JP2003306730A - Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT - Google Patents

Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT

Info

Publication number
JP2003306730A
JP2003306730A JP2002113641A JP2002113641A JP2003306730A JP 2003306730 A JP2003306730 A JP 2003306730A JP 2002113641 A JP2002113641 A JP 2002113641A JP 2002113641 A JP2002113641 A JP 2002113641A JP 2003306730 A JP2003306730 A JP 2003306730A
Authority
JP
Japan
Prior art keywords
sic
aluminum
main component
metal containing
containing aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002113641A
Other languages
Japanese (ja)
Inventor
Satoshi Fukui
福井  聡
Masahiko Oshima
昌彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002113641A priority Critical patent/JP2003306730A/en
Publication of JP2003306730A publication Critical patent/JP2003306730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-SiC-based composite which is capable of keeping gastightness of its inside by suppressing melting of metal containing aluminum as a main component when a DBA (direct brazing aluminum) substrate is joined by using an aluminum-based brazing material, sufficiently dissipating heat generated from semiconductor chips to the outside, and further preventing the generation of shrinkage cavities or cracks after the metal containing aluminum as the main component has been impregnated under pressure, and to provide a heat-dissipating component. <P>SOLUTION: The Al-SiC-based composite is obtained by impregnating the metal containing aluminum as the main component into a porous body mainly comprising silicon carbide, and the initial crystallization temperature of the metal containing aluminum as the main component is ≥615°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に炭化ケイ素
(SiC)からなる多孔体に、アルミニウム(Al)を
主成分とする金属を含浸して形成したアルミニウムと炭
化ケイ素の複合体(Al−SiC系複合体)に関する。
本発明のAl−SiC系複合体は、低熱膨張、高熱伝導
特性を有し、放熱基板、ヒートシンク、パッケージなど
半導体装置に用いられる放熱部品に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite of aluminum and silicon carbide (Al-) formed by impregnating a porous body mainly composed of silicon carbide (SiC) with a metal containing aluminum (Al) as a main component. SiC-based composite).
INDUSTRIAL APPLICABILITY The Al-SiC composite of the present invention has low thermal expansion and high thermal conductivity characteristics, and is suitable for a heat dissipation component used for a semiconductor device such as a heat dissipation substrate, a heat sink, a package.

【0002】[0002]

【従来の技術】近年、産業機器の分野では、半導体スイ
ッチングデバイスを用いて大きな電力を最適な電力に効
率よく交換制御する大電力モジュール装置の開発が進ん
でいる。例えば、電動車輌用インバータとして高電圧、
大電流動作が可能なIGBTモジュールがある。このよ
うな大電力モジュール化に伴い、半導体チップから発生
する熱も増大している。半導体チップは熱に弱く、発熱
が大きくなれば半導体回路の誤動作や破壊を招くことに
なる。そこで、半導体チップなど電子部品を搭載するた
めの回路基板の裏面にヒートシンクなどの放熱部品を設
けて、放熱部品を介して半導体チップから発生した熱を
外部に発散させ、半導体回路の動作を安定にすることが
行われている。電子部品を搭載するための回路基板とし
ては、窒化ケイ素(Si34)、窒化アルミニウム(A
lN)、酸化アルミニウム(Al23)などのセラミッ
クス板に銅(Cu)板をろう付け配線したDBC(Dire
ctBonding Cupper)基板が主に用いられている。
2. Description of the Related Art In recent years, in the field of industrial equipment, development of a high power module device for efficiently exchanging and controlling a large power to an optimum power by using a semiconductor switching device has been advanced. For example, high voltage as an inverter for electric vehicles,
There is an IGBT module capable of high current operation. The heat generated from the semiconductor chip is also increasing in accordance with such a high power module. The semiconductor chip is vulnerable to heat, and if the heat generation increases, malfunction or destruction of the semiconductor circuit will be caused. Therefore, a heat dissipation component such as a heat sink is provided on the back surface of a circuit board for mounting electronic components such as semiconductor chips, and the heat generated from the semiconductor chip is radiated to the outside through the heat dissipation component to stabilize the operation of the semiconductor circuit. Is being done. Circuit boards for mounting electronic components include silicon nitride (Si 3 N 4 ) and aluminum nitride (A
DBC (Dire) in which a copper (Cu) plate is brazed to a ceramic plate such as 1N) or aluminum oxide (Al 2 O 3 ).
ctBonding Cupper) substrate is mainly used.

【0003】従来の放熱部品用材料として、銅、モリブ
デン、タングステンなどがある。モリブデンやタングス
テンからなる放熱部品は高価であり、また金属の比重が
大きいため放熱部品の重量が重くなり、放熱部品の軽量
化が望まれる用途には好ましくない。
Conventional materials for heat dissipation components include copper, molybdenum, and tungsten. The heat dissipation component made of molybdenum or tungsten is expensive, and since the specific gravity of metal is large, the weight of the heat dissipation component becomes heavy, which is not preferable for applications in which weight reduction of the heat dissipation component is desired.

【0004】また、銅からなる放熱部品は、放熱部品と
接合されるDBC基板との熱膨張係数の差が大きいの
で、放熱部品とDBC基板との加熱接合時や、使用中の
熱サイクルにより、はんだ層の破壊、熱流路の遮断、D
BC基板の割れを生じやすい。つまり、放熱部品とDB
C基板とは、はんだによりろう付けされており、ろう材
の融点以上に加熱した後、室温まで冷却される。その
際、ろう材の凝固点で互いに固定され、その後は固定さ
れたまま放熱部品とDBC基板がそれぞれ固有の熱膨張
係数に従って収縮し、互いの接合部に熱応力および熱歪
みが残留するとともに反りなどの変形を生じる。そし
て、モジュール装置の使用時に熱ストレスが繰り返し与
えられ、残留熱応力および熱歪みに重畳されると、はん
だ層の疲労破壊による熱流路の遮断と、機械的に脆い性
質を持つDBC基板の割れを生じる。
Further, since the heat dissipation component made of copper has a large difference in coefficient of thermal expansion between the heat dissipation component and the DBC substrate joined to the heat dissipation component, the heat dissipation component and the DBC substrate may be heat-bonded to each other or due to a thermal cycle during use. Destruction of solder layer, blocking of heat flow path, D
The BC substrate is easily cracked. In other words, heat dissipation parts and DB
The C substrate is brazed with solder, and is heated to a temperature higher than the melting point of the brazing material and then cooled to room temperature. At that time, they are fixed to each other at the freezing point of the brazing material, and then the heat radiating component and the DBC board shrink according to their own coefficients of thermal expansion while they remain fixed, and thermal stress and thermal strain remain at their joints and warp etc. Causes deformation. When thermal stress is repeatedly applied during use of the module device and superposed on residual thermal stress and thermal strain, the thermal flow path is blocked due to fatigue failure of the solder layer and cracks in the mechanically brittle DBC substrate occur. Occurs.

【0005】銅などの従来材に替わる放熱部品用材料と
して、アルミニウムまたはアルミニウム合金中に炭化ケ
イ素を分散させた低熱膨張・高熱伝導特性を有するAl
−SiC系複合体が注目されている(特公平7−261
74号、特開昭64−83634号等参照)。Al−S
iC系複合体の製法としては、炭化ケイ素粉末あるいは
炭化ケイ素繊維で形成された多孔体(プリフォーム)を
用い、この多孔体を型内の空間に配置し、アルミニウム
インゴットを接触させて、窒素雰囲気中で加圧もしくは
非加圧で加熱溶融したアルミニウムを型内の空間に流し
込むことによって、炭化ケイ素の多孔体に含浸させ、冷
却して作製する溶融金属含浸法などがある。この製造方
法によれば、炭化ケイ素の含有量を20〜90体積%の
範囲で選択できる。また、炭化ケイ素多孔体の形状の自
由度が高く、複雑な形状の製品をネットシェイプ成形で
きる利点を有する。
As a material for heat dissipation parts replacing conventional materials such as copper, Al having low thermal expansion and high heat conduction characteristics in which silicon carbide is dispersed in aluminum or aluminum alloy.
-SiC-based composites are receiving attention (Japanese Patent Publication No. 7-261).
74, JP-A-64-83634 and the like). Al-S
As a method for producing the iC-based composite, a porous body (preform) formed of silicon carbide powder or silicon carbide fibers is used, the porous body is placed in a space in a mold, and an aluminum ingot is brought into contact with the nitrogen atmosphere. There is a molten metal impregnation method in which a porous body of silicon carbide is impregnated by pouring aluminum that has been heated and melted under pressure or without pressure into a space in a mold and then cooled. According to this manufacturing method, the content of silicon carbide can be selected within the range of 20 to 90% by volume. In addition, the silicon carbide porous body has a high degree of freedom in the shape, and has an advantage that a product having a complicated shape can be formed into a net shape.

【0006】一方、回路基板としては近年、DBC基板
に代わりDBA(Direct Brazing Aluminum)基板が適
用されてきている。DBA基板はセラミックス板にアル
ミニウム板をアルミニウム系ろう材によりろう付け配線
した基板で、アルミニウムの塑性能が銅よりも高いため
耐久信頼性に優れる回路基板として注目されている。
On the other hand, in recent years, as a circuit board, a DBA (Direct Brazing Aluminum) board has been applied instead of the DBC board. The DBA substrate is a substrate obtained by brazing and wiring a ceramic plate to an aluminum plate with an aluminum-based brazing material. Since the plastic performance of aluminum is higher than that of copper, it is attracting attention as a circuit board having excellent durability and reliability.

【0007】[0007]

【発明が解決しようとする課題】DBA基板を放熱部品
に接合する際、通常アルミニウム系ろう材が用いられ
る。従来材料の銅、モリブデン、タングステンなどの金
属単体からなる放熱部品の場合、これらの放熱部品の溶
融温度はアルミニウム系ろう材の溶融温度よりはるかに
高い温度であるため接合時に問題を生じない。
When joining the DBA substrate to the heat dissipation component, an aluminum brazing material is usually used. In the case of heat dissipation components made of conventional metals such as copper, molybdenum, and tungsten, the melting temperature of these heat dissipation components is much higher than the melting temperature of the aluminum-based brazing filler metal, so no problem occurs during joining.

【0008】一方、本発明に係るAl−SiC系複合体
は、主に炭化ケイ素からなる多孔体にアルミニウムを主
成分とする金属を含浸して形成されたAl−SiC複合
本体部と、Al−SiC複合本体部の表面に形成された
アルミニウムを主成分とする金属からなるアルミニウム
被覆層から構成されている。この種のAl−SiC系複
合体からなる放熱部品の場合、含浸したアルミニウムを
主成分とする金属の初晶温度が所定の温度より低いと、
アルミニウム系ろう材を用いたDBA基板の接合時にA
l−SiC系複合体を構成するアルミニウムを主成分と
する金属が溶融し、その一部がAl−SiC系複合体の
表面に溶け出してくる。これにより、Al−SiC系複
合体内部の密度が低下し、気密性が保たれなくなるばか
りでなく、熱伝導率、曲げ強さ、ヤング率が低下する。
その結果、半導体チップから発生した熱の外部への放熱
が阻害され、半導体回路の誤動作や破壊を招く問題があ
る。
On the other hand, the Al-SiC composite according to the present invention comprises an Al-SiC composite main body formed by impregnating a porous body mainly composed of silicon carbide with a metal containing aluminum as a main component, and an Al-SiC composite main body. It is composed of an aluminum coating layer formed on the surface of the SiC composite main body and made of a metal containing aluminum as a main component. In the case of a heat dissipation component made of this type of Al-SiC composite, if the primary crystal temperature of the metal whose main component is impregnated aluminum is lower than a predetermined temperature,
A when joining DBA substrates using aluminum brazing material
The metal containing aluminum as the main component, which constitutes the 1-SiC composite, is melted, and a part thereof is melted out to the surface of the Al-SiC composite. As a result, the density inside the Al-SiC-based composite decreases, and not only the airtightness is no longer maintained, but also the thermal conductivity, bending strength, and Young's modulus decrease.
As a result, the heat generated from the semiconductor chip is hindered from being radiated to the outside, which causes a problem that the semiconductor circuit malfunctions or is destroyed.

【0009】また、溶融温度を上昇させるために、合金
の添加の無い純アルミニウムを使用した場合、アルミニ
ウムの初晶温度と固相線温度との差が小さいためアルミ
ニウムを圧入し含浸させた後、Al−SiC系複合体の
アルミニウム被覆層表面に引け巣が発生しやすい。さら
に、Al−SiC系複合本体部とアルミニウム被覆層と
の境界部にクラックが発生しやすいという問題がある。
Further, when pure aluminum without addition of an alloy is used to raise the melting temperature, the difference between the primary crystal temperature and the solidus temperature of aluminum is small, so after aluminum is press-fitted and impregnated, Shrinkage cavities are likely to occur on the surface of the aluminum coating layer of the Al-SiC composite. Further, there is a problem that cracks are likely to occur at the boundary between the Al-SiC composite main body and the aluminum coating layer.

【0010】本発明は、これらの事情に鑑みなされたも
のであって、アルミニウム系ろう材を用いたDBA基板
の接合時にアルミニウムを主成分とする金属が溶融する
ことを抑えて、Al−SiC系複合体内部の気密性を保
ち、半導体チップから発生した熱を外部へ十分に発散で
き得る、またアルミニウムを主成分とする金属を圧入し
て含浸させた後の引け巣やクラックの発生を防止できる
Al−SiC系複合体および放熱部品を提供することを
目的とする。
The present invention has been made in view of these circumstances, and suppresses melting of a metal containing aluminum as a main component at the time of joining a DBA substrate using an aluminum-based brazing material, thereby suppressing Al-SiC-based metal. The airtightness inside the composite can be maintained, the heat generated from the semiconductor chip can be sufficiently dissipated to the outside, and the shrinkage cavities and cracks after the metal containing aluminum as the main component is press-fitted and impregnated can be prevented. It is an object to provide an Al-SiC based composite and a heat dissipation component.

【0011】[0011]

【課題を解決するための手段】本発明のAl−SiC系
複合体は、主に炭化ケイ素からなる多孔体にアルミニウ
ムを主成分とする金属を含浸して形成されたAl−Si
C系複合体であって、該アルミニウムを主成分とする金
属の初晶温度が615℃以上であることを特徴とする。
The Al-SiC composite of the present invention is formed by impregnating a porous body mainly composed of silicon carbide with a metal containing aluminum as a main component.
The C-based composite is characterized in that the primary crystal temperature of the metal containing aluminum as a main component is 615 ° C. or higher.

【0012】前記本発明において、アルミニウムを主成
分とする金属の固相線温度が560℃以上であることが
望ましい。また、アルミニウムを主成分とする金属の初
晶温度と固相線温度の差が15℃以上であることが望ま
しい。また、Al−SiC系複合体中の炭化ケイ素の含
有量が40体積%以上であることが好ましい。さらに別
の本発明は、本発明のAl−SiC系複合体からなる放
熱部品およびこの放熱部品を具備する半導体モジュール
装置であることを特徴とする。
In the present invention, the solidus temperature of the metal containing aluminum as a main component is preferably 560 ° C. or higher. Further, it is desirable that the difference between the primary crystal temperature and the solidus temperature of the metal containing aluminum as the main component is 15 ° C. or more. Further, the content of silicon carbide in the Al-SiC composite is preferably 40% by volume or more. Still another aspect of the present invention is a heat dissipation component made of the Al—SiC composite of the present invention and a semiconductor module device including the heat dissipation component.

【0013】[0013]

【発明の実施の形態】主に炭化ケイ素からなる多孔体に
各種のアルミニウムを主成分とする金属を含浸させてA
l−SiC系複合体を作製して種々検討した結果、アル
ミニウムを主成分とする金属の初晶温度が615℃以上
の場合、アルミニウム系ろう材を用いたDBA基板の接
合時にアルミニウムを主成分とする金属が溶融せず、A
l−SiC系複合体の表面に溶け出すことを防ぐことが
できた。このため、Al−SiC系複合体内部の密度の
低下を生じず気密性を維持でき、Al−SiC系複合体
の熱伝導率、曲げ強さ、ヤング率の劣化も生じず、半導
体チップから発生した熱を外部へ十分に発散できる。ア
ルミニウムを主成分とする金属の初晶温度は615〜6
50℃がより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A porous body mainly composed of silicon carbide is impregnated with various kinds of metals containing aluminum as a main component.
As a result of making various studies on the l-SiC-based composite, when the primary crystal temperature of the metal containing aluminum as the main component was 615 ° C. or higher, aluminum was used as the main component when joining the DBA substrate using the aluminum-based brazing material. The metal that does not melt, A
It was possible to prevent the l-SiC-based composite from leaching on the surface. Therefore, the airtightness can be maintained without a decrease in the density inside the Al-SiC-based composite, and the thermal conductivity, bending strength, and Young's modulus of the Al-SiC-based composite are not deteriorated, and are generated from the semiconductor chip. The generated heat can be sufficiently dissipated to the outside. The primary crystal temperature of a metal containing aluminum as a main component is 615 to 6
50 ° C. is more preferable.

【0014】また、アルミニウムを主成分とする金属の
固相線温度が560℃以上の場合、アルミニウム含浸後
のAl−SiC系複合本体部とアルミニウム被覆層との
境界部にクラックや、Al−SiC系複合体のアルミニ
ウム被覆層表面に引け巣が発生することを抑えることが
できる。より好ましいアルミニウムを主成分とする金属
の固相線温度は560〜600℃である。また、アルミ
ニウムを主成分とする金属の初晶温度と固相線温度の差
が15℃以上あれば、Al−SiC系複合本体部とアル
ミニウム被覆層との境界部のクラックや、アルミニウム
被覆層表面の引け巣の発生を防止するのにさらに効果が
ある。
If the solidus temperature of the metal containing aluminum as the main component is 560 ° C. or higher, cracks or Al-SiC may occur at the boundary between the Al-SiC composite main body after aluminum impregnation and the aluminum coating layer. It is possible to suppress the occurrence of shrinkage cavities on the surface of the aluminum coating layer of the composite material. A more preferable solidus temperature of a metal containing aluminum as its main component is 560 to 600 ° C. Further, if the difference between the primary crystal temperature and the solidus temperature of the metal containing aluminum as the main component is 15 ° C. or more, cracks at the boundary between the Al—SiC composite main body and the aluminum coating layer, or the surface of the aluminum coating layer. It is even more effective in preventing the occurrence of shrinkage cavities.

【0015】また、セラミックス基板とAl−SiC系
複合体の熱膨張係数差が大きいと、はんだ接合面が剥離
するおそれがあるので、セラミックス基板の熱膨張係数
に近づけるため、Al−SiC系複合体中の炭化ケイ素
の含有量は40体積%以上が好ましく、50〜80体積
%がより好ましい。炭化ケイ素の含有量が40体積%未
満では熱膨張係数が大きくなり、80体積%を超えると
強度、破壊靭性が低下するとともに熱伝導率が低くなる
ので好ましくない。
If the difference in thermal expansion coefficient between the ceramic substrate and the Al-SiC composite is large, the solder joint surface may peel off. Therefore, the thermal expansion coefficient of the Al-SiC composite should be close to that of the ceramic substrate. The content of silicon carbide therein is preferably 40% by volume or more, and more preferably 50 to 80% by volume. When the content of silicon carbide is less than 40% by volume, the coefficient of thermal expansion becomes large, and when it exceeds 80% by volume, the strength and fracture toughness decrease and the thermal conductivity decreases, which is not preferable.

【0016】(実施例1)本発明に係るAl−SiC系
複合体からなる放熱部品を次のように作製した。まず、
平均粒径60μm、純度98%以上の炭化ケイ素粉末に
結合剤、保形剤の溶媒を加え、これを攪拌機で混合して
炭化ケイ素のスラリーを得た。このスラリーを所望の形
状の金型に注入して成形後、冷却して脱型した。これを
乾燥して炭化ケイ素の多孔体を作製した。
(Example 1) A heat dissipation component made of an Al-SiC composite according to the present invention was manufactured as follows. First,
A binder and a solvent for a shape-retaining agent were added to silicon carbide powder having an average particle size of 60 μm and a purity of 98% or more, and the mixture was mixed with a stirrer to obtain a silicon carbide slurry. This slurry was poured into a mold having a desired shape, molded, and then cooled to remove the mold. This was dried to prepare a silicon carbide porous body.

【0017】ついで、炭化ケイ素の多孔体と型の内壁と
の間に所定の隙間を確保した状態で、炭化ケイ素の多孔
体を型内に装入した。そして、炭化ケイ素の多孔体を装
入した型内に加熱溶融したアルミニウムを圧入して含浸
させた。含浸完了、冷却後、型を解体し、炭化ケイ素の
含有量が50体積%のAl−SiC系複合体からなる板
状の放熱部品を作製した。
Then, the porous body of silicon carbide was loaded into the mold while a predetermined gap was secured between the porous body of silicon carbide and the inner wall of the mold. Then, the heat-melted aluminum was press-fitted and impregnated into a mold charged with a porous body of silicon carbide. After completion of impregnation and cooling, the mold was disassembled to produce a plate-shaped heat dissipation component made of an Al-SiC-based composite having a silicon carbide content of 50% by volume.

【0018】得られたAl−SiC系複合体は、炭化ケ
イ素の多孔体中にアルミニウムを含浸させる際に、炭化
ケイ素の多孔体と炭化ケイ素の多孔体を装入した型の内
壁との隙間に含浸アルミニウムの一部が通ることによ
り、Al−SiC系複合体の表面全体にわたって、含浸
したアルミニウムを主成分とする金属の豊富な被覆層が
形成された。被覆層の厚みは平均で50μmであり、A
l−SiC系複合体の表面には炭化ケイ素粉末の露出が
見られなかった。
The obtained Al-SiC-based composite has a gap between the porous body of silicon carbide and the inner wall of the mold in which the porous body of silicon carbide is charged when the porous body of silicon carbide is impregnated with aluminum. By passing a part of the impregnated aluminum, a metal-rich coating layer containing impregnated aluminum as a main component was formed over the entire surface of the Al—SiC-based composite. The thickness of the coating layer is 50 μm on average, and
No exposure of silicon carbide powder was found on the surface of the 1-SiC-based composite.

【0019】このような放熱部品の作製において、含浸
したアルミニウムの種類が異なる本発明例と比較例の放
熱部品を作製した。本発明例1の含浸アルミニウムとし
て、Al−5.0Si−1.2Cu(初晶温度625
℃、固相線温度580℃)を用いた。また、比較例の含
浸アルミニウムとして、比較例1はAl−7.0Si−
0.3Mg(初晶温度610℃、固相線温度555
℃)、比較例2はAl−12.0Si(初晶温度585
℃、固相線温度575℃)を用いた。
In the production of such a heat radiating component, a heat radiating component of the present invention and a comparative example having different kinds of impregnated aluminum were produced. As impregnated aluminum of Inventive Example 1, Al-5.0Si-1.2Cu (primary crystal temperature 625
C., solidus temperature 580.degree. C.) were used. As the impregnated aluminum of the comparative example, the comparative example 1 is Al-7.0Si-.
0.3 Mg (primary crystal temperature 610 ° C., solidus temperature 555
C), Comparative Example 2 is Al-12.0Si (primary crystal temperature 585).
C., solidus temperature 575 ° C.) were used.

【0020】これらのAl−SiC系複合体からなる放
熱部品を用いて、DBA基板をアルミニウム系ろう材で
ろう付けする温度(ろう付け温度590℃)まで昇温さ
せ一定の時間保持した後、冷却させた。その後、各Al
−SiC複合体の密度、熱伝導率、曲げ強さ(4点曲げ
試験)、ヤング率を測定した。表1にその測定結果を示
す。
Using the heat dissipating component made of these Al--SiC composites, the DBA substrate is heated to a temperature (brazing temperature 590 ° C.) for brazing with an aluminum brazing material, held for a certain period of time, and then cooled. Let After that, each Al
The density, thermal conductivity, bending strength (4-point bending test) and Young's modulus of the -SiC composite were measured. Table 1 shows the measurement results.

【0021】 表1 密度 熱伝導率 曲げ強さ ヤング率 (g/cc) (W/mK) (MPa) (GPa) 本発明例1 2.98 190 420 200 比較例1 2.88 150 340 170 比較例2 2.80 130 300 150[0021] Table 1               density        Thermal conductivity    Bending strength    Young's modulus             (G / cc) (W / mK) (MPa) (GPa) Invention Example 1 2.98 190 420 200 Comparative Example 1 2.88 150 340 170 Comparative Example 2 2.80 130 300 150

【0022】表1から、本発明例1のAl−SiC系複
合体からなる放熱部品の場合、含浸したアルミニウムを
主成分とする金属の初晶温度が615℃以上であるた
め、アルミニウムを主成分とする金属が溶融せず、Al
−SiC系複合体の表面に溶け出すことがなく密度の低
下を生じなかった。このため、Al−SiC系複合体の
熱伝導率、曲げ強さ、ヤング率も高い値を維持できた。
一方、比較例1および比較例2はアルミニウムを主成分
とする金属が溶融して、Al−SiC系複合体の表面に
溶け出したため、密度が低下し、熱伝導率、曲げ強さ、
ヤング率のいずれも本発明例1より低下した。
From Table 1, in the case of the heat-dissipating component made of the Al-SiC composite of Example 1 of the present invention, since the primary crystal temperature of the metal containing aluminum as the main component is 615 ° C or higher, the main component of aluminum is And the metal does not melt, Al
It did not elute on the surface of the —SiC-based composite, and the density did not decrease. Therefore, the thermal conductivity, bending strength, and Young's modulus of the Al-SiC composite could be maintained at high values.
On the other hand, in Comparative Example 1 and Comparative Example 2, the metal containing aluminum as the main component was melted and melted out on the surface of the Al-SiC-based composite, so that the density was lowered, the thermal conductivity, the bending strength,
All of the Young's moduli were lower than those of Example 1 of the present invention.

【0023】(実施例2)また、前述の実施例1と同様
に、含浸したアルミニウムの種類が異なる本発明例と比
較例の放熱部品を複数個作製した。本発明例2の含浸ア
ルミニウムとして、Al−5.0Si−1.2Cu(初
晶温度625℃、固相線温度580℃)を用いた。ま
た、比較例3の含浸アルミニウムとして、純度が99.
7%以上の純Al(初晶温度657℃、固相線温度64
6℃)を用いた。
(Example 2) In the same manner as in Example 1 described above, a plurality of heat radiating components of the present invention and the comparative example in which the kinds of impregnated aluminum were different were prepared. As the impregnated aluminum of Inventive Example 2, Al-5.0Si-1.2Cu (primary crystal temperature 625 ° C., solidus temperature 580 ° C.) was used. The impregnated aluminum of Comparative Example 3 has a purity of 99.
7% or more pure Al (primary crystal temperature 657 ° C, solidus temperature 64
6 ° C.) was used.

【0024】表2に本発明例および比較例のAl−Si
C系複合体を評価した結果を示す。表2において、「ク
ラック」は、含浸完了後のAl−SiC系複合本体部と
アルミニウム被覆層との境界部に発生したクラックの発
生率を表わす。「引け巣」は、Al−SiC系複合体の
アルミニウム被覆層表面に発生した引け巣の発生率を表
わす。
Table 2 shows Al-Si of the present invention and comparative examples.
The result of having evaluated a C type complex is shown. In Table 2, "crack" represents the rate of occurrence of cracks at the boundary between the Al-SiC composite main body and the aluminum coating layer after completion of impregnation. The "shrinkage cavity" represents the rate of occurrence of shrinkage cavity generated on the surface of the aluminum coating layer of the Al-SiC composite.

【0025】 [0025]

【0026】表2から、本発明例2のAl−SiC系複
合体は、含浸させたアルミニウムを主成分とする金属の
固相線温度が560℃以上であり、初晶温度と固相線温
度との差が15℃以上ある。このため、含浸完了後のA
l−SiC系複合本体部とアルミニウム被覆層との境界
部にクラックが発生せず、またAl−SiC系複合体の
アルミニウム被覆層表面に引け巣が見られなかった。比
較例3ではアルミニウムの初晶温度と固相線温度との差
が11℃と小さいため、クラックや引け巣が見られた。
From Table 2, in the Al-SiC composite of Inventive Example 2, the solidus temperature of the metal whose main component is impregnated aluminum is 560 ° C or higher, and the primary crystal temperature and the solidus temperature. Is 15 ° C or more. Therefore, A after impregnation is completed
No cracks were generated at the boundary between the 1-SiC composite main body and the aluminum coating layer, and no shrinkage cavities were observed on the surface of the aluminum coating layer of the Al-SiC composite. In Comparative Example 3, since the difference between the primary crystal temperature and the solidus temperature of aluminum was as small as 11 ° C., cracks and shrinkage cavities were observed.

【0027】[0027]

【発明の効果】本発明のAl−SiC系複合体によれ
ば、アルミニウム系ろう材を用いたDBA基板の接合時
にアルミニウムを主成分とする金属が溶融することを抑
えて、Al−SiC系複合体内部の気密性を保ち、半導
体チップから発生した熱を外部へ十分に発散でき得る、
またアルミニウムを主成分とする金属を圧入して含浸さ
せた後の引け巣やクラックの発生を防止できる。
According to the Al-SiC based composite of the present invention, it is possible to prevent the metal containing aluminum as a main component from being melted at the time of joining a DBA substrate using an aluminum based brazing material, and to suppress the Al-SiC based composite. The airtightness inside the body can be maintained and the heat generated from the semiconductor chip can be sufficiently dissipated to the outside.
Further, it is possible to prevent shrinkage cavities and cracks from being generated after press-fitting and impregnating a metal containing aluminum as a main component.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主に炭化ケイ素からなる多孔体にアルミ
ニウムを主成分とする金属を含浸して形成されたAl−
SiC系複合体であって、該アルミニウムを主成分とす
る金属の初晶温度が615℃以上であることを特徴とす
るAl−SiC系複合体。
1. An Al- which is formed by impregnating a porous body mainly composed of silicon carbide with a metal containing aluminum as a main component.
An Al-SiC-based composite, which is a SiC-based composite, wherein a primary crystal temperature of the metal containing aluminum as a main component is 615 ° C or higher.
【請求項2】 前記アルミニウムを主成分とする金属の
固相線温度が560℃以上であることを特徴とする請求
項1に記載のAl−SiC系複合体。
2. The Al—SiC based composite according to claim 1, wherein the solid phase temperature of the metal containing aluminum as a main component is 560 ° C. or higher.
【請求項3】 前記アルミニウムを主成分とする金属の
初晶温度と固相線温度の差が15℃以上であることを特
徴とする請求項1または2に記載のAl−SiC系複合
体。
3. The Al-SiC composite according to claim 1, wherein the difference between the primary crystal temperature and the solidus temperature of the metal containing aluminum as a main component is 15 ° C. or more.
【請求項4】 Al−SiC系複合体中の炭化ケイ素の
含有量が40体積%以上であることを特徴とする請求項
1〜3のいずれかに記載のAl−SiC系複合体。
4. The Al-SiC composite according to claim 1, wherein the content of silicon carbide in the Al-SiC composite is 40% by volume or more.
【請求項5】 請求項1〜4のいずれかに記載のAl−
SiC系複合体からなることを特徴とする放熱部品。
5. The Al- according to any one of claims 1 to 4.
A heat dissipation component comprising a SiC-based composite.
【請求項6】 請求項5に記載の放熱部品を具備するこ
とを特徴とする半導体モジュール装置。
6. A semiconductor module device comprising the heat dissipation component according to claim 5.
JP2002113641A 2002-04-16 2002-04-16 Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT Pending JP2003306730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113641A JP2003306730A (en) 2002-04-16 2002-04-16 Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113641A JP2003306730A (en) 2002-04-16 2002-04-16 Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT

Publications (1)

Publication Number Publication Date
JP2003306730A true JP2003306730A (en) 2003-10-31

Family

ID=29395767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113641A Pending JP2003306730A (en) 2002-04-16 2002-04-16 Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT

Country Status (1)

Country Link
JP (1) JP2003306730A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625377C1 (en) * 2016-06-01 2017-07-13 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") Method of manufacturing composite material for microwave electronics
WO2018163865A1 (en) 2017-03-07 2018-09-13 三菱マテリアル株式会社 Power module substrate with heat sink
WO2018163864A1 (en) 2017-03-07 2018-09-13 三菱マテリアル株式会社 Substrate for power module having heat sink
CN110366777A (en) * 2017-03-29 2019-10-22 三菱综合材料株式会社 The manufacturing method of flange-cooled insulate electrical substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2625377C1 (en) * 2016-06-01 2017-07-13 Акционерное общество "Научно-производственное предприятие "Исток" имени А.И. Шокина" (АО "НПП "Исток" им. Шокина") Method of manufacturing composite material for microwave electronics
WO2018163865A1 (en) 2017-03-07 2018-09-13 三菱マテリアル株式会社 Power module substrate with heat sink
WO2018163864A1 (en) 2017-03-07 2018-09-13 三菱マテリアル株式会社 Substrate for power module having heat sink
KR20190121768A (en) 2017-03-07 2019-10-28 미쓰비시 마테리알 가부시키가이샤 Board for Power Module with Heat Sink
KR20190121769A (en) 2017-03-07 2019-10-28 미쓰비시 마테리알 가부시키가이샤 Board for Power Module with Heat Sink
US11302602B2 (en) 2017-03-07 2022-04-12 Mitsubishi Materials Corporation Power-module substrate with heat-sink
US11462456B2 (en) 2017-03-07 2022-10-04 Mitsubishi Materials Corporation Power-module substrate with heat-sink
CN110366777A (en) * 2017-03-29 2019-10-22 三菱综合材料株式会社 The manufacturing method of flange-cooled insulate electrical substrate
US11735434B2 (en) 2017-03-29 2023-08-22 Mitsubishi Materials Corporation Method for producing insulating circuit substrate with heat sink
CN110366777B (en) * 2017-03-29 2024-04-26 三菱综合材料株式会社 Method for manufacturing insulating circuit substrate with radiating fin

Similar Documents

Publication Publication Date Title
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
EP2980844B1 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
JP2000281468A (en) Silicon carbide complex, its production and radiator article uisng the same
US20060263584A1 (en) Composite material, electrical circuit or electric module
JP2005332874A (en) Circuit board and semiconductor device employing it
JP4148123B2 (en) Radiator and power module
JPH11130568A (en) Composite material and heat sink using the same
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP2003306730A (en) Al-SiC-BASED COMPOSITE AND HEAT-DISSIPATING COMPONENT
JP2001217362A (en) Laminated heat dissipating member, power semiconductor device using it, and method of production
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP2004022964A (en) Al-SiC COMPOSITE BODY, HEAT SINK COMPONENT USING THE SAME, AND SEMICONDUCTOR MODULE DEVICE
JPH11269575A (en) Composite material and heat sink using the same
JP4407858B2 (en) Module structure
JP2000277953A (en) Ceramic circuit board
Occhionero et al. AlSiC for optoelectronic thermal management and packaging designs
JP2002299532A (en) Al-SiC BASED COMPOUND MATERIAL AND HEAT RADIATION COMPONENT
JP2005005528A (en) Module for mounting semiconductor element
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2003318316A (en) Ceramic circuit substrate
JP2001217364A (en) Al-SiC COMPOSITE
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device
JP3734388B2 (en) Al-based metal brazing material and ceramic circuit board using the same
JP2004022885A (en) Al-SiC COMPOSITE BODY AND HEAT RADIATING COMPONENT