A1 (en) Method for producing metal matrix composite material and method for manufacturing preform
TWI674251B (en) Aluminum-carbonized tantalum composite and manufacturing method thereof
JP2006076812A (en) Aluminum-ceramic composite and method for producing the same
JP4247960B2 (en) Method for producing aluminum-ceramic composite
JP2003277875A (en) Tungsten carbide/copper composite material
JPH11171673A (en) Composite and heat sink using the same, and their production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

EXPY Cancellation because of completion of term