JP3959555B2 - Aluminum nitride powder and method for producing degreased body thereof - Google Patents

Aluminum nitride powder and method for producing degreased body thereof Download PDF

Info

Publication number
JP3959555B2
JP3959555B2 JP02469997A JP2469997A JP3959555B2 JP 3959555 B2 JP3959555 B2 JP 3959555B2 JP 02469997 A JP02469997 A JP 02469997A JP 2469997 A JP2469997 A JP 2469997A JP 3959555 B2 JP3959555 B2 JP 3959555B2
Authority
JP
Japan
Prior art keywords
aln
powder
aluminum nitride
free
degreasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02469997A
Other languages
Japanese (ja)
Other versions
JPH10218665A (en
Inventor
太郎 辰巳
利隆 桜井
裕二 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP02469997A priority Critical patent/JP3959555B2/en
Publication of JPH10218665A publication Critical patent/JPH10218665A/en
Application granted granted Critical
Publication of JP3959555B2 publication Critical patent/JP3959555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、窒化アルミニウム質粉末及びその脱脂体の製造方法に関する。
【0002】
【従来技術】
窒化アルミニウム(以下、特にことわりのない限り「AlN」という)は、高熱伝導性、高絶縁性等の特性を有することから、その焼結体は半導体関連の放熱部品(特に、IC基板、半導体パッケージ等)として用いられている。
【0003】
AlN焼結体は、一般に、AlN粉末にバインダー等を加えて成形し、脱脂した後、焼結することによって製造されている。具体的には、脱脂炉で300〜800℃で脱バインダーを主目的として脱脂が行われ、引き続いて焼結炉において1600〜2000℃で焼結が行われる。この場合、脱脂は、得られる焼結体の特性に大きな影響を与えるものであるため、焼結体を製造する上において重要な工程である。
【0004】
【発明が解決しようとする課題】
しかしながら、従来からの脱脂方法では、脱脂中又は脱脂直後の成形体の強度が非常に低くなり、通常は手で持つと容易に崩壊する程度になってしまう。このため、窒化ホウ素等からなるセッター(保持板)の上に置いて脱脂を行い、セッターごと焼結炉に移送しなければならない。また、少しの振動でも与えると脱脂体が崩壊してしまうこともあることから、強度の低下は収率を低下させる大きな要因の一つにもなっている。
【0005】
従って、本発明は、比較的強度に優れたAlN脱脂体を提供することを主な目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記従来技術の問題点に鑑み、鋭意研究を重ねた結果、特定の組成をもつ窒化アルミニウム質粉末を用いて一定条件下で脱脂を行う場合には、AlN脱脂体の強度低下を防止乃至抑制できることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、以下の窒化アルミニウム質粉末及びその脱脂体の製造方法に係るものである。
【0008】
1.窒素と結合していないアルミニウム系成分を5000ppmを超え、かつ、30000ppm未満の範囲で含有することを特徴とする窒化アルミニウム質粉末。
【0009】
2.上記1項記載の窒化アルミニウム質粉末に有機バインダー及び焼結助剤を配合し、成形した後、アルミニウム系成分の融点以上の温度で加熱することを特徴とする窒化アルミニウム質脱脂体の製造方法。
【0010】
【発明の実施の形態】
以下、本発明をその実施の形態とともに説明する。
【0011】
本発明の窒化アルミニウム質粉末は、窒素と結合していないアルミニウム系成分(以下「フリーAl」という)を5000ppmを超え、かつ、30000ppm未満の範囲で含有することを特徴とする。本発明において、フリーAlは、例えばAlNのように窒素と結合しているアルミニウム以外のものをいい、アルミニウムはもとより、アルミニウム合金も含む。
【0012】
フリーAlの含有量は、用いるフリーAlの種類等によって適宜変更できるが、通常は5000ppmを超え、かつ、30000ppm未満の範囲、好ましくは6000〜29000ppm程度、より好ましくは6000〜15000ppmである。5000ppm以下の場合には、脱脂体の強度改善効果がほとんど認められない。一方、30000ppm以上の場合には、フリーAlどうしの溶着が多くなりすぎ、脱脂効率が低下するおそれがある。すなわち、融着した金属Alによってバインダー成分の燃焼・揮散が妨げられるおそれがある。脱脂が不十分であると、残留した炭素或いは炭化物が焼結体の反りを生じさせたり、色ムラ等の外観不良を発生させる。
【0013】
本発明の窒化アルミニウム質粉末(以下「AlN質粉末」という)では、その粉末中にフリーAlが含まれる態様として、例えば▲1▼窒化アルミニウムからなる粒子(AlN粒子)とフリーAlからなる粒子(フリーAl粒子)で構成される場合、▲2▼窒化アルミニウムとフリーAlからなる粒子(AlN/フリーAl粒子)から構成される場合、▲3▼フリーAl粒子とAlN/フリーAl粒子から構成される場合、▲4▼AlN粒子とAlN/フリーAl粒子から構成される場合、▲5▼AlN粒子、フリーAl粒子及びAlN/フリーAl粒子から構成される場合等がある。この中でも、上記▲4▼の含有態様が好ましい。
【0014】
上記AlN粒子は、公知のもので良く、市販品もそのまま使用することができる。また、その製造方法も特に限定されず、どのような製法によって得られたものであっても良い。例えば、金属アルミニウム粉末を窒素ガス雰囲気中で加熱する直接窒化法、アルミナとカーボンの混合物を窒化性雰囲気中で加熱する還元窒化法等によって得られたものをいずれも使用することができる。なお、AlN粒子中には、本発明の効果を損なわない範囲において、他の成分が含まれていても良い。
【0015】
上記AlN粒子(粉末)における平均粒径は、最終製品の用途等に応じて適宜定めることができ、通常10μm以下、好ましくは5μm以下とすれば良い。
【0016】
上記フリーAl粒子(粉末)における平均粒径は、通常100μm以下、好ましくは75μm以下とする。平均粒径が100μmを超えると、フリーAlのAlN中への分散が悪くなるとともに、焼結後においてフリーAlの残存によるシミが発生する場合がある。なお、平均粒径の下限は、特に限定されないが、極端に細かすぎると比表面積が大きくなり、その場合には含有酸素量の増加、過度の凝集等が起こるので、10μm未満のフリーAlはできるだけ少なくする方が好ましい。
【0017】
上記フリーAl粒子におけるアルミニウム純度は、フリーAlの含有量が上記範囲内である限り最終製品の用途等により適宜変更できる。但し、純アルミニウムを使用する場合はフリーAl粉末中99%以上、特に99.5%以上とすることが好ましい。なお、フリーAl粒子が純アルミニウムであっても、本発明の効果を損なわない範囲で不純物(Fe、Si等)を含有していても良い。本発明における上記アルミニウム純度は、金属成分元素におけるアルミニウムの割合を示し、酸素等のガス成分元素については計算に入れない。
【0018】
本発明では、上記フリーAlとしてアルミニウム合金を用いることもできる。その合金の種類としては、特に制限されず、例えばAl−Si系合金、Al−Zn系合金、Al−Cu系合金、Al−Mg系合金、Al−Ni系合金等をいずれも使用できる。但し、合金成分が多くなると、それがAlN焼結体中に対して不純物となる場合があるので、多くても共晶組成あたりで使用するのが望ましい。
【0019】
上記AlN/フリーAl粒子は、公知のAlN製法を利用することによって得ることができる。例えば、前記の直接窒化法でのAlNの製法において、反応雰囲気温度を下げたり、或いは反応雰囲気中の窒素ガス分圧を下げる等の方法によりAl成分を残留させることによって、AlNとフリーAlとが混在する上記粒子を得ることができる。一方、還元窒化法では、アルミナとカーボンの混合物(原料粉末)の中にさらに金属アルミニウム粉末を加え、上記と同様に反応雰囲気温度を下げたり、反応雰囲気中の窒素ガス分圧を下げることにより上記粒子を調製することができる。
【0020】
上記AlN/フリーAl粒子(粉末)における平均粒径は、最終製品の用途等により適宜変更できるが、通常10μm以下、好ましくは5μm以下とする。
【0021】
本発明AlN質粉末における平均粒径は、最終製品の用途等に応じて適宜定めることができるが、通常は0.6〜10μm程度、好ましくは1〜5μmとすれば良い。平均粒径が10μmを超える場合には、焼結性が低くなり、焼結体の密度、熱伝導率等が低下する。0.6μm未満では、比表面積の増大に伴い酸素量が増加し、焼結体の熱伝導性が低下するおそれがある。
【0022】
AlN質粉末中の含有酸素量は、最終製品の用途等により適宜設定すれば良いが、通常は0.2〜2重量%程度、好ましくは0.4〜1.5重量%とすれば良い。
【0023】
本発明AlN質粉末における一軸成形密度は、通常1.7〜2.3g/cm3程度、好ましくは1.8〜2.2g/cm3である。1.7g/cm3未満の場合には、脱脂体の密度も低くなる傾向にある。脱脂体の密度が低くなると、AlN質粉末における粒子間隔が大きくなりすぎ、粒子間を固着・保持する本発明の効果が得られなくなる。一方、2.3g/cm3を超える場合には、脱脂体の密度が大きくなりすぎ、十分な間隙がなくなるので、脱脂効率が悪くなり、炭素成分が焼結体に残存し、反り、変色等が生じて外観を損なうおそれがある。
【0024】
本発明における一軸成形密度は、次のようにして測定する(実施例も同じ)。すなわち、20mmφの金型にAlN質粉末(焼結助剤、バインダー等は未添加)2gを充填し、49MPaの圧力でプレスし、成形体を取り出した後、寸法及び重量を測定することにより密度を求める。なお、金型内面には必要に応じて測定精度に影響を与えない範囲内でステアリン酸等の潤滑剤を塗布しても良い。
【0025】
本発明方法は、上記の窒化アルミニウム質粉末に有機バインダー及び焼結助剤を配合し、成形した後、アルミニウム系成分の融点以上の温度で加熱することを特徴とする。
【0026】
有機バインダーとしては、アクリル樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、エチレン−酢酸ビニル共重合体等が使用できる。この中でもアクリル樹脂が好ましい。有機バインダーの含有量は、AlN質粉末の粒度分布等にもよるが、通常AlN質粉末100重量部に対して固形分換算で1〜25重量部程度、好ましくは2〜15重量部とすれば良い。
【0027】
焼結助剤としては、例えばY23、CaO、YF3、CaF2のほか、ランタノイド元素の酸化物等を使用することができる。この中でも特にY23が好ましい。焼結助剤の含有量は、AlN質粉末の組成等によるが、AlN質粉末100重量部に対して固形分換算で0.5〜7重量部程度、好ましくは1〜5重量部程度とすれば良い。
【0028】
また、本発明では、上記の有機バインダー及び焼結助剤のほか、本発明の効果を損なわない範囲内で、必要に応じて有機溶剤(トルエン、イソプロピルアルコール、メチルエチルケトン、エタノール、酢酸エチル、キシレン、トリクロロエチレン等)、その他解膠剤として界面活性剤等の各種の添加剤を配合することができる。
【0029】
次に、本発明AlN質粉末を用いて、成形した後、脱脂及び焼結を行う。成形方法は、公知の方法に従えば良く、例えばドクターブレード法でシート状に成形したり、或いはプレス成形法により所定の形状に成形しても良い。
【0030】
成形体の脱脂は、AlN質粉末中のアルミニウム系成分の融点以上の温度で加熱することにより行う。融点より低い温度ではAlの溶解が起こらず、AlN粒子間を固着する効果が得られない。脱脂温度の上限は、脱脂体の反り、急激な酸化等が起こらない限り特に制限されないが、通常は1200℃以下、好ましくは1000℃以下とすれば良い。
【0031】
脱脂(炉)の雰囲気は、AlN質粉末の組成、最終製品の用途等に応じて適宜変更することができる。例えば、脱脂体が酸化されても良い場合には大気中、ドライエアー中等で行えば良い。一方、酸化が問題となる場合には、例えば不活性雰囲気中(アルゴン、ヘリウム等)で行えば良い。
【0032】
得られた脱脂体は、引き続いて焼結を行うことができる。焼結は、その雰囲気を窒素ガス含有雰囲気とする以外は、公知の焼結方法によれば良く、例えば窒素ガス含有雰囲気中1600〜2000℃程度の範囲で焼結すれば良い。1600℃未満の場合は緻密化が起こらず、密度、強度、熱伝導率等のすべてが低くなり、所望の性能を得ることができない。一方、2000℃を超えると反り、変色等の外観不良、一部のAlNの昇華等が起こる。
【0033】
窒素ガス雰囲気の圧力は、通常は1気圧程度で行えば良いが、焼結炉の種類、構造等によって適宜減圧又は加圧しても良い。窒素ガスは、通常は工業用の純窒素ガス(純度4N)を用いることができる。また、本発明では、窒素ガスのほかに、Ar等の不活性ガス成分を含んでいてもよい。この雰囲気下における焼結により、脱脂体中に存在するフリーAlが窒化反応によりAlNとなる。但し、本発明の効果を損なわない限りにおいてはフリーAlが焼結体中に残存していても良い。
【0034】
【発明の効果】
本発明の窒化アルミニウム質粉末は、その成形体の脱脂時において、一定量で含有するフリーAlがその融点以上の温度でAlN粉末の表面を濡らし、AlN粒子どうしを粘結する作用を有し、成形体の形状を保持するのに十分な作用効果を発揮する。
【0035】
脱脂体中のフリーAlは、窒素ガスを含む雰囲気中で焼結することによって、窒化反応が起こり、最終的にはAlNに変化する。このため、AlNの特徴である高密度、高熱伝導性等を十分発揮できるAlN焼結体を得ることができる。また、脱脂体の強度向上による効果により、脱脂中又は脱脂後における破壊・変形が抑制乃至防止できる結果、焼結体の収率も向上できる。さらに、複雑な形状のAlN系焼結体を製造することができる。
【0036】
このような本発明AlN質粉末は、IC基板、半導体パッケージ等の半導体用材料として有用である。また、脱脂体の強度、収率等の向上により、生産効率の向上にも寄与することができる。
【0037】
【実施例】
次に、実施例及び比較例を示し、本発明の特徴とするところをより詳細に説明する。但し、本発明は、これらの実施例に限定されるものではない。なお、以下の実施例及び比較例における各物性の測定は次の方法により行った。
【0038】
1)AlN質粉末中のフリーAlの定量
試料1〜2gをNaOH(20%)水溶液が入った容器に入れて分解を行い、発生するH2ガス量からフリーAl量を算出した。定量下限は100ppmである。以下、本測定で定量下限値以下であった試料のフリーAl量は0重量%とした。
【0039】
2)AlN質粉末中の含有酸素量
不活性ガス中溶解赤外線吸収法(「EMGA−2800」堀場製作所(株)製)により測定した。
【0040】
3)AlN質粉末の粒度
レーザー回折法(「LA−500」堀場製作所(株)製)により測定した。
【0041】
4)成形体の密度測定
寸法及び重量測定により成形体密度を測定した。
【0042】
5)焼結体の密度
アルキメデス法により測定した。
【0043】
6)焼結体の熱伝導率
レーザ・フラッシュ法(熱定数測定装置「LF/TCM−FA8510B」理学電気(株)製)により測定した。
【0044】
7)収率
各実施例及び比較例と同条件で作製したグリーンシートから、50mm×50mmの寸法で切り抜いた成形体を100枚切り取り、各実施例等に示す条件にて脱脂・焼結を行い、焼結体に割れ、亀裂等、或いは使用に耐えない反り、焼きムラ等が生じたものを不良品とし、それ以外の良好なものの割合を百分率(%)により示した。
【0045】
実施例1〜3
フリーAlがAlN質粉末中に表1に示す所定量存在するようにAlN製造時に窒素分圧を調整したほかは、公知の直接窒化法に従って粉末を調製した。このときのAlN質粉末の平均粒径は2μm、含有酸素量は0.9〜1.1重量%であった。
【0046】
AlN質粉末100重量部に対し、焼結助剤としてY235重量部及び有機系バインダーとしてアクリル樹脂(「G−27」互応化学工業(株)製)26重量部(固形分換算で13重量部)を添加し、さらに有機溶剤としてトルエン32重量部を添加混合した。得られた混合物を脱泡機により脱泡し、粘度調整を行った後、ドクターブレード法によりシート成形を行った。
【0047】
上記シートから50mm×50mmの寸法で切り抜いた後、BNセッター(保持板)に載せ、大気中700℃で30分間脱脂を行った。脱脂体をBNセッターに載せたまま、焼結炉に移送し、窒素ガス雰囲気中1850℃で3時間の常圧焼結を行った。粉体特性ならびに焼結体の物性及び収率を表1に示す。
【0048】
参考例1
AlN粉末(平均粒径2μm、含有酸素量1重量%)に、金属Al粉末(平均粒径40μm)を15000ppm添加混合してAlN質粉末を得た。この粉末を用いて、実施例1と同様にして脱脂、焼結した。得られた焼結体について実施例1と同様にして評価を行った。その結果を表1に示す。
【0049】
参考例2
AlN粉末(平均粒径2μm、含有酸素量1重量%)に、金属Al粉末(平均粒径90μm)を15000ppm添加混合してAlN質粉末を得た。この粉末を用いて、実施例1と同様にして脱脂、焼結した。得られた焼結体について実施例1と同様にして評価を行った。その結果を表1に示す。
【0050】
実施例6
AlN質粉末中にフリーAlが14000ppm残存するように、AlN製造時に窒素分圧を調整したほかは、公知の直接窒化法に従って粉末を調製した。次いで、AlN質粉末の平均粒径が4.5μmになるように粉砕した。この粉末を用いて、実施例1と同様にして脱脂、焼結した。得られた焼結体について実施例1と同様にして評価を行った。その結果を表1に示す。
【0051】
実施例7
AlN質粉末中にフリーAlが14000ppm残存するように、AlN製造時に窒素分圧を調整したほかは、公知の直接窒化法に従って粉末を調製した。次いで、AlN質粉末の平均粒径が1.7μmになるように粉砕した。この粉末の一軸成形密度は1.82g/cm3であった。この粉末を用いて、実施例1と同様にして脱脂、焼結した。得られた焼結体について実施例1と同様にして評価を行った。その結果を表1に示す。
【0052】
実施例8
AlN質粉末中にフリーAlが13000ppm残存するように、AlN製造時に窒素分圧を調整したほかは、公知の直接窒化法に従って粉末を調製した。次いで、AlN質粉末の平均粒径が2.8μmになるように粉砕した。この粉末の一軸成形密度は2.15g/cm3であった。この粉末を用いて、実施例1と同様にして脱脂、焼結した。得られた焼結体について実施例1と同様にして評価を行った。その結果を表1に示す。
【0053】
参考例3
AlN粉末(平均粒径2μm、含有酸素量1重量%)に、Al−12重量%Si合金粉末(平均粒径50μm)を17000ppm添加混合してAlN質粉末を得た。この粉末を用いて、脱脂温度を600℃とした以外は、実施例1と同様にして脱脂、焼結を行った。得られた焼結体につき実施例1と同様にして評価を行った。その結果を表1に示す。
【0054】
参考例4
AlN粉末(平均粒径2μm、含有酸素量1重量%)に、Al−6重量%Ni合金粉末(平均粒径50μm)を16000ppm添加混合してAlN質粉末を得た。この粉末を用い、脱脂温度を650℃とした以外は実施例1と同様にして脱脂、焼結を行った。得られた焼結体につき実施例1と同様にして評価を行った。その結果を表1に示す。
【0055】
比較例1
AlN製造時にフリーAlが残存しないような条件とした以外は、実施例1と同様にしてAlN粉末を製造した。次に、AlN粉末の平均粒径が2.0μmになるように粉砕した。この粉末を用いて、実施例1と同様にして脱脂、焼結した。得られた焼結体について実施例1と同様にして評価を行った。その結果を表1に示す。
【0056】
比較例2
AlN質粉末中にフリーAlが35000ppm残存するようにした以外は、実施例1と同様にしてAlN粉末を製造した。次いで、AlN粉末の平均粒径が2.0μmになるように粉砕した。この粉末を用いて、実施例1と同様にして脱脂、焼結した。得られた焼結体について実施例1と同様にして評価を行った。その結果を表1に示す。
【0057】
【表1】
【0058】
以上の結果より、本発明の窒化アルミニウム質粉末は、その脱脂体において優れた強度等を発揮できることがわかる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum nitride powder and a method for producing a degreased body thereof.
[0002]
[Prior art]
Since aluminum nitride (hereinafter referred to as “AlN” unless otherwise specified) has characteristics such as high thermal conductivity and high insulation, its sintered body is a semiconductor-related heat dissipation component (in particular, an IC substrate, a semiconductor package). Etc.).
[0003]
In general, an AlN sintered body is manufactured by adding a binder or the like to an AlN powder, molding, degreasing, and then sintering. Specifically, degreasing is performed in a degreasing furnace at 300 to 800 ° C. mainly for debinding, and subsequently, sintering is performed in a sintering furnace at 1600 to 2000 ° C. In this case, degreasing is an important process in manufacturing a sintered body because it greatly affects the properties of the obtained sintered body.
[0004]
[Problems to be solved by the invention]
However, in the conventional degreasing method, the strength of the molded body during degreasing or immediately after degreasing becomes very low, and usually it is easily disintegrated when held by hand. For this reason, degreasing should be performed on a setter (holding plate) made of boron nitride or the like, and the setter must be transferred to a sintering furnace. Moreover, since a degreased body may collapse when a slight vibration is applied, the decrease in strength is one of the major factors that decrease the yield.
[0005]
Therefore, the main object of the present invention is to provide an AlN degreased body having relatively high strength.
[0006]
[Means for Solving the Problems]
As a result of intensive studies in view of the above-mentioned problems of the prior art, the present inventor reduced the strength of the AlN degreased body when degreasing under certain conditions using an aluminum nitride powder having a specific composition. As a result, the present invention has been completed.
[0007]
That is, the present invention relates to the following aluminum nitride powder and a method for producing a degreased body thereof.
[0008]
1. An aluminum nitride-based powder containing an aluminum-based component not bonded to nitrogen in a range of more than 5000 ppm and less than 30000 ppm.
[0009]
2. A method for producing an aluminum nitride-based degreased body, comprising blending and molding an organic binder and a sintering aid in the aluminum nitride powder described in the above item 1, and then heating at a temperature equal to or higher than the melting point of the aluminum-based component.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described together with embodiments thereof.
[0011]
The aluminum nitride powder of the present invention is characterized by containing an aluminum-based component not bonded to nitrogen (hereinafter referred to as “free Al”) in a range of more than 5000 ppm and less than 30000 ppm. In the present invention, free Al refers to a material other than aluminum bonded to nitrogen, such as AlN, and includes aluminum alloys as well as aluminum.
[0012]
The content of free Al can be appropriately changed depending on the type of free Al to be used and the like, but it is usually more than 5000 ppm and less than 30000 ppm, preferably about 6000-29000 ppm, more preferably 6000-15000 ppm. In the case of 5000 ppm or less, the strength improving effect of the defatted body is hardly observed. On the other hand, in the case of 30000 ppm or more, there is a possibility that the welding of the free Al becomes too much and the degreasing efficiency may be lowered. That is, there is a possibility that combustion and volatilization of the binder component may be hindered by the fused metal Al. If the degreasing is insufficient, the remaining carbon or carbide causes warping of the sintered body, or appearance defects such as color unevenness.
[0013]
In the aluminum nitride powder of the present invention (hereinafter referred to as “AlN powder”), for example, (1) particles made of aluminum nitride (AlN particles) and particles made of free Al (1) (2) When composed of aluminum nitride and free Al particles (AlN / free Al particles), (3) When composed of free Al particles and AlN / free Al particles In some cases, {circle around (4)} is composed of AlN particles and AlN / free Al particles, and {circle around (5)} is composed of AlN particles, free Al particles, and AlN / free Al particles. Among these, the content mode of (4) is preferable.
[0014]
The AlN particles may be known ones, and commercially available products can be used as they are. Moreover, the manufacturing method is not specifically limited, either, The manufacturing method may be obtained. For example, any of those obtained by a direct nitriding method in which metal aluminum powder is heated in a nitrogen gas atmosphere, a reduction nitriding method in which a mixture of alumina and carbon is heated in a nitriding atmosphere, or the like can be used. The AlN particles may contain other components as long as the effects of the present invention are not impaired.
[0015]
The average particle diameter of the AlN particles (powder) can be appropriately determined according to the use of the final product, and is usually 10 μm or less, preferably 5 μm or less.
[0016]
The average particle diameter of the free Al particles (powder) is usually 100 μm or less, preferably 75 μm or less. When the average particle diameter exceeds 100 μm, dispersion of free Al in AlN becomes worse, and spots due to remaining free Al may occur after sintering. The lower limit of the average particle diameter is not particularly limited, but if it is too fine, the specific surface area becomes large. In this case, the amount of oxygen contained, excessive aggregation, etc. occur, so free Al less than 10 μm can be as much as possible. Less is preferable.
[0017]
The aluminum purity in the free Al particles can be appropriately changed depending on the use of the final product as long as the free Al content is within the above range. However, when pure aluminum is used, it is preferably 99% or more, particularly 99.5% or more in the free Al powder. In addition, even if the free Al particles are pure aluminum, impurities (Fe, Si, etc.) may be contained as long as the effects of the present invention are not impaired. The said aluminum purity in this invention shows the ratio of the aluminum in a metal component element, and cannot take into account about gas component elements, such as oxygen.
[0018]
In the present invention, an aluminum alloy can also be used as the free Al. The type of the alloy is not particularly limited, and for example, any of Al—Si alloy, Al—Zn alloy, Al—Cu alloy, Al—Mg alloy, Al—Ni alloy, and the like can be used. However, if the alloy component increases, it may become an impurity in the AlN sintered body, so it is desirable to use it at most per eutectic composition.
[0019]
The AlN / free Al particles can be obtained by using a known AlN manufacturing method. For example, in the above-described direct nitriding method for producing AlN, AlN and free Al can be obtained by leaving the Al component by a method such as lowering the reaction atmosphere temperature or lowering the nitrogen gas partial pressure in the reaction atmosphere. The said particle | grains mixed can be obtained. On the other hand, in the reduction nitriding method, metallic aluminum powder is further added to a mixture of alumina and carbon (raw material powder), and the reaction atmosphere temperature is lowered or the nitrogen gas partial pressure in the reaction atmosphere is lowered as described above. Particles can be prepared.
[0020]
The average particle diameter of the AlN / free Al particles (powder) can be appropriately changed depending on the use of the final product, but is usually 10 μm or less, preferably 5 μm or less.
[0021]
The average particle diameter in the AlN powder of the present invention can be appropriately determined according to the use of the final product, but is usually about 0.6 to 10 μm, preferably 1 to 5 μm. When the average particle diameter exceeds 10 μm, the sinterability is lowered, and the density and thermal conductivity of the sintered body are lowered. If it is less than 0.6 μm, the amount of oxygen increases as the specific surface area increases, and the thermal conductivity of the sintered body may decrease.
[0022]
The oxygen content in the AlN powder may be appropriately set depending on the use of the final product, but is usually about 0.2 to 2% by weight, preferably 0.4 to 1.5% by weight.
[0023]
The uniaxial molding density in the AlN powder of the present invention is usually about 1.7 to 2.3 g / cm 3 , preferably 1.8 to 2.2 g / cm 3 . When it is less than 1.7 g / cm 3 , the density of the defatted body tends to be low. When the density of the defatted body is lowered, the particle interval in the AlN powder becomes too large, and the effect of the present invention for fixing and holding the particles cannot be obtained. On the other hand, if it exceeds 2.3 g / cm 3 , the density of the degreased body becomes too large and there is no sufficient gap, so that the degreasing efficiency is deteriorated, the carbon component remains in the sintered body, warpage, discoloration, etc. May occur and damage the appearance.
[0024]
The uniaxial molding density in the present invention is measured as follows (the same applies to the examples). That is, a 20 mmφ mold was filled with 2 g of AlN powder (with no sintering aid or binder added), pressed at a pressure of 49 MPa, the molded body was taken out, and the size and weight were measured to measure the density. Ask for. In addition, you may apply | coat lubricants, such as a stearic acid, to the inner surface of a metal mold | die within the range which does not affect a measurement precision as needed.
[0025]
The method of the present invention is characterized in that an organic binder and a sintering aid are blended into the above-mentioned aluminum nitride powder and molded, and then heated at a temperature equal to or higher than the melting point of the aluminum-based component.
[0026]
As the organic binder, acrylic resin, polypropylene resin, polystyrene resin, ethylene-vinyl acetate copolymer and the like can be used. Among these, an acrylic resin is preferable. The content of the organic binder depends on the particle size distribution of the AlN powder, but is usually about 1 to 25 parts by weight, preferably 2 to 15 parts by weight in terms of solid content with respect to 100 parts by weight of the AlN powder. good.
[0027]
As the sintering aid, for example, Y 2 O 3 , CaO, YF 3 , CaF 2 , oxides of lanthanoid elements, and the like can be used. Among these, Y 2 O 3 is particularly preferable. The content of the sintering aid depends on the composition of the AlN powder, but is about 0.5 to 7 parts by weight, preferably about 1 to 5 parts by weight in terms of solid content with respect to 100 parts by weight of the AlN powder. It ’s fine.
[0028]
Further, in the present invention, in addition to the organic binder and the sintering aid described above, an organic solvent (toluene, isopropyl alcohol, methyl ethyl ketone, ethanol, ethyl acetate, xylene, Trichloroethylene etc.) and other additives such as surfactants can be added as peptizers.
[0029]
Next, after forming using the AlN powder of the present invention, degreasing and sintering are performed. The molding method may be a known method, for example, it may be molded into a sheet by a doctor blade method, or may be molded into a predetermined shape by a press molding method.
[0030]
Degreasing of the molded body is performed by heating at a temperature equal to or higher than the melting point of the aluminum-based component in the AlN powder. At a temperature lower than the melting point, dissolution of Al does not occur and the effect of fixing the AlN particles cannot be obtained. The upper limit of the degreasing temperature is not particularly limited as long as warping of the degreased body, rapid oxidation, etc. does not occur, but it is usually 1200 ° C. or lower, preferably 1000 ° C. or lower.
[0031]
The atmosphere of the degreasing (furnace) can be appropriately changed according to the composition of the AlN powder, the use of the final product, and the like. For example, when the degreased body may be oxidized, it may be performed in the air, dry air, or the like. On the other hand, when oxidation becomes a problem, it may be performed, for example, in an inert atmosphere (argon, helium, etc.).
[0032]
The obtained degreased body can be subsequently sintered. Sintering may be performed by a known sintering method except that the atmosphere is a nitrogen gas-containing atmosphere. For example, the sintering may be performed in a range of about 1600 to 2000 ° C. in a nitrogen gas-containing atmosphere. When the temperature is less than 1600 ° C., densification does not occur, and the density, strength, thermal conductivity, and the like all decrease, and desired performance cannot be obtained. On the other hand, when the temperature exceeds 2000 ° C., warping, appearance defects such as discoloration, sublimation of some AlN, and the like occur.
[0033]
The pressure in the nitrogen gas atmosphere is usually about 1 atm. However, the pressure may be appropriately reduced or increased depending on the type and structure of the sintering furnace. As the nitrogen gas, industrially pure nitrogen gas (purity 4N) can be usually used. In the present invention, in addition to nitrogen gas, an inert gas component such as Ar may be included. By sintering in this atmosphere, free Al present in the degreased body becomes AlN by nitriding reaction. However, free Al may remain in the sintered body as long as the effects of the present invention are not impaired.
[0034]
【The invention's effect】
The aluminum nitride powder of the present invention has the action of free Al contained in a certain amount at the time of degreasing the molded body, wets the surface of the AlN powder at a temperature equal to or higher than its melting point, and binds AlN particles together. Demonstrate sufficient effect to maintain the shape of the compact.
[0035]
When free Al in the degreased body is sintered in an atmosphere containing nitrogen gas, a nitriding reaction occurs, and finally it changes to AlN. For this reason, the AlN sintered body which can fully exhibit the high density, high thermal conductivity, etc. which are the characteristics of AlN can be obtained. In addition, the effect of improving the strength of the degreased body can suppress or prevent breakage / deformation during or after degreasing, so that the yield of the sintered body can also be improved. Furthermore, an AlN-based sintered body having a complicated shape can be manufactured.
[0036]
Such an AlN powder of the present invention is useful as a semiconductor material such as an IC substrate and a semiconductor package. Moreover, it can contribute to the improvement of production efficiency by improvement of the strength, yield, etc. of the defatted body.
[0037]
【Example】
Next, examples and comparative examples will be shown, and the features of the present invention will be described in more detail. However, the present invention is not limited to these examples. In addition, the measurement of each physical property in the following examples and comparative examples was performed by the following method.
[0038]
1) Quantitative sample of free Al in AlN powder 1 to 2 g was put into a container containing NaOH (20%) aqueous solution and decomposed, and the amount of free Al was calculated from the amount of H 2 gas generated. The lower limit of quantification is 100 ppm. Hereinafter, the amount of free Al in the sample that was not more than the lower limit of quantification in this measurement was 0% by weight.
[0039]
2) The oxygen content in the AlN powder was measured by an infrared absorption method dissolved in an inert gas (“EMGA-2800”, manufactured by Horiba, Ltd.).
[0040]
3) It measured by the particle size laser diffraction method ("LA-500" by Horiba Ltd.) of AlN-type powder.
[0041]
4) Density measurement of the molded body The molded body density was measured by measuring dimensions and weight.
[0042]
5) The density of the sintered body was measured by the Archimedes method.
[0043]
6) Thermal conductivity of the sintered body was measured by a laser flash method (thermal constant measuring device “LF / TCM-FA8510B”, manufactured by Rigaku Corporation).
[0044]
7) Yield 100 green bodies cut out in a size of 50 mm × 50 mm were cut out from the green sheets produced under the same conditions as in each example and comparative example, and degreased and sintered under the conditions shown in each example. The sintered body was cracked, cracked, etc., or warped or ununiformly baked, resulting in defective products, and the percentage of other good products was shown in percentage (%).
[0045]
Examples 1-3
A powder was prepared according to a known direct nitriding method except that the nitrogen partial pressure was adjusted during the production of AlN so that free Al was present in the AlN powder in a predetermined amount as shown in Table 1. The average particle size of the AlN powder at this time was 2 μm, and the oxygen content was 0.9 to 1.1% by weight.
[0046]
For 100 parts by weight of the AlN powder, 5 parts by weight of Y 2 O 3 as a sintering aid and 26 parts by weight of an acrylic resin (“G-27” manufactured by Kyodo Chemical Industry Co., Ltd.) as an organic binder (in terms of solid content) 13 parts by weight) and 32 parts by weight of toluene as an organic solvent were added and mixed. The obtained mixture was defoamed with a defoamer and the viscosity was adjusted, and then the sheet was formed by a doctor blade method.
[0047]
After cutting out from the above sheet with a size of 50 mm × 50 mm, it was placed on a BN setter (holding plate) and degreased at 700 ° C. for 30 minutes in the atmosphere. With the degreased body placed on the BN setter, it was transferred to a sintering furnace and subjected to atmospheric pressure sintering at 1850 ° C. for 3 hours in a nitrogen gas atmosphere. Table 1 shows the powder characteristics and the physical properties and yield of the sintered body.
[0048]
Reference example 1
15,000 ppm of metallic Al powder (average particle size 40 μm) was added to and mixed with AlN powder (average particle size 2 μm, oxygen content 1 wt%) to obtain an AlN powder. Using this powder, degreasing and sintering were performed in the same manner as in Example 1. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0049]
Reference example 2
15,000 ppm of metallic Al powder (average particle size 90 μm) was added to and mixed with AlN powder (average particle size 2 μm, oxygen content 1 wt%) to obtain an AlN powder. Using this powder, degreasing and sintering were performed in the same manner as in Example 1. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0050]
Example 6
A powder was prepared according to a known direct nitriding method except that the nitrogen partial pressure was adjusted during the production of AlN so that 14,000 ppm of free Al remained in the AlN powder. Subsequently, it grind | pulverized so that the average particle diameter of AlN quality powder might be set to 4.5 micrometers. Using this powder, degreasing and sintering were performed in the same manner as in Example 1. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0051]
Example 7
A powder was prepared according to a known direct nitriding method except that the nitrogen partial pressure was adjusted during the production of AlN so that 14,000 ppm of free Al remained in the AlN powder. Subsequently, it grind | pulverized so that the average particle diameter of AlN-type powder might be set to 1.7 micrometers. The uniaxial molding density of this powder was 1.82 g / cm 3 . Using this powder, degreasing and sintering were performed in the same manner as in Example 1. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0052]
Example 8
A powder was prepared according to a known direct nitriding method except that the nitrogen partial pressure was adjusted during the production of AlN so that 13,000 ppm of free Al remained in the AlN powder. Subsequently, it grind | pulverized so that the average particle diameter of AlN-type powder might be 2.8 micrometers. The uniaxial molding density of this powder was 2.15 g / cm 3 . Using this powder, degreasing and sintering were performed in the same manner as in Example 1. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0053]
Reference example 3
AlN powder (average particle size 2 μm, oxygen content 1 wt%) was mixed with 17,000 ppm of Al-12 wt% Si alloy powder (average particle size 50 μm) to obtain an AlN powder. Using this powder, degreasing and sintering were performed in the same manner as in Example 1 except that the degreasing temperature was 600 ° C. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0054]
Reference example 4
16,000 ppm of Al-6 wt% Ni alloy powder (average particle diameter 50 μm) was added to and mixed with AlN powder (average particle diameter 2 μm, oxygen content 1 wt%) to obtain an AlN powder. Using this powder, degreasing and sintering were performed in the same manner as in Example 1 except that the degreasing temperature was 650 ° C. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0055]
Comparative Example 1
An AlN powder was produced in the same manner as in Example 1 except that the conditions were such that no free Al remained during the production of AlN. Next, it grind | pulverized so that the average particle diameter of AlN powder might be set to 2.0 micrometers. Using this powder, degreasing and sintering were performed in the same manner as in Example 1. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0056]
Comparative Example 2
An AlN powder was produced in the same manner as in Example 1 except that 35,000 ppm of free Al remained in the AlN powder. Subsequently, it grind | pulverized so that the average particle diameter of AlN powder might be set to 2.0 micrometers. Using this powder, degreasing and sintering were performed in the same manner as in Example 1. The obtained sintered body was evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0057]
[Table 1]
[0058]
From the above results, it can be seen that the aluminum nitride powder of the present invention can exhibit excellent strength and the like in its degreased body.

Claims (4)

1)直接窒化法に従って、AlN粒子とAl/AlN粒子から構成され、Al成分を5000ppmを超え、かつ、30000ppm未満の範囲で含有する窒化アルミニウム質粉末を製造する工程、2)前記窒化アルミニウム質粉末に有機バインダー及び焼結助剤を配合し、成形した後、Al成分の融点以上の温度で加熱することを特徴とする窒化アルミニウム質脱脂体の製造方法。1) A step of producing an aluminum nitride powder composed of AlN particles and Al / AlN particles according to a direct nitriding method and containing an Al component in a range of more than 5000 ppm and less than 30000 ppm, and 2) the aluminum nitride powder A method for producing an aluminum nitride-based degreased body comprising blending and molding an organic binder and a sintering aid, followed by heating at a temperature equal to or higher than the melting point of the Al component. Al/AlN粒子の平均粒径が10μm以下である請求項1記載の製造方法。The method according to claim 1, wherein the average particle diameter of the Al / AlN particles is 10 µm or less. 49MPaの圧力でプレスした時、一軸成形密度が1.7〜2.3g/cm である窒化アルミニウム質粉末を用いる、請求項1記載の製造方法。The manufacturing method according to claim 1 , wherein an aluminum nitride powder having a uniaxial molding density of 1.7 to 2.3 g / cm 3 when pressed at a pressure of 49 MPa . 窒化アルミニウム質粉末の含有酸素量が0.2〜2重量%である請求項1記載の製造方法。The production method according to claim 1, wherein the oxygen content of the aluminum nitride powder is 0.2 to 2% by weight.
JP02469997A 1997-02-07 1997-02-07 Aluminum nitride powder and method for producing degreased body thereof Expired - Fee Related JP3959555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02469997A JP3959555B2 (en) 1997-02-07 1997-02-07 Aluminum nitride powder and method for producing degreased body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02469997A JP3959555B2 (en) 1997-02-07 1997-02-07 Aluminum nitride powder and method for producing degreased body thereof

Publications (2)

Publication Number Publication Date
JPH10218665A JPH10218665A (en) 1998-08-18
JP3959555B2 true JP3959555B2 (en) 2007-08-15

Family

ID=12145432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02469997A Expired - Fee Related JP3959555B2 (en) 1997-02-07 1997-02-07 Aluminum nitride powder and method for producing degreased body thereof

Country Status (1)

Country Link
JP (1) JP3959555B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688302B2 (en) * 2001-01-30 2011-05-25 京セラ株式会社 GLASS CERAMIC, ITS MANUFACTURING METHOD, AND WIRING BOARD USING THE SAME
JP5762815B2 (en) * 2011-05-09 2015-08-12 株式会社広築 Method for producing aluminum nitride sintered body

Also Published As

Publication number Publication date
JPH10218665A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US8575051B2 (en) Heat sink having a high thermal conductivity
US6123895A (en) Aluminum base member for semiconductor device containing a nitrogen rich surface and method for producing the same
JP5444387B2 (en) Semiconductor device heat sink
CN111196728B (en) High-strength, high-toughness and high-thermal-conductivity silicon nitride ceramic material and preparation method thereof
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JP3959555B2 (en) Aluminum nitride powder and method for producing degreased body thereof
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JP2000141022A (en) Silicon carbide composite body and its manufacture
JPH07172921A (en) Aluminum nitride sintered material and its production
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JPH06329474A (en) Sintered aluminum nitride and its production
JP3270798B2 (en) Method for producing silicon carbide sintered body
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH108164A (en) Production of aluminum composite with low thermal expansion and high thermal conductivity, and its composite
JP3303729B2 (en) Aluminum nitride based sintered body and method for producing the same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPH10291811A (en) Production method of aluminum nitride powder
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JP4753195B2 (en) Method for producing aluminum nitride sintered body
JP4269853B2 (en) Composite material for substrate for mounting semiconductor element and method for manufacturing the same
JPH08253833A (en) Copper-molybdenum alloy and its production
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees