JP3734388B2 - Al-based metal brazing material and ceramic circuit board using the same - Google Patents

Al-based metal brazing material and ceramic circuit board using the same Download PDF

Info

Publication number
JP3734388B2
JP3734388B2 JP25680099A JP25680099A JP3734388B2 JP 3734388 B2 JP3734388 B2 JP 3734388B2 JP 25680099 A JP25680099 A JP 25680099A JP 25680099 A JP25680099 A JP 25680099A JP 3734388 B2 JP3734388 B2 JP 3734388B2
Authority
JP
Japan
Prior art keywords
circuit board
brazing material
aluminum
ceramic
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25680099A
Other languages
Japanese (ja)
Other versions
JP2001079684A (en
Inventor
陽一 尾形
秀幸 江本
学 宇都
正浩 伊吹山
茂雄 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP25680099A priority Critical patent/JP3734388B2/en
Publication of JP2001079684A publication Critical patent/JP2001079684A/en
Application granted granted Critical
Publication of JP3734388B2 publication Critical patent/JP3734388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、パワーモジュール等に使用されるセラミックス基板と金属板の接合用ろう材およびそれを用いた高信頼性のセラミックス回路基板に関する。
【0002】
【従来の技術】
従来から、熱発生の大きい半導体素子等を搭載するためのパワーモジュール等の回路基板として、アルミナ(Al23)セラミックス等の絶縁性に優れたセラミックス基板の表面に、導電性を有する回路層を接合した回路基板が広く普及している。
【0003】
しかし、近年、これら半導体素子は機器類の小型化、高性能化に伴って熱発生量が増加する傾向にあり、信頼性高く安定動作を得るために半導体素子の発生する熱を放散して、素子が破壊されない温度より充分低くすることが一層重要な課題となってきており、前記回路基板の特性として電気絶縁性が高いことに加え、より高い熱伝導性が要求されてきている。
【0004】
上記の要求に伴って、高熱伝導性の窒化アルミニウム(AlN)などのセラミックスを基板材料として用いた、放熱性の高い銅回路基板が開発されている。しかし、前記銅回路基板は機械的特性が不十分であり、回路基板として用いる場合には、半導体素子の作動に伴う繰り返しの熱サイクルや動作環境の温度変化等で、セラミックス部分の銅回路層の接合部付近にクラックが発生しやすく、信頼性が低いという問題点があった。
【0005】
この問題の解決として、例えば特開平4−12554号公報や特開平4−18746号公報に、回路材料として銅よりも降伏耐力の小さいアルミニウム(Al)を用いたセラミックス回路基板が開示されている。
【0006】
しかし、信頼性の指標となる−40℃から125℃までの繰り返し冷却、加熱する耐ヒートサイクル性についは、前記回路基板であっても1000回程度でアルミニウム回路材の剥離が起こったり、セラミックス基板にクラックが入る等の問題が発生し、上述のように高い信頼性の要求される用途には充分対応ができない。
【0007】
また、特開平8−208359号公報には、Alの溶湯を用いてAlを直接AlN基板に接合した回路基板が開示されている。この発明によれば、Al回路基板単体で3000回を越える耐ヒートサイクル性が達成されている。
【0008】
しかし、Al溶湯を用いて直接接合しているために、Al回路層の厚さのバラツキが大きく、安定して信頼性の高い回路基板が得られないだけでなく、設備費や設備の維持管理がかかりコストアップになるという問題がある。
【0009】
一方、ろう材接合による方法は、Al回路層の厚さバラツキはほとんどなく、設備コストは安価であるが、接合用ろう材としてAlを主成分とする場合、これまでは添加成分に重点が置かれ、Alの不純物にはあまり注意が払われなかった。しかしながら、Alは再生品が多く使われること、合金を溶融製造する際に、撹拌棒や治具等からの汚染があり、種々の不純物が混入してくる場合がある。
【0010】
【発明が解決しようとする課題】
本発明は、上記公知技術の事情に鑑みてなされたものであり、例えば、電気自動車や鉄道等の用途に適用できるパワーモジュールのような、高い信頼性が要求される用途に対応できるセラミックス回路基板を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明者は、上記目的を達成するために鋭意検討した結果、前記不純物、特にFe、Cr、Mnが接合用ろう材に多量に含まれると、それらが或いは主成分のAl等と金属間化合物を形成し、このためにセラミックス基板と回路板との接合状態が不良となる場合があるだけでなく、得られる回路基板の信頼性が充分確保できないという知見を得て、本発明に至ったものである。そして、前記不純物量を低減し、回路材料であるアルミニウム(Al)材とセラミックス基板の接合温度を低下させることで、接合時に発生する熱応力を低減でき、金属間化合物発生に原因する接合不良を抑制でき、耐ヒートサイクル等の信頼性が著しく向上することを見出し、本発明に至ったものである。
【0012】
即ち、本発明は、セラミックス基板とAlを主成分とする金属板とを接合するろう材であって、不純物としてFe、Cr、Mnがいずれも1.5重量%以下であり、また、Mgと、Cu、Si、Geのうちの少なくとも一種以上とを含むAl合金である。特に、好ましい実施態様として、Mgを0.05重量%以上3重量%以下、Alが85重量%以上含まれ、さらには、液相を生じる温度が500℃〜630℃であることを特徴とするろう材である。また、本発明は、前記ろう材を用いて、Alを主成分とする金属板を、窒化アルミニウム、窒化珪素、炭化珪素、アルミナからなる群より選ばれた一種以上からなるセラミックス基板に接合してなることを特徴とするセラミックス回路基板である。
【0013】
【発明の実施の形態】
本発明に於いては、不純物元素としてのFe、Cr、Mnがいずれも1.5重量%以下であることが本質的である。ろう材中に、不純物元素としてFe、Cr、Mnが多い場合、金属間化合物を生成し、セラミックス基板とアルミニウムを主成分とする金属板とをろう接した際に接合状態が悪くなるとともに、得られるセラミックス回路基板の信頼性も低下する。そして、金属間化合物の生成は、接合時の昇温速度および降温速度にもよるが、前記元素についていずれかが1.5重量%を越えると顕著になり、その結果、セラミックス回路基板とした場合の信頼性の低下が著しくなり、一般的な信頼性評価であるヒートサイクル試験(−40℃←→125℃)において、1000回以下で基板にクラックやAl回路剥離等が発生してしまう。前記不純物元素の好ましく許容される量はいずれもが0.5重量%以下である。
【0014】
また、セラミックス基板とAlを主成分とする金属板とを接合する際、接合温度が高いと、接合後の残留応力が大きくなるため、ろう材を低融点化することが重要である。そのためには、Mgと、Cu、Si、Geからなる群の少なくとも1種以上の元素とを含むことが好ましい。Mgは接合の妨害となる界面に存在する酸化物を除去してくれるだけではなく、ろう材の低融点化にも寄与するものと考えられる。また、Mgと組み合わせて使用した場合、Cu、Si、Geはいずれも単独であってもろう材合金の低融点化に寄与するが、これらを複数組み合わせて用いることもできる。
【0015】
一方、Mgとしては0.05重量%〜3重量%が好ましい。Mgの含有量が0.05重量%より少ないと、酸化物除去の効果が低く、逆に3重量%を越えると理由は明らかではないが、接合性が悪化することがある。また、ろう材中のアルミニウム(Al)は85重量%以上であることが好ましい。85重量%未満の場合には、Alを主成分とする合金と接合できても、Alを主成分とする合金とろう材との熱膨張率の差異が大きくなったり、ろう材の降伏耐力が大きくなる等の理由から、回路基板とした場合に耐ヒートサイクル性が低くなることがある。ろう材中のAl含有量が90重量%以上であることが一層好ましい。上記理由から、Mgが0.05重量%〜3重量%であり、Alが85重量%以上であり、残部がCu、Si、Geからなる群の少なくとも1種以上の元素からなるAl合金は、セラミックス基板とAlを主成分とする金属板とを接合するに好適である。
【0016】
また、前記ろう材は500℃〜630℃の温度範囲で少なくとも一部が液相を形成するものが良い。即ち、500℃未満では接合性の面で充分でないことがあるし、630℃を越える温度ではアルミニウム板やセラミックス基板に残留する熱応力が大きくなるし、アルミニウム材の融点に近くなるためロウ接欠陥が生じやすくなるからである。尚、前記ろう材を用いてアルミニウムを主成分とする金属板とセラミックス基板とを接合(ろう接)する場合、接合する面に1〜50kgf/cm2の垂直力を付加することが望ましい。
【0017】
本発明のろう材の作り方については、例えば、黒鉛-炭化ケイ素複合材のルツボにアルミニウムだけを溶融させ、そこに所定量の金属を添加し、充分撹拌溶解する。続いてフラックスを添加、充分撹拌して鉱滓等を除去後、溶解したろう材合金を型に流し込み冷却固化させる。その後、圧延機を通して徐々に箔化するか、粉体化すればよい。また、所望の組成となるように金属粉末を秤量し、有機溶媒に分散してスラリーとする方法でも構わない。
【0018】
また、セラミックス基板としては、電気絶縁性で熱伝導性に富むものならばどの様なものでも構わず、例えば、アルミナ(Al23)やベリリア(BeO)を添加した炭化珪素(SiC)、窒化珪素、窒化アルミニウム等を挙げることができる。これらの内では、電力が大きなパワーデバイスで熱の発生が大きいことを考慮すると絶縁耐圧が高く、熱伝導性の高いことから窒化アルミニウム(AlN)基板、窒化珪素(Si34)が好適である。
【0019】
本発明の回路基板は、アルミニウムを主成分とする金属板と窒化アルミニウム基板等のセラミックス基板とを前記ろう材を用いて加熱接合した後、エッチングする方法、或いは、金属板から打ち抜き法等により予め回路パターンを形成し、これをセラミックス基板に前記ろう材を用いて接合する方法等によって製造することができる。
【0020】
【実施例】
以下、実施例と比較例とをあげて、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
【0021】
〔実施例1〜11および比較例1〜3〕
セラミックス基板としては、50mm×50mm×0.635mmの窒化アルミニウム基板および窒化珪素基板で、レーザーフラッシュ法による熱伝導率はそれぞれ175W/mKおよび75W/mKで、3点曲げ強さの平均値は420MPaおよび560MPaであるものを用意した。また、アルミニウムを主成分とする金属板としては厚さ0.4mmのJIS呼称1085材を用いた。
【0022】
また、ろう材の製造方法に関しては、5重量%Cu−1.5量%Mg−1.5重量%Fe−残Alの箔の場合について、以下例示する。黒鉛-炭化ケイ素複合材のルツボにAlだけを750℃で溶融させ、そこに5重量%相当のCuを添加し、さらに1.5重量%相当のFeを添加し、1000℃にして充分撹拌溶解した。次に、溶湯を750℃にし、合金用フラックス(例えば日本金属化学社製N406)を添加、充分撹拌して鉱滓等を除去後、1.5重量%相当のMgを添加、溶解したろう材合金を型に流し込み冷却固化させた。その後、圧延機を通して薄化と350℃アニールを繰り返し、最終的に20μm厚さの箔にした。他のろう材も上記に準じて合金箔を作製した。作製した合金箔は、蛍光X線法(化学分析で校正した)にて分析し、目的とする組成であることを確認した。
【0023】
前記セラミックス基板の表裏両面に、表1に示す各種組成の20μmろう材合金箔を介して、前記アルミニウム板を重ね、垂直方向に35kgf/cm2で加圧した。そして、10-4Torrの真空中、温度500℃〜650℃の条件下で加圧しながらアルミニウム板と窒化アルミニウム基板とをろう接して、接合体を得た。実施例、比較例の各々の接合条件を表2に示す。
【0024】
【表1】

Figure 0003734388
【0025】
【表2】
Figure 0003734388
【0026】
前記接合体については、目視及び超音波探傷による接合状態の確認を行った。さらに、異常の認められなかった接合体について、アルミニウム板表面の所望部分にエッチングレジストをスクリーン印刷して、塩化第二鉄溶液にてエッチング処理し、回路パターンを形成した。次いで、レジストを剥離した後、無電解Ni−Pメッキを3μm行って回路基板とした。得られた回路基板について、以下に示すように信頼性の評価を行った。
【0027】
信頼性評価;回路基板に−40℃×30分→室温×10分→125℃×30分→室温×10分を1サイクルとするヒートサイクルを3000回負荷した。その後、回路基板について、目視及び超音波探傷による回路の剥離やセラミックス基板におけるクラック発生状況等の異常の有無を観察した。結果を表3に示す。
【0028】
【表3】
Figure 0003734388
【0029】
表3から、本発明の回路基板は、いずれも回路とセラミックス基板とが良好な接合状態であり、ヒートサイクル3000回負荷後であっても回路の剥離やハンダクラック等の異常は認められず、高信頼性の回路基板であることが明らかである。
【0030】
【発明の効果】
本発明のろう材は、不純物金属元素としてのFe、Cr、Mnがいずれも1.5重量%以下と制御されているので、ろう接の際に金属間化合物が生成することを抑制することができ、その結果、セラミックス基板とアルミニウムを主成分とする金属板とを良好に接合することができる特徴を有する。また、本発明のろう材は、Alが85重量%以上であり、Mgと、Cu、Si、Geのうちの少なくとも一種以上を含むことから、セラミックス基板とアルミニウムを主成分とする金属板とを一層良好に接合することができる特徴を有する。加えて、本発明のろう材は、液相を生じる温度が500℃〜630℃であるので、低い接合温度でセラミックス回路基板を製造できるので、得られるセラミックス回路基板に残留する熱応力を低くでき、その結果、熱サイクルにも耐久性のある高信頼性のセラミックス回路基板を容易に得ることができる。
【0031】
本発明のセラミックス回路基板は、前記ろう材を用いて、セラミックス基板とアルミニウムを主成分とする金属板からなる回路とが良好に接合していて、残留している熱応力も低いので、繰り返しの熱サイクルに耐久性のある高信頼性のセラミックス回路基板であり、産業上非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brazing material for joining a ceramic substrate and a metal plate used in a power module and the like, and a highly reliable ceramic circuit substrate using the same.
[0002]
[Prior art]
Conventionally, a circuit layer having conductivity on a surface of a ceramic substrate excellent in insulation, such as alumina (Al 2 O 3 ) ceramics, as a circuit substrate for a power module or the like for mounting a semiconductor element or the like that generates a large amount of heat. Circuit boards bonded with a widespread use.
[0003]
However, in recent years, these semiconductor elements tend to increase the amount of heat generated with downsizing and high performance of equipment, dissipating the heat generated by the semiconductor elements to obtain reliable and stable operation, It has become an even more important issue to make the temperature sufficiently lower than the temperature at which the element is not destroyed. In addition to high electrical insulation, the circuit board has been required to have higher thermal conductivity.
[0004]
In accordance with the above requirements, a copper circuit board having high heat dissipation using ceramics such as high thermal conductivity aluminum nitride (AlN) as a substrate material has been developed. However, the copper circuit board has insufficient mechanical properties, and when used as a circuit board, the copper circuit layer of the ceramic portion is subjected to repeated thermal cycles or temperature changes in the operating environment associated with the operation of the semiconductor element. There was a problem that cracks were likely to occur in the vicinity of the joint and reliability was low.
[0005]
As a solution to this problem, for example, Japanese Patent Laid-Open Nos. 4-12554 and 4-18746 disclose ceramic circuit boards using aluminum (Al) having a yield strength smaller than that of copper as a circuit material.
[0006]
However, with regard to the heat cycle resistance, which is an index of reliability, which is repeatedly cooled and heated from −40 ° C. to 125 ° C., the aluminum circuit material is peeled off about 1000 times even with the circuit board, or the ceramic substrate. As a result, problems such as cracks occur in the film, and it is not possible to sufficiently deal with applications that require high reliability as described above.
[0007]
Japanese Patent Application Laid-Open No. 8-208359 discloses a circuit board in which Al is directly bonded to an AlN substrate using a molten Al. According to the present invention, heat cycle resistance exceeding 3000 times is achieved with an Al circuit board alone.
[0008]
However, since the molten Al is used for direct bonding, the thickness of the Al circuit layer varies greatly, and a stable and reliable circuit board cannot be obtained. There is a problem that the cost increases.
[0009]
On the other hand, the brazing material joining method has almost no variation in the thickness of the Al circuit layer and the equipment cost is low. However, when Al is the main component as the joining brazing material, emphasis has been placed on the additive components so far. Not much attention was paid to Al impurities. However, Al is often used as a recycled product, and when an alloy is melted and manufactured, there is a contamination from a stirring rod or a jig, and various impurities may be mixed in.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the circumstances of the above-described known technology. For example, a ceramic circuit board that can be used for applications requiring high reliability, such as power modules that can be applied to applications such as electric vehicles and railways. Is intended to provide.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the impurities, particularly Fe, Cr, and Mn, are contained in a large amount in the brazing filler metal. As a result, not only the bonding state between the ceramic substrate and the circuit board may be defective, but also the knowledge that the reliability of the obtained circuit board cannot be sufficiently secured is obtained, and the present invention has been achieved. It is. By reducing the amount of impurities and lowering the bonding temperature between the aluminum (Al) material, which is a circuit material, and the ceramic substrate, it is possible to reduce the thermal stress that occurs during bonding, resulting in poor bonding caused by the generation of intermetallic compounds. It has been found that reliability such as heat cycle resistance can be remarkably improved and the present invention has been achieved.
[0012]
That is, the present invention is a brazing material for joining a ceramic substrate and a metal plate containing Al as a main component, and Fe, Cr, and Mn are all 1.5% by weight or less as impurities, and Mg and Al alloy containing at least one of Cu, Si and Ge. In particular, as a preferred embodiment, Mg is contained in an amount of 0.05% by weight or more and 3% by weight or less, Al is contained in an amount of 85% by weight or more, and the temperature at which a liquid phase is generated is 500 ° C to 630 ° C. It is a brazing material. The present invention also uses the brazing material to join a metal plate mainly composed of Al to a ceramic substrate made of one or more selected from the group consisting of aluminum nitride, silicon nitride, silicon carbide, and alumina. A ceramic circuit board characterized in that.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, it is essential that Fe, Cr and Mn as impurity elements are all 1.5% by weight or less. When there are many Fe, Cr, and Mn as impurity elements in the brazing material, an intermetallic compound is formed, and when the ceramic substrate and the metal plate mainly composed of aluminum are brazed, the bonding state is deteriorated. The reliability of the ceramic circuit board is also reduced. And the generation of intermetallic compounds depends on the temperature rise rate and temperature drop rate at the time of joining, but when any of the above elements exceeds 1.5% by weight, it becomes remarkable. In the heat cycle test (−40 ° C. ← → 125 ° C.), which is a general reliability evaluation, cracks, Al circuit peeling, etc. occur on the substrate in 1000 times or less. Any of the above-mentioned acceptable amounts of the impurity elements is 0.5% by weight or less.
[0014]
Further, when the ceramic substrate and the metal plate mainly composed of Al are joined, if the joining temperature is high, the residual stress after joining becomes large, so it is important to lower the melting point of the brazing material. For that purpose, it is preferable to include Mg and at least one element of the group consisting of Cu, Si, and Ge. Mg is considered not only to remove oxides present at the interface that hinders bonding, but also to contribute to lowering the melting point of the brazing material. Further, when used in combination with Mg, Cu, Si, and Ge all contribute to lowering the melting point of the brazing filler metal alloy, but a plurality of these may be used in combination.
[0015]
On the other hand, Mg is preferably 0.05% by weight to 3% by weight. If the Mg content is less than 0.05% by weight, the effect of removing the oxide is low. Conversely, if the Mg content exceeds 3% by weight, the reason is not clear, but the bonding property may deteriorate. Moreover, it is preferable that aluminum (Al) in a brazing material is 85 weight% or more. If it is less than 85% by weight, the difference in thermal expansion coefficient between the alloy containing Al as the main component and the brazing material becomes large even if it can be joined to the alloy containing Al as the main component, and the yield strength of the brazing material is increased. For reasons such as increasing the size, the heat cycle resistance may be lowered when a circuit board is used. It is more preferable that the Al content in the brazing material is 90% by weight or more. For the above reasons, Mg alloy is 0.05 wt% to 3 wt%, Al is 85 wt% or more, and the balance is Al alloy consisting of at least one element of the group consisting of Cu, Si, Ge, It is suitable for joining a ceramic substrate and a metal plate mainly composed of Al.
[0016]
The brazing material preferably has a liquid phase at least partially in the temperature range of 500 ° C to 630 ° C. That is, when the temperature is lower than 500 ° C., the bonding property may not be sufficient, and when the temperature exceeds 630 ° C., the thermal stress remaining on the aluminum plate or the ceramic substrate becomes large, and the melting point of the aluminum material becomes close to the soldering defect. It is because it becomes easy to occur. In addition, when joining the metal plate which has aluminum as a main component, and a ceramic substrate using the said brazing material (brazing), it is desirable to apply 1-50 kgf / cm < 2 > normal force to the surface to join.
[0017]
Regarding the method of making the brazing material of the present invention, for example, only aluminum is melted in a crucible of a graphite-silicon carbide composite material, a predetermined amount of metal is added thereto, and the mixture is sufficiently stirred and dissolved. Subsequently, a flux is added, and the mixture is sufficiently stirred to remove iron ore and the like, and then the molten brazing alloy is poured into a mold and cooled and solidified. Thereafter, it may be gradually formed into a foil or powdered through a rolling mill. Alternatively, a method may be used in which a metal powder is weighed so as to have a desired composition and dispersed in an organic solvent to form a slurry.
[0018]
The ceramic substrate may be any material as long as it is electrically insulating and has high thermal conductivity. For example, silicon carbide (SiC) to which alumina (Al 2 O 3 ) or beryllia (BeO) is added, Examples thereof include silicon nitride and aluminum nitride. Of these, aluminum nitride (AlN) substrates and silicon nitride (Si 3 N 4 ) are preferred because of their high dielectric strength and high thermal conductivity in consideration of the generation of heat in power devices with high power. is there.
[0019]
The circuit board of the present invention is obtained by a method in which a metal plate containing aluminum as a main component and a ceramic substrate such as an aluminum nitride substrate are heat-bonded using the brazing material and then etched, or punched from the metal plate in advance. A circuit pattern can be formed, and this can be manufactured by a method of bonding to a ceramic substrate using the brazing material.
[0020]
【Example】
Hereinafter, although an example and a comparative example are given and the present invention is explained in detail, the present invention is not limited to these.
[0021]
[Examples 1 to 11 and Comparative Examples 1 to 3]
As the ceramic substrate, an aluminum nitride substrate and a silicon nitride substrate of 50 mm × 50 mm × 0.635 mm, the thermal conductivity by laser flash method is 175 W / mK and 75 W / mK, respectively, and the average value of the three-point bending strength is 420 MPa. And 560 MPa. Further, as a metal plate mainly composed of aluminum, a JIS name 1085 material having a thickness of 0.4 mm was used.
[0022]
Moreover, regarding the method for producing the brazing material, a case of 5 wt% Cu-1.5 wt% Mg-1.5 wt% Fe-residual Al foil will be exemplified below. In a crucible of graphite-silicon carbide composite material, only Al is melted at 750 ° C., 5% by weight of Cu is added thereto, 1.5% by weight of Fe is further added, and 1000 ° C. is sufficiently stirred and dissolved. did. Next, the molten metal is heated to 750 ° C., an alloy flux (for example, N406 manufactured by Nippon Metal Chemical Co., Ltd.) is added, and after stirring and removing the iron ore etc., 1.5 wt% of Mg is added and melted. Was poured into a mold and cooled and solidified. Thereafter, thinning and annealing at 350 ° C. were repeated through a rolling mill to finally make a foil having a thickness of 20 μm. Other brazing materials were also prepared as described above. The produced alloy foil was analyzed by a fluorescent X-ray method (calibrated by chemical analysis), and confirmed to have a target composition.
[0023]
The aluminum plate was overlapped on both the front and back surfaces of the ceramic substrate via 20 μm brazing alloy foils having various compositions shown in Table 1, and pressurized in the vertical direction at 35 kgf / cm 2 . Then, the aluminum plate and the aluminum nitride substrate were brazed and pressed in a vacuum of 10 −4 Torr under conditions of a temperature of 500 ° C. to 650 ° C. to obtain a joined body. Table 2 shows the joining conditions of the examples and comparative examples.
[0024]
[Table 1]
Figure 0003734388
[0025]
[Table 2]
Figure 0003734388
[0026]
About the said conjugate | zygote, the joining state by visual observation and ultrasonic flaw detection was performed. Furthermore, about the joined body by which abnormality was not recognized, the etching resist was screen-printed on the desired part of the aluminum plate surface, and it etched with the ferric chloride solution, and formed the circuit pattern. Next, after removing the resist, electroless Ni-P plating was performed by 3 μm to obtain a circuit board. The obtained circuit board was evaluated for reliability as described below.
[0027]
Reliability evaluation: The circuit board was loaded 3000 times with a cycle of −40 ° C. × 30 minutes → room temperature × 10 minutes → 125 ° C. × 30 minutes → room temperature × 10 minutes. Thereafter, the circuit board was visually observed and checked for abnormalities such as peeling of the circuit by ultrasonic flaw detection and the occurrence of cracks in the ceramic substrate. The results are shown in Table 3.
[0028]
[Table 3]
Figure 0003734388
[0029]
From Table 3, the circuit board of the present invention is in a good bonded state between the circuit and the ceramic substrate, and no abnormalities such as circuit peeling and solder cracks are observed even after 3000 cycles of heat cycle, It is clear that this is a highly reliable circuit board.
[0030]
【The invention's effect】
In the brazing material of the present invention, since Fe, Cr, and Mn as impurity metal elements are all controlled to be 1.5% by weight or less, it is possible to suppress the formation of intermetallic compounds during brazing. As a result, the ceramic substrate and the metal plate containing aluminum as a main component can be satisfactorily bonded. Moreover, since the brazing filler metal of the present invention contains 85% by weight or more of Al and contains Mg and at least one of Cu, Si, and Ge, a ceramic substrate and a metal plate mainly composed of aluminum are provided. It has the characteristic that it can join more satisfactorily. In addition, since the brazing filler metal of the present invention has a liquid phase temperature of 500 ° C. to 630 ° C., a ceramic circuit board can be produced at a low bonding temperature, so that the thermal stress remaining on the obtained ceramic circuit board can be reduced. As a result, it is possible to easily obtain a highly reliable ceramic circuit board that is durable against thermal cycling.
[0031]
In the ceramic circuit board of the present invention, the brazing material is used to satisfactorily bond the ceramic board and the circuit made of a metal plate mainly composed of aluminum, and the residual thermal stress is low. It is a highly reliable ceramic circuit board that is durable to thermal cycling, and is very useful in industry.

Claims (1)

Mgを0.05〜3重量%、不純物としてFe、Cr、Mnいずれも1.5重量%以下、並びに、Cu、Si、Geのうちの少なくとも一種以上を含み、且つ、Cu5.0重量%以下、Si7.1重量%以下、Ge7.1重量%以下であって、残分がAlからなり、液相を生じる温度が500℃〜630℃であることを特徴とするろう材を介して、Alを主成分とする金属板を窒化アルミニウム基板に接合してなる耐ヒートサイクル性に優れた窒化アルミニウム回路基板。0.05 to 3 wt% of Mg, Fe, Cr and Mn as impurities are all 1.5 wt% or less, and at least one of Cu, Si and Ge is included , and Cu is 5.0 Wt% or less, Si is 7.1 wt% or less , Ge is 7.1 wt% or less , the remainder is made of Al, and the temperature at which a liquid phase is generated is 500 ° C. to 630 ° C. An aluminum nitride circuit board excellent in heat cycle resistance, which is formed by bonding a metal plate containing Al as a main component to an aluminum nitride board through a brazing material.
JP25680099A 1999-09-10 1999-09-10 Al-based metal brazing material and ceramic circuit board using the same Expired - Lifetime JP3734388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25680099A JP3734388B2 (en) 1999-09-10 1999-09-10 Al-based metal brazing material and ceramic circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25680099A JP3734388B2 (en) 1999-09-10 1999-09-10 Al-based metal brazing material and ceramic circuit board using the same

Publications (2)

Publication Number Publication Date
JP2001079684A JP2001079684A (en) 2001-03-27
JP3734388B2 true JP3734388B2 (en) 2006-01-11

Family

ID=17297625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25680099A Expired - Lifetime JP3734388B2 (en) 1999-09-10 1999-09-10 Al-based metal brazing material and ceramic circuit board using the same

Country Status (1)

Country Link
JP (1) JP3734388B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528297A (en) * 2005-02-04 2008-07-31 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Aluminum alloy brazing material
JP6656657B2 (en) * 2015-11-06 2020-03-04 三菱マテリアル株式会社 Ceramic / aluminum joint, power module substrate, and power module
CN116021102B (en) * 2022-12-13 2023-10-17 郑州机械研究所有限公司 Large-thickness high-strength aluminum alloy honeycomb plate and preparation method thereof

Also Published As

Publication number Publication date
JP2001079684A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
EP3632879B1 (en) Ceramic circuit board and method of production
EP2296177B1 (en) Method for manufacturing a power module substrate
EP2978019B1 (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
WO2015046280A1 (en) Cu/ceramic material joint, method for manufacturing cu/ceramic material joint, and substrate for power module
EP2282334B1 (en) Method for producing substrate for power module
CN104205324B (en) The power module substrate carrying radiator and the manufacture method of the power module substrate carrying radiator
CN105393347B (en) Conjugant and power module substrate
JP5720839B2 (en) Bonded body and power module substrate
JP2004115337A (en) Aluminum-ceramic bonded body
TW201526171A (en) Method of producing a jointed body and method of producing power module substrate
WO2003046981A1 (en) Module structure and module comprising it
JP5828352B2 (en) Copper / ceramic bonding body and power module substrate
TWI711141B (en) Semiconductor device
JP3734388B2 (en) Al-based metal brazing material and ceramic circuit board using the same
CN106132909B (en) Ceramics-the manufacturing method of aluminium conjugant, the manufacturing method of power module substrate and ceramics-aluminium conjugant, power module substrate
TWI744474B (en) Ceramic/aluminum bonded body, insulating circuit substrate, led module, ceramic member, method of manufacturing ceramic/aluminum bonded body and method of manufacturing insulating circuit substrate
TW201739725A (en) Bonded body, power module substrate, method of producing bonded body and method of producing power module substrate
JP5825380B2 (en) Copper / ceramic bonding body and power module substrate
JP5016756B2 (en) Nitride-based ceramic member and metal member joined body and nitride-based ceramic circuit board using the same
JP2001203299A (en) Aluminium board and ceramics circuit board using the same
JP6928297B2 (en) Copper / ceramic joints and insulated circuit boards
JP4935753B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2001102703A (en) Circuit board
TWI780113B (en) METHOD OF MANUFACTURING CERAMIC/Al-SiC COMPOSITE MATERIAL BONDED BODY AND METHOD OF MANUFACTURING POWER MODULE SUBSTRATE WITH HEAT SINK
JP2001144433A (en) Ceramics circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051018

R150 Certificate of patent or registration of utility model

Ref document number: 3734388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term