JP2010126791A - Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material - Google Patents

Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material Download PDF

Info

Publication number
JP2010126791A
JP2010126791A JP2008304828A JP2008304828A JP2010126791A JP 2010126791 A JP2010126791 A JP 2010126791A JP 2008304828 A JP2008304828 A JP 2008304828A JP 2008304828 A JP2008304828 A JP 2008304828A JP 2010126791 A JP2010126791 A JP 2010126791A
Authority
JP
Japan
Prior art keywords
heat dissipation
content
phase
mass
dissipation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008304828A
Other languages
Japanese (ja)
Inventor
Seimei Terao
星明 寺尾
Hideaki Kohiki
英明 小日置
Hiroki Ota
裕樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Precision Corp
Original Assignee
JFE Steel Corp
JFE Precision Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Precision Corp filed Critical JFE Steel Corp
Priority to JP2008304828A priority Critical patent/JP2010126791A/en
Publication of JP2010126791A publication Critical patent/JP2010126791A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive heat dissipation material having a low thermal expansion coefficient and a high thermal conductivity compatibly, and to provide a method for producing the heat dissipation material. <P>SOLUTION: The heat dissipation material has a composition containing W and/or Mo in addition to Cr and Cu, and in which the total of the W content and/or the Mo content and the Cr content is >30 to 90 mass%, and the balance inevitable impurities, and has a structure where, in addition to a granular Cr phase, a granular W phase and/or a granular Mo phase is dispersed into a Cu phase matrix. As one example of the production method, in addition to Cr and Cu, the powder of W and/or Mo is mixed, thereafter, the mixture is sintered and is cooled at a cooling rate of ≤30°C/min, and the obtained sintered compact is subjected to aging heat treatment in the temperature range of 500 to 750°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子機器に搭載された半導体素子等の発熱体から発生する熱を速やかに放散させるために用いられ、低い熱膨張率と高い熱伝導率を両立させた放熱材料、およびそれを用いた半導体用放熱板(たとえばヒートシンク材,ヒートスプレッダー材等)や半導体用放熱部品(たとえば半導体用キャリア,半導体用ケース等)、並びに放熱材料の製造方法に関するものである。   The present invention is used to quickly dissipate heat generated from a heating element such as a semiconductor element mounted on an electronic device, and uses a heat dissipation material that achieves both a low thermal expansion coefficient and a high thermal conductivity. The present invention relates to a semiconductor heat dissipation plate (for example, a heat sink material, a heat spreader material, etc.), a semiconductor heat dissipation component (for example, a semiconductor carrier, a semiconductor case, etc.), and a method for manufacturing the heat dissipation material.

半導体素子等の電子部品を搭載した電子機器を作動させる際には、電子回路への通電に伴い電子機器が発熱する。電子機器の高出力化に伴い、作動時の発熱量はますます増加する傾向にあるが、温度が上昇し過ぎると半導体素子の特性が変化し、電子機器の動作が不安定になる問題が生じる。また長時間にわたって使用することによって過剰な高温に曝されると、電子部品の接合材(たとえばハンダ等)や絶縁材(たとえば合成樹脂等)が変質して、電子機器の故障の原因になる。そのため、電子部品から発熱する熱を速やかに放散させる必要がある。そこで、熱を放散させるための放熱材料が種々検討されている。   When an electronic device equipped with an electronic component such as a semiconductor element is operated, the electronic device generates heat as the electronic circuit is energized. As the output of electronic equipment increases, the amount of heat generated during operation tends to increase. However, if the temperature rises too much, the characteristics of the semiconductor element change and the operation of the electronic equipment becomes unstable. . Further, when exposed to an excessively high temperature after being used for a long time, a bonding material (for example, solder) or an insulating material (for example, synthetic resin) of an electronic component is altered, causing a failure of the electronic device. Therefore, it is necessary to quickly dissipate the heat generated from the electronic component. Therefore, various heat dissipation materials for dissipating heat have been studied.

半導体素子は、たとえば窒化アルミニウム(AlN)にAl電極をダイレクトボンディングした基板(いわゆるDBA基板)上にハンダ付けあるいはロウ付けされた後、放熱材料の上に同様の方法により固定される。その際、DBA基板の熱膨張率は5〜7×10-6-1であるため、接合される放熱材料としては、これに近い熱膨張率を有することが要求される。現在使用されている放熱材料としては、W−Cu系複合材料の熱膨張率が6〜9×10-6-1であり、Mo−Cu系複合材料の熱膨張率が7〜14×10-6-1である。このように接合される相手材に近い熱膨張率を有することにより、半導体素子の発熱によって発生する熱応力の影響を小さく抑えることができる。 For example, the semiconductor element is soldered or brazed on a substrate (so-called DBA substrate) in which an Al electrode is directly bonded to aluminum nitride (AlN), and then fixed on the heat dissipation material by a similar method. At that time, since the DBA substrate has a thermal expansion coefficient of 5 to 7 × 10 −6 K −1 , the heat dissipation material to be bonded is required to have a thermal expansion coefficient close to this. As a heat dissipation material currently used, the thermal expansion coefficient of the W-Cu composite material is 6-9 × 10 −6 K −1 , and the thermal expansion coefficient of the Mo—Cu composite material is 7-14 × 10 6. -6 K -1 . By having a coefficient of thermal expansion close to that of the counterpart material to be joined in this way, it is possible to suppress the influence of thermal stress generated by heat generation of the semiconductor element.

放熱材料は、熱膨張が少ないことに加えて、熱伝導率が大きいことが要求されるが、単相の材料で両者を同時に達成することは難しい。そのため、熱膨張率の小さい材料と熱伝導率の大きい材料を組み合わせた複合材料が多く用いられている。
このような例として、たとえば特許文献1には、W−Cu,Mo−Cu等の金属−金属系複合材料が提案されている。W,Moは熱膨張率が低く、他方、Cuは熱伝導率が高いという特性を利用する技術である。
The heat dissipating material is required to have high thermal conductivity in addition to low thermal expansion, but it is difficult to achieve both simultaneously with a single-phase material. For this reason, a composite material in which a material having a low coefficient of thermal expansion and a material having a high thermal conductivity are combined is often used.
As such an example, for example, Patent Document 1 proposes a metal-metal composite material such as W-Cu and Mo-Cu. W and Mo are technologies that utilize the characteristic that the coefficient of thermal expansion is low, while Cu is high in thermal conductivity.

また特許文献2には、SiC−Al,Cu2O−Cu等のセラミックス−金属系の複合材料が開示されている。
さらに特許文献3にはCr−Cu,Nb−Cu等の金属−金属系複合材料が開示されている。特許文献3は、Cr−Cu系合金について、低熱膨張率と高熱伝導率を共に達成するための技術である。この技術は、2〜50質量%のCrを含有するCu合金について、第2相として存在する凝固の際に析出するCr相のアスペクト比を10以上とすることによって、複合則から予想されるよりも低い熱膨張率を得ることが可能になるというものである。しかしながら、製造方法は溶解鋳造法を前提としているので、開示されている鋳造方法ではCr含有量が増加すると、融点が高くなる上、凝固偏析が生じるので均質な合金製造が困難である。これを均質化するためには、高温長時間の均質化熱処理に加えて、熱間鍛造や熱間圧延工程が必要となる。したがって、特許文献3の実施例には、30質量%を超えるCrを含有する例は開示されていない。また、凝固の際の1次析出相であるCr相のアスペクト比を10以上とするので、たとえば冷間圧延では90%以上の圧下を必要とする。その結果、製造コストの上昇を招き、しかも製品として提供できる放熱材料の寸法が制限されるという問題がある。
Patent Document 2 discloses a ceramic-metal composite material such as SiC-Al and Cu 2 O—Cu.
Further, Patent Document 3 discloses metal-metal composite materials such as Cr—Cu and Nb—Cu. Patent Document 3 is a technique for achieving both a low thermal expansion coefficient and a high thermal conductivity for a Cr—Cu alloy. This technique is more than expected from the composite law by setting the aspect ratio of the Cr phase that precipitates during solidification existing as the second phase to 10 or more for a Cu alloy containing 2 to 50 mass% of Cr. It is possible to obtain a low coefficient of thermal expansion. However, since the manufacturing method is premised on the melt casting method, when the Cr content is increased, the melting point becomes higher and solidification segregation occurs because the Cr content increases, so that it is difficult to manufacture a homogeneous alloy. In order to homogenize this, a hot forging or hot rolling process is required in addition to the high temperature and long time homogenization heat treatment. Therefore, the example of Patent Document 3 does not disclose an example containing Cr exceeding 30% by mass. Further, since the aspect ratio of the Cr phase, which is the primary precipitation phase during solidification, is 10 or more, for example, cold rolling requires a reduction of 90% or more. As a result, there is a problem in that the manufacturing cost increases and the size of the heat dissipation material that can be provided as a product is limited.

非特許文献1には、30質量%以上のCrを含むCr−Cu合金を溶解と冷間加工によって均一に製造する技術が開示されている。すなわち、CrとCuの混合粉末を焼結したものを消耗電極として用い、高価なアーク溶解法で鋳造し、さらに室温での延性が不十分なCrが変形しないように押出し法によって丸棒を製造する方法である。押出し法は、Crに対してCu相からの静水圧が働くため、加工が容易となることを利用したものである。この技術では経済性に問題があり、かつ放熱材料のような薄い板状の材料の製造には適していない。   Non-Patent Document 1 discloses a technique for uniformly producing a Cr—Cu alloy containing 30 mass% or more of Cr by melting and cold working. In other words, a sintered powder of mixed powder of Cr and Cu is used as a consumable electrode, cast by an expensive arc melting method, and a round bar is manufactured by extrusion so that Cr with insufficient ductility at room temperature does not deform It is a method to do. The extrusion method utilizes the fact that processing is easy because the hydrostatic pressure from the Cu phase acts on Cr. This technique has a problem in economy and is not suitable for manufacturing a thin plate-like material such as a heat dissipation material.

また発明者らは、特許文献4に、熱処理によって熱膨張率を調整したCr−Cu材を放熱材料に適用する技術を開示している。この技術は、Cr粉末を使用し、Cuと焼結あるいは溶浸を行なって合金化し、同様に時効熱処理を行なってCr相中から粒子状のCr相の析出を図るものである。
特公平5-38457号公報 特開2002-212651号公報 特開2000-239762号公報 特開2005-330583号公報 Siemens Forsch.-Ber.Bd,17(1988)No.3
In addition, the inventors disclose a technique in which a Cr—Cu material whose thermal expansion coefficient is adjusted by heat treatment is applied to a heat dissipation material in Patent Document 4. In this technique, Cr powder is used, alloyed by sintering or infiltration with Cu, and similarly subjected to aging heat treatment to precipitate a particulate Cr phase from the Cr phase.
Japanese Patent Publication No. 5-38457 JP 2002-212651 A JP 2000-239762 JP 2005-330583 A Siemens Forsch.-Ber.Bd, 17 (1988) No. 3

上記した通り、発熱量の大きい半導体素子は、主にハンダ付けによって半導体用放熱板や半導体用放熱部品に固定することによって効率良く放熱しながら使用される。
しかし、特許文献1で提案されているW−Cu,Mo−Cuなどの金属−金属系複合材料を用いた放熱材料は、切削加工やプレス加工等の機械加工性は良好であるものの、その原料であるWやMoの粉末が高価であるという問題点がある。
As described above, a semiconductor element having a large calorific value is used while efficiently dissipating heat by fixing it to a semiconductor heat sink or a semiconductor heat dissipating component mainly by soldering.
However, the heat dissipation material using a metal-metal composite material such as W-Cu and Mo-Cu proposed in Patent Document 1 has good machinability such as cutting and pressing, but its raw material. There exists a problem that the powder of W and Mo which are these is expensive.

また特許文献2で提案されているSiC−Al,Cu2O−Cuなどのセラミックス−金属系複合材料は硬くて、機械加工性に劣り、さらに均一なめっき処理が困難であるという問題がある。
本発明は、上述の複合材料と同程度の熱膨張率をもちながら、W,Moの含有量を少なくすることにより、低熱膨張率と高熱伝導率を両立し、なおかつ安価な放熱材料、並びに放熱材料の製造方法を提供することを目的とする。
Further, ceramic-metal composite materials such as SiC-Al and Cu 2 O—Cu proposed in Patent Document 2 are hard, have poor machinability, and have a problem that uniform plating is difficult.
The present invention has a low thermal expansion coefficient and a high thermal conductivity by reducing the contents of W and Mo while having the same thermal expansion coefficient as that of the above-described composite material. It aims at providing the manufacturing method of material.

発明者らは、CrがWやMoと同じく周期表のVIa族に属する金属であって、Moに近い熱膨張率と、金属の中では比較的高い熱伝導率を有し、かつWやMoに比べて安価に入手できることに着目し、Cr−Cu系の金属材料について鋭意研究した。その結果、Crを少量含む高Cu合金に適当な熱処理を施すことによって、熱膨張率が極めて低くなることを見出した。本発明は、このような知見に基づいてなされたものである。   The inventors found that Cr is a metal belonging to group VIa of the periodic table like W and Mo, has a thermal expansion coefficient close to that of Mo, and a relatively high thermal conductivity among metals, and W and Mo. Focusing on the fact that it can be obtained at a lower cost than in the past, we have intensively studied Cr-Cu-based metal materials. As a result, it has been found that the thermal expansion coefficient becomes extremely low by subjecting a high Cu alloy containing a small amount of Cr to an appropriate heat treatment. The present invention has been made based on such knowledge.

すなわち本発明は、CrとCuに加えてWおよび/またはMoを含有し、残部が不可避的不純物からなる組成を有し、かつCr相粒子に加えて、W相粒子および/またはMo相粒子がCu相基地中に分散した組織を有する放熱材料である。
本発明の放熱材料においては、前記した組成のW含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であることが好ましい。
That is, the present invention contains W and / or Mo in addition to Cr and Cu, the balance has an inevitable impurity composition, and in addition to Cr phase particles, W phase particles and / or Mo phase particles It is a heat dissipating material having a structure dispersed in a Cu phase matrix.
In the heat dissipation material of the present invention, it is preferable that the total of the W content and / or the Mo content and the Cr content in the above composition is more than 30% by mass and 90% by mass or less.

また、Cr相粒子に加えてW相粒子および/またはMo粒子がCu相基地中に分散し、かつ長径100nm以下の微細粒Cr相が形成されることが好ましい。その微細粒Cr相のアスペクト比は10未満であることが好ましい。微細粒Cr相の分布密度は20個/μm2 以上であることが好ましい。
さらに本発明は、上記した放熱材料を使用した半導体用放熱板、あるいは上記した放熱材料を一部に取付けた半導体用放熱部品である。
In addition to the Cr phase particles, W phase particles and / or Mo particles are preferably dispersed in the Cu phase matrix, and a fine grain Cr phase having a major axis of 100 nm or less is preferably formed. The aspect ratio of the fine grain Cr phase is preferably less than 10. The distribution density of the fine grain Cr phase is preferably 20 pieces / μm 2 or more.
Furthermore, the present invention is a semiconductor heat dissipating plate using the heat dissipating material described above or a semiconductor heat dissipating part having the heat dissipating material partially attached thereto.

また本発明は、W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、CrとCuに加えてWおよび/またはMoの粉末を混合した後、焼結して30℃/分以下の冷却速度で冷却し、得られた焼結体を500〜750℃の温度範囲で時効熱処理する放熱材料の製造方法である。   Further, the present invention provides a method for producing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities. After mixing W and / or Mo powder in addition to Cu and Cu, it is sintered and cooled at a cooling rate of 30 ° C./min or less, and the obtained sintered body is subjected to an aging heat treatment in a temperature range of 500 to 750 ° C. It is a manufacturing method of the heat dissipation material to do.

あるいは本発明は、W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、CrとCuに加えてWおよび/またはMoの粉末を混合した後、焼結し、得られた焼結体に900〜1050℃の温度範囲で溶体化熱処理を施して30℃/分以下の冷却速度で冷却し、さらに500〜750℃の温度範囲で時効熱処理する放熱材料の製造方法である。   Alternatively, the present invention provides a method for producing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities. After mixing W and / or Mo powder in addition to Cu and Cu, sintering is performed, and the obtained sintered body is subjected to solution heat treatment in a temperature range of 900 to 1050 ° C., and a cooling rate of 30 ° C./min or less It is a manufacturing method of the heat-dissipating material which cools by aging and heat-treats in the temperature range of 500-750 degreeC.

あるいは本発明は、W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、Cr、またはCrとCu、に加えてWおよび/またはMoの粉末を混合した後、焼結し、得られた焼結体にCuまたはCu−Cr合金を溶浸して30℃/分以下の冷却速度で冷却し、さらに得られた溶浸体を500〜750℃の温度範囲で時効熱処理する放熱材料の製造方法である。   Alternatively, the present invention provides a method for producing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities. Or, in addition to Cr and Cu, W and / or Mo powder is mixed and then sintered, and Cu or Cu-Cr alloy is infiltrated into the obtained sintered body, and the cooling rate is 30 ° C / min or less. And the obtained infiltrant is subjected to an aging heat treatment in a temperature range of 500 to 750 ° C.

あるいは本発明は、W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、Cr、またはCrとCu、に加えてWおよび/またはMoの粉末を混合した後、焼結し、得られた焼結体にCuまたはCu−Cr合金を溶浸し、得られた溶浸体に900〜1050℃の温度範囲で溶体化熱処理を施して30℃/分以下の冷却速度で冷却し、さらに500〜750℃の温度範囲で時効熱処理する放熱材料の製造方法である。   Alternatively, the present invention provides a method for producing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities. Or, in addition to Cr and Cu, W and / or Mo powder is mixed and then sintered, and Cu or Cu-Cr alloy is infiltrated into the obtained sintered body, and 900 in the obtained infiltrated body. This is a method for producing a heat-dissipating material that is subjected to solution heat treatment in a temperature range of ˜1050 ° C., cooled at a cooling rate of 30 ° C./min or less, and further subjected to aging heat treatment in a temperature range of 500-750 ° C.

本発明によれば、高熱伝導率と低熱膨張率を両立させた放熱材料を安価に得ることができる。さらに、その放熱材料を使用する(あるいは一部に取付ける)ことによって、優れた放熱特性を有する半導体用放熱板や半導体用放熱部品を製造できる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal radiation material which made high thermal conductivity and low thermal expansion coefficient compatible can be obtained cheaply. Furthermore, by using the heat dissipation material (or attaching to a part thereof), it is possible to manufacture a semiconductor heat dissipation plate and a semiconductor heat dissipation component having excellent heat dissipation characteristics.

まず、本発明の放熱材料の製造方法について説明する。
本発明では、Cr粉末に加えて、W粉末および/またはMo粉末を原料として、粉末冶金技術を採用する。粉末冶金技術の採用によって、Cr,W,Moの粉末を原料として使用し、これを焼結した後でCuまたはCr−Cu合金を溶浸することによって、Cr,W,Moを均一に分布させた放熱材料の製造が可能になった。さらに時効熱処理を施すことによって、溶浸のままの状態に比べて熱膨張率を低減させることができる。
First, the manufacturing method of the heat dissipation material of this invention is demonstrated.
In the present invention, powder metallurgy technology is employed using W powder and / or Mo powder as raw materials in addition to Cr powder. By adopting powder metallurgy technology, Cr, W, Mo powder is used as a raw material, and after sintering this, Cu or Cr-Cu alloy is infiltrated to uniformly distribute Cr, W, Mo. The production of heat dissipation materials is now possible. Furthermore, by performing an aging heat treatment, the coefficient of thermal expansion can be reduced as compared with the state of infiltration.

Cr粉末,W粉末,Mo粉末の粒度は、いずれも250μm以下のもの(JIS規格Z2510に準拠して篩分けしたもの)を使用することが好ましい。特に、小型の放熱材料を製造する場合には、Cr粉末,W粉末,Mo粉末の粒度は、いずれも平均粒度D50が150μm以下であることが一層好ましい。
また、Cr,W,Moの粉末中の不純物は、溶浸体の加工性向上の観点から、可能な限り低減することが好ましい。すなわちCr粉末,W粉末,Mo粉末の純度は、いずれも99質量%以上が好ましい。
It is preferable to use Cr powder, W powder, and Mo powder having a particle size of 250 μm or less (screened according to JIS standard Z2510). In particular, when producing a small heat dissipation material, it is more preferable that the average particle size D50 of the Cr powder, W powder, and Mo powder is 150 μm or less.
Further, impurities in the Cr, W, and Mo powders are preferably reduced as much as possible from the viewpoint of improving the workability of the infiltrated body. That is, the purity of Cr powder, W powder, and Mo powder is preferably 99% by mass or more.

本発明の放熱材料を製造するにあたって、原料となるCr粉末に加えて、W粉末および/またはMo粉末を型に充填し、さらに必要に応じて加圧成形し、その充填したままの充填成形体あるいは加圧成形した加圧成形体を焼結して、得られた焼結体にCuまたはCr−Cu合金を溶浸させて放熱材料とする。
また本発明では、Cr粉末に加えて、W粉末および/またはMo粉末にCu粉末を混合し、得られた混合粉末を原料として使用しても良い。その場合は、混合粉末を型に充填し、さらに必要に応じて加圧成形し、その充填したままの充填成形体あるいは加圧成形した加圧成形体を焼結して、得られた焼結体を放熱材料とする。なお、さらに必要に応じてCr−W,Cr−Mo,Cr−W−Mo,Cr−Cu−W,Cr−Cu−Mo,Cr−Cu−W−Moからなる焼結体にCuまたはCu−Cr合金を溶浸させてもよい。
In manufacturing the heat dissipation material of the present invention, in addition to Cr powder as a raw material, W powder and / or Mo powder are filled into a mold, and further, pressure-molded as necessary, and the filled molded body as filled Alternatively, the pressure-molded body that has been pressure-molded is sintered, and Cu or Cr—Cu alloy is infiltrated into the obtained sintered body to obtain a heat dissipation material.
In the present invention, in addition to Cr powder, Cu powder may be mixed with W powder and / or Mo powder, and the resulting mixed powder may be used as a raw material. In that case, the mixed powder is filled in a mold, further pressure-molded as necessary, and the filled compact or the pressure-molded compact that has been filled is sintered to obtain the sintered material obtained. The body is a heat dissipation material. If necessary, a sintered body made of Cr-W, Cr-Mo, Cr-W-Mo, Cr-Cu-W, Cr-Cu-Mo, Cr-Cu-W-Mo is added to Cu or Cu--. Cr alloy may be infiltrated.

加圧成形を行なう成形工程では、使用する粉末の充填性や密度の目標値に応じて圧力を調整しながら成形する。
焼結の条件は、1000〜1600℃の範囲内(好ましくは1050〜1450℃の範囲内)の温度で30〜300分保持することが好ましい。雰囲気は水素雰囲気または真空が好ましい。
焼結して得られた焼結体にCuを溶浸させる場合は、工業的に製造される金属Cu(たとえばタフピッチ銅,りん脱酸銅,無酸素銅等)あるいはCu粉末(たとえば電解銅粉、アトマイズ銅粉等)を使用することが好ましい。また、Cr−Cu合金を溶浸させる場合は、不純物が少ないものを使用することが好ましい。
In the molding process in which pressure molding is performed, molding is performed while adjusting the pressure according to target values of the filling property and density of the powder to be used.
The sintering conditions are preferably maintained at a temperature in the range of 1000 to 1600 ° C (preferably in the range of 1050 to 1450 ° C) for 30 to 300 minutes. The atmosphere is preferably a hydrogen atmosphere or a vacuum.
When Cu is infiltrated into a sintered body obtained by sintering, industrially produced metal Cu (for example, tough pitch copper, phosphorous deoxidized copper, oxygen-free copper, etc.) or Cu powder (for example, electrolytic copper powder) , Atomized copper powder, etc.) are preferably used. Moreover, when infiltrating a Cr-Cu alloy, it is preferable to use a thing with few impurities.

溶浸は従来から知られている技術を使用する。たとえば焼結体の上面および/または下面にCuあるいはCr−Cu合金の板や粉末を付着させ、1100〜1300℃の範囲内(好ましくは1150〜1250℃の範囲内)の温度で20〜120分保持する。雰囲気は水素雰囲気または真空が好ましい。ただし、溶浸した後の加工性向上の観点から真空中で溶浸することが好ましい。溶浸後は表面に残留するCuまたはCu−Cr合金を機械加工(たとえばフライス盤による切削加工,砥石による研削加工等)により除去して放熱部品にするための加工を行なう。あるいは必要に応じて冷間または温間の圧延を行ない、表面を仕上げることができる。   For infiltration, a conventionally known technique is used. For example, a Cu or Cr-Cu alloy plate or powder is adhered to the upper surface and / or lower surface of the sintered body, and the temperature is within the range of 1100 to 1300 ° C (preferably within the range of 1150 to 1250 ° C) for 20 to 120 minutes. Hold. The atmosphere is preferably a hydrogen atmosphere or a vacuum. However, infiltration in vacuum is preferable from the viewpoint of improving workability after infiltration. After infiltration, the Cu or Cu-Cr alloy remaining on the surface is removed by machining (for example, cutting with a milling machine, grinding with a grindstone, etc.) to make a heat dissipation component. Alternatively, the surface can be finished by cold or warm rolling as necessary.

このようにしてCr−W−CuまたはCr−Mo−Cuの3元系の放熱材料、あるいはCr−W−Mo−Cuの4元系の放熱材料が得られる。3元系の放熱材料では、Cr相粒子に加えてW相粒子またはMo相粒子がCu相基地中に分散している。4元系の放熱材料では、Cr相粒子に加えてW相粒子およびMo相粒子がCu相基地中に分散している。
なお本発明者らの研究によれば、焼結,溶浸あるいは後述する溶体化熱処理した後の冷却速度は、焼結体,溶浸体あるいは溶体化熱処理体の熱膨張率に影響を及ぼすことが判明した。より大幅な熱膨張率の低減を達成するために、具体的には、冷却速度を30℃/分以下とする。現在のところ、冷却速度に応じて熱膨張率が変化する原因は明らかではないが、焼結中,溶浸中あるいは溶体化熱処理中にCu相に固溶したCrが時効熱処理によって析出する際に、冷却速度に応じて形態が変化するためと考えられる。
In this way, a Cr—W—Cu or Cr—Mo—Cu ternary heat dissipation material or a Cr—W—Mo—Cu quaternary heat dissipation material is obtained. In the ternary heat dissipation material, W phase particles or Mo phase particles are dispersed in the Cu phase matrix in addition to Cr phase particles. In a quaternary heat dissipation material, in addition to Cr phase particles, W phase particles and Mo phase particles are dispersed in the Cu phase matrix.
According to the studies by the present inventors, the cooling rate after sintering, infiltration, or solution heat treatment described later has an effect on the thermal expansion coefficient of the sintered body, infiltrant or solution heat treatment. There was found. In order to achieve a more significant reduction in the coefficient of thermal expansion, specifically, the cooling rate is set to 30 ° C./min or less. At present, it is not clear why the coefficient of thermal expansion changes depending on the cooling rate. However, when Cr dissolved in the Cu phase during sintering, infiltration or solution heat treatment is precipitated by aging heat treatment. It is considered that the form changes according to the cooling rate.

Crは、本発明の放熱材料において、熱膨張率の低減を達成するための重要な元素である。
上記したような手順で焼結体にCuを溶浸させると、CrがCu中に0.9〜2.0質量%程度固溶する。また、溶体化熱処理では、CrがCu中に0.1〜0.9質量%程度固溶する。そのCu相に固溶したCrを、冷却速度30℃/分以下で冷却した後の時効熱処理によって長径100nm(ナノメートル)以下の微細粒Cr相として、Cu相中に析出させる。この微細粒Cr相の析出が熱膨張率を低減させる。
Cr is an important element for achieving a reduction in the coefficient of thermal expansion in the heat dissipation material of the present invention.
When Cu is infiltrated into the sintered body by the procedure as described above, Cr is solid-dissolved in the Cu by about 0.9 to 2.0% by mass. In the solution heat treatment, Cr is dissolved in Cu by about 0.1 to 0.9% by mass. Cr dissolved in the Cu phase is precipitated in the Cu phase as a fine grain Cr phase having a major axis of 100 nm (nanometer) or less by aging heat treatment after cooling at a cooling rate of 30 ° C./min or less. The precipitation of this fine grain Cr phase reduces the coefficient of thermal expansion.

さらに、Cuを溶浸させた溶浸体を熱間,温間,冷間にて圧延しても良い。冷間圧延を施すことによってCr相に方向性を付与し、微細粒Cr相のアスペクト比を調整することが可能となる。一般的には、Cr−Cu材は冷間,温間,熱間での圧延が可能であるが、W−Cu材は熱間圧延でも圧延は難しく、Mo−Cu材は熱間圧延は可能であるが、温間圧延,冷間圧延は大きな圧下率で圧延を行なうことは困難である。このように冷間加工性に乏しいMoやWを多く添加する場合は、熱間圧延が好ましい。熱間圧延の後は溶体化熱処理を行なうことが好ましく、しかも溶体化熱処理は30℃/分以下の冷却速度で冷却することが好ましい。   Furthermore, the infiltrated body infiltrated with Cu may be rolled hot, warm, or cold. By performing cold rolling, it is possible to impart directionality to the Cr phase and adjust the aspect ratio of the fine-grained Cr phase. In general, Cr-Cu materials can be rolled cold, warm, and hot, but W-Cu materials are difficult to roll even with hot rolling, and Mo-Cu materials can be hot rolled. However, warm rolling and cold rolling are difficult to perform at a large rolling reduction. Thus, when adding much Mo and W with poor cold workability, hot rolling is preferable. It is preferable to perform solution heat treatment after hot rolling, and it is preferable to cool the solution heat treatment at a cooling rate of 30 ° C./min or less.

微細粒Cr相のアスペクト比を所定の範囲に保持することによって、溶体化熱処理体,溶浸体あるいは焼結体の熱膨張率を一層低減することが可能となる。
熱間圧延を行なった場合は、表面に形成された酸化層を除去して放熱部品とすることが好ましい。酸化層の除去は、機械加工(たとえばフライス盤による切削加工,砥石による研削加工等)すれば良い。酸化層を除去した後、放熱部品にするための加工を行なう。あるいは必要に応じて冷間または温間の圧延を行ない、表面を仕上げることができる。
By keeping the aspect ratio of the fine grain Cr phase within a predetermined range, it is possible to further reduce the thermal expansion coefficient of the solution heat-treated body, the infiltrated body or the sintered body.
When hot rolling is performed, it is preferable to remove the oxide layer formed on the surface to obtain a heat dissipation component. The removal of the oxide layer may be performed by machining (for example, cutting with a milling machine, grinding with a grindstone, etc.). After removing the oxide layer, processing to make a heat dissipation component is performed. Alternatively, the surface can be finished by cold or warm rolling as necessary.

なお、溶体化熱処理体,溶浸体あるいは焼結体に微細粒Cr相を析出させるための時効熱処理を行なう前、または時効熱処理を行なった後に、冷間または温間圧延,スウェージング加工,ダイス引き抜き,鍛造等の冷間または温間加工を行なって、放熱材料を所定の形状に加工しても良い。
次に、本発明の放熱材料の組織について説明する。
Before or after aging heat treatment for precipitating a fine-grained Cr phase on a solution heat-treated body, infiltrated body or sintered body, or after aging heat treatment, cold or warm rolling, swaging, die The heat dissipating material may be processed into a predetermined shape by performing cold working such as drawing or forging or warm working.
Next, the structure of the heat dissipation material of the present invention will be described.

本発明の放熱材料は、Cr相粒子に加えてW相粒子および/またはMo相粒子がCu相基地中に分散する。
さらに長径100nm以下の微細粒Cr相が形成されることが好ましい。Cu中に固溶していたCrが通常の溶体化熱処理、すなわち溶体化保持した後600℃/分程度の冷却速度で水冷し、450℃程度で時効熱処理すると、Crが10nm以下の大きさで特定の結晶面上に2次析出する。この析出により材料は硬化し、いわゆる析出時効現象が生じる。このような析出硬化を生じる場合は、熱膨張率の低減は起こらない。
In the heat dissipation material of the present invention, W phase particles and / or Mo phase particles are dispersed in the Cu phase matrix in addition to Cr phase particles.
Further, it is preferable that a fine grain Cr phase having a major axis of 100 nm or less is formed. Cr dissolved in Cu is a normal solution heat treatment, that is, after holding the solution, it is cooled with water at a cooling rate of about 600 ° C./min, and when subjected to an aging heat treatment at about 450 ° C., Cr has a size of 10 nm or less. Secondary precipitation occurs on a specific crystal plane. This precipitation hardens the material and causes a so-called precipitation aging phenomenon. When such precipitation hardening occurs, the thermal expansion coefficient does not decrease.

一方、焼結後,溶浸後あるいは900〜1050℃で溶体化保持した後、30℃/分以下の冷却速度で冷却した後、500〜750℃で時効熱処理を行なうと、Crの析出は析出硬化の場合より大きくなり、長径100nm以下のCrの2次析出が生じる。この場合にのみ熱膨張率の低減現象が生じることが判明した。その原因は現在調査中であるが、透過型電子顕微鏡で析出したCrを観察すると、Cu相上に整合析出しており、熱膨張率低減との関連が考えられる。また、750℃より高い温度で時効熱処理すると、さらに大きなCrが析出するが、その場合は熱膨張率の低減は見られない。この2次析出した微細粒Cr相の分布密度を20個/μm2以上とすると、熱膨張率の低減効果が顕著となり好ましい。 On the other hand, after sintering, infiltration, or after solution holding at 900 to 1050 ° C., after cooling at a cooling rate of 30 ° C./min or less and performing an aging heat treatment at 500 to 750 ° C., Cr precipitates. It becomes larger than the case of hardening, and secondary precipitation of Cr with a major axis of 100 nm or less occurs. It has been found that only in this case, the phenomenon of reduction in the coefficient of thermal expansion occurs. The cause is currently under investigation, but when the Cr deposited with a transmission electron microscope is observed, it is consistently deposited on the Cu phase, which may be related to a reduction in the coefficient of thermal expansion. Further, when aging heat treatment is performed at a temperature higher than 750 ° C., larger Cr is precipitated, but in that case, the thermal expansion coefficient is not reduced. When the distribution density of the finely precipitated fine Cr phase is 20 particles / μm 2 or more, the effect of reducing the coefficient of thermal expansion is remarkable, which is preferable.

次に、本発明の放熱材料の組成について説明する。
Cr,WおよびMoの合計含有量が30質量%以下では、放熱材料に要求される低熱膨張率(約14×10-6-1以下)が得られない。一方、90質量%を超えると、熱伝導率が低下し、放熱材料として十分な放熱効果が得られない。したがって、Cr,WおよびMoの合計含有量は30質量%超え90質量%以下であることが好ましい。残部はCuおよび不可避的不純物である。
Next, the composition of the heat dissipation material of the present invention will be described.
When the total content of Cr, W and Mo is 30% by mass or less, the low thermal expansion coefficient required for the heat dissipation material (about 14 × 10 −6 K −1 or less) cannot be obtained. On the other hand, if it exceeds 90% by mass, the thermal conductivity is lowered and a sufficient heat dissipation effect as a heat dissipation material cannot be obtained. Therefore, the total content of Cr, W and Mo is preferably more than 30% by mass and 90% by mass or less. The balance is Cu and inevitable impurities.

CrとMoおよびWとの比率は特に限定せず、目標とする熱伝導率と熱膨張率の値に合わせて配合を決定すればよい。ただし、Crは安価であり、焼結後,溶浸後あるいは溶体化熱処理後に30℃/分以下の冷却速度で冷却し、500〜750℃の範囲で時効熱処理を行なうことにより、熱膨張率を下げることができる。また、圧延により、圧延方向にCr相が伸びることにより、圧延方向の熱膨張率を低減することができるので、なるべくCrを多く配合することが好ましい。また圧延を行なう場合は、極力Wを少なくすることが好ましい。時効熱処理で熱膨張率を下げる場合は、0.5質量%程度のCrを添加することが好ましい。   The ratio of Cr, Mo, and W is not particularly limited, and the composition may be determined in accordance with the target values of thermal conductivity and thermal expansion coefficient. However, Cr is inexpensive and is cooled at a cooling rate of 30 ° C / min or less after sintering, infiltration or solution heat treatment, and aging heat treatment is performed in the range of 500 to 750 ° C. Can be lowered. Further, since the Cr phase extends in the rolling direction by rolling, the coefficient of thermal expansion in the rolling direction can be reduced. Therefore, it is preferable to add as much Cr as possible. When rolling, it is preferable to reduce W as much as possible. When lowering the coefficient of thermal expansion by aging heat treatment, it is preferable to add about 0.5% by mass of Cr.

以上に説明した放熱材料を使用する(あるいは一部に取付ける)ことによって、優れた放熱特性を有する半導体用放熱板や半導体用放熱部品を製造することができる。   By using the heat dissipation material described above (or attaching to a part thereof), it is possible to manufacture a semiconductor heat dissipation plate and a semiconductor heat dissipation component having excellent heat dissipation characteristics.

<実施例1>
平均粒径100μmのCr粉末と平均粒径5μmのMo粉末とを1:1の質量比で混合したのち、型に自然充填して、真空中にて1350℃で焼結し、気孔率が約50体積%となる焼結体(70mm×70mm×12mm)を作製した。その焼結体の上面にCu板を載置し、真空中で1200℃に加熱してCuを溶解し、焼結体に溶浸させて溶浸体を得た。次いでフライス盤を用いて、溶浸体の表面に残留するCuを除去して厚さを10mmとした後、900℃の熱間にて圧延して厚さ3mmの圧延板を作製した。これを発明例1とする。
<Example 1>
After mixing Cr powder with an average particle size of 100 μm and Mo powder with an average particle size of 5 μm at a mass ratio of 1: 1, the mold is naturally filled and sintered at 1350 ° C. in a vacuum. A sintered body (70 mm × 70 mm × 12 mm) having a volume of 50% by volume was produced. A Cu plate was placed on the upper surface of the sintered body, heated to 1200 ° C. in vacuum to dissolve Cu, and infiltrated into the sintered body to obtain an infiltrated body. Then, using a milling machine, Cu remaining on the surface of the infiltrated body was removed to a thickness of 10 mm, and then rolled hot at 900 ° C. to produce a rolled plate having a thickness of 3 mm. This is referred to as Invention Example 1.

一方、比較例1として、平均粒径10μmのMo粉末のみを型に自然充填して、発明例1と同様に焼結し、気孔率が約40体積%となる焼結体を作製した。その焼結体の上面にCu板を載置し、真空中で1200℃に加熱してCuを溶解し、焼結体に溶浸させて溶浸体を得た。次いでフライス盤を用いて、溶浸体の表面に残留するCuを除去して厚さを10mmとした後、900℃の熱間にて圧延して厚さ3mmの圧延板を作製した。   On the other hand, as Comparative Example 1, only a Mo powder having an average particle diameter of 10 μm was naturally filled into a mold and sintered in the same manner as in Invention Example 1 to produce a sintered body having a porosity of about 40% by volume. A Cu plate was placed on the upper surface of the sintered body, heated to 1200 ° C. in vacuum to dissolve Cu, and infiltrated into the sintered body to obtain an infiltrated body. Then, using a milling machine, Cu remaining on the surface of the infiltrated body was removed to a thickness of 10 mm, and then rolled hot at 900 ° C. to produce a rolled plate having a thickness of 3 mm.

また発明例1と比較例1の圧延板の密度を測定し、気孔率≒0と仮定して組成比を求めた。その結果を表1に示す。
さらに発明例1と比較例1の圧延板から圧延方向を長手方向として長さ25mm,幅8mm,厚さ2mmの板状の熱膨張率測定用試験片、および直径16mm,厚さ2mmの円盤状の熱伝導率測定用試験片を切り出した。これら各試験片に、真空中1050℃にて60分間保持し溶体化処理を行なった後、30℃/分の冷却速度で冷却した。さらに真空中、500〜700℃において60分保持する時効熱処理を施した後、熱伝導率および熱膨張率を測定した。得られた結果を表1に併せて示す。なお、熱伝導率はレーザーフラッシュ法により常温の熱伝導率を求めた。熱膨張率は試験片の長手方向の伸びに基づいて常温から200℃までの平均熱膨張率を求めた。
Further, the density of the rolled sheets of Invention Example 1 and Comparative Example 1 was measured, and the composition ratio was determined on the assumption that the porosity was approximately zero. The results are shown in Table 1.
Further, from the rolled plates of Invention Example 1 and Comparative Example 1, a plate-shaped test piece for measuring the thermal expansion coefficient having a length of 25 mm, a width of 8 mm, and a thickness of 2 mm, and a disk shape of a diameter of 16 mm and a thickness of 2 mm. A test piece for measuring thermal conductivity was cut out. Each of these test pieces was subjected to a solution treatment by being held at 1050 ° C. for 60 minutes in a vacuum, and then cooled at a cooling rate of 30 ° C./min. Furthermore, after conducting an aging heat treatment in a vacuum at 500 to 700 ° C. for 60 minutes, the thermal conductivity and the thermal expansion coefficient were measured. The obtained results are also shown in Table 1. The thermal conductivity was obtained at room temperature by a laser flash method. The coefficient of thermal expansion was determined as the average coefficient of thermal expansion from room temperature to 200 ° C. based on the elongation in the longitudinal direction of the test piece.

Figure 2010126791
Figure 2010126791

表1から明らかなように発明例1と比較例1では、熱膨張率および熱伝導率が同等の放熱材料が得られている。ただし発明例1は、Mo量を比較例1の1/2以下に低減することに成功しており、大幅なコスト削減が可能となる。さらに発明例1は、比較例1に比べて密度を約10%低減しており、放熱材料の軽量化にも寄与できる。
<実施例2>
平均粒径10μmのW粉末を、型に自然充填して、水素中にて1450℃で焼結し、気孔率が約62体積%となる焼結体(70mm×70mm×5mm)を作製した。その焼結体の上面に4.5質量%Cr−Cu合金板を載置し、真空中で1200℃に加熱してCr−Cu合金を溶解し、焼結体に溶浸させて溶浸体を得た。なお、溶浸時に1200℃保持後、30℃/分の冷却速度で冷却した。次いでフライス盤を用いて、溶浸体の表面に残留するCr−Cu合金を除去して厚さ2mmの溶浸体を作製した。これを発明例2とする。
As is clear from Table 1, in Invention Example 1 and Comparative Example 1, heat dissipation materials having the same thermal expansion coefficient and thermal conductivity are obtained. However, Invention Example 1 has succeeded in reducing the amount of Mo to ½ or less of Comparative Example 1, and can greatly reduce the cost. Further, Invention Example 1 has a density reduced by about 10% compared to Comparative Example 1, and can contribute to weight reduction of the heat dissipation material.
<Example 2>
A W powder having an average particle size of 10 μm was naturally filled in a mold and sintered in hydrogen at 1450 ° C. to produce a sintered body (70 mm × 70 mm × 5 mm) having a porosity of about 62% by volume. A 4.5 mass% Cr-Cu alloy plate is placed on the upper surface of the sintered body, heated to 1200 ° C in vacuum to melt the Cr-Cu alloy, and infiltrated into the sintered body to obtain an infiltrated body. It was. In addition, after maintaining at 1200 ° C. during infiltration, cooling was performed at a cooling rate of 30 ° C./min. Next, using a milling machine, the Cr—Cu alloy remaining on the surface of the infiltrated body was removed to prepare an infiltrated body having a thickness of 2 mm. This is referred to as Invention Example 2.

一方、比較例2として、平均粒径10μmのW粉末を型に充填して、加圧力294.2MPa(=3tonf/cm2)で加圧して発明例2と同様に焼結し、気孔率が約69体積%となる焼結体を作製した。その焼結体の上面にCu板を載置し、真空中で1200℃に加熱してCuを溶解し、焼結体に溶浸させて溶浸体を得た。次いでフライス盤を用いて、溶浸体の表面に残留するCuを除去して厚さ2mmの溶浸体を作製した。 On the other hand, as Comparative Example 2, W powder having an average particle size of 10 μm was filled in a mold, pressed with a pressure of 294.2 MPa (= 3 tonf / cm 2 ) and sintered in the same manner as in Invention Example 2, with a porosity of about A sintered body of 69% by volume was produced. A Cu plate was placed on the upper surface of the sintered body, heated to 1200 ° C. in vacuum to dissolve Cu, and infiltrated into the sintered body to obtain an infiltrated body. Next, using a milling machine, Cu remaining on the surface of the infiltrated body was removed to prepare an infiltrated body having a thickness of 2 mm.

また発明例2と比較例2の圧延板の密度を測定し、気孔率≒0と仮定して組成比を求めた。その結果を表1に示す。
さらに発明例2と比較例2の溶浸体から長さ25mm,幅8mm,厚さ2mmの板状の熱膨張率測定用試験片、および直径16mm,厚さ2mmの円盤状の熱伝導率測定用試験片を切り出した。これら各試験片に、真空中、500〜700℃において60分保持する時効熱処理を施した後、熱伝導率および熱膨張率を測定した。得られた結果を表1に併せて示す。なお、熱伝導率および熱膨張率は実施例1と同様にして求めた。
Further, the density of the rolled sheets of Invention Example 2 and Comparative Example 2 was measured, and the composition ratio was determined on the assumption that the porosity was approximately zero. The results are shown in Table 1.
Furthermore, from the infiltrates of Invention Example 2 and Comparative Example 2, a plate-shaped test piece for measuring the thermal expansion coefficient of 25 mm in length, 8 mm in width, and 2 mm in thickness, and a disk-shaped thermal conductivity measurement in a diameter of 16 mm and a thickness of 2 mm. A test specimen was cut out. Each of these test pieces was subjected to an aging heat treatment held at 500 to 700 ° C. for 60 minutes in a vacuum, and then the thermal conductivity and the thermal expansion coefficient were measured. The obtained results are also shown in Table 1. The thermal conductivity and the coefficient of thermal expansion were determined in the same manner as in Example 1.

表1から明らかなように発明例2と比較例2では、熱膨張率および熱伝導率が同等の放熱材料が得られている。ただし発明例2は、W量を比較例2の約6%低減することに成功しており、大幅なコスト低減が可能となる。さらに発明例2は、比較例2に比べて密度を5%程度低減しており、放熱材料の軽量化にも寄与できる。
<実施例3>
平均粒径20μmのMo粉末を型に自然充填して、真空中にて1500℃で焼結し、気孔率が約60体積%となる焼結体(70mm×70mm×12mm)を作製した。その焼結体の上面に7質量%Cr−Cu合金板を載置し、真空中1200℃に加熱してCr−Cu合金を溶解し、焼結体に溶浸させて溶浸体を得た。次いでフライス盤を用いて、溶浸体の表面に残留するCuを除去して厚さを10mmとした後、900℃の熱間にて圧延して厚さ3mmの圧延板を作製した。これを発明例3とする。
As is clear from Table 1, in Invention Example 2 and Comparative Example 2, a heat dissipation material having the same thermal expansion coefficient and thermal conductivity is obtained. However, Invention Example 2 succeeds in reducing the amount of W by about 6% of that of Comparative Example 2, and can greatly reduce the cost. Furthermore, Invention Example 2 has a density reduced by about 5% compared to Comparative Example 2, and can contribute to weight reduction of the heat dissipation material.
<Example 3>
Mo powder with an average particle size of 20 μm was naturally filled into a mold and sintered at 1500 ° C. in a vacuum to produce a sintered body (70 mm × 70 mm × 12 mm) having a porosity of about 60% by volume. A 7 mass% Cr—Cu alloy plate was placed on the upper surface of the sintered body, heated to 1200 ° C. in vacuum to melt the Cr—Cu alloy, and infiltrated into the sintered body to obtain an infiltrated body. . Then, using a milling machine, Cu remaining on the surface of the infiltrated body was removed to a thickness of 10 mm, and then rolled hot at 900 ° C. to produce a rolled plate having a thickness of 3 mm. This is referred to as Invention Example 3.

一方、比較例3として、平均粒径10μmのMo粉末を型に押し込み充填して、発明例3と同様に焼結し、気孔率が約55体積%となる焼結体を作製した。その焼結体の上面にCu板を載置し、真空中で1200℃に加熱してCuを溶解し、焼結体に溶浸させて溶浸体を得た。次いでフライス盤を用いて、溶浸体の表面に残留するCuを除去して厚さを10mmとした後、900℃の熱間にて圧延して厚さ3mmの圧延板を作製した。   On the other hand, as Comparative Example 3, Mo powder having an average particle size of 10 μm was pressed into a mold and sintered, and sintered in the same manner as in Invention Example 3 to produce a sintered body having a porosity of about 55% by volume. A Cu plate was placed on the upper surface of the sintered body, heated to 1200 ° C. in vacuum to dissolve Cu, and infiltrated into the sintered body to obtain an infiltrated body. Then, using a milling machine, Cu remaining on the surface of the infiltrated body was removed to a thickness of 10 mm, and then rolled hot at 900 ° C. to produce a rolled plate having a thickness of 3 mm.

また発明例3と比較例3の圧延板の密度を測定し、気孔率≒0と仮定して組成比を求めた。その結果を表1に示す。
さらに発明例3と比較例3の圧延板から圧延方向を長手方向として長さ25mm,幅8mm,厚さ2mmの板状の熱膨張率測定用試験片、および直径16mm,厚さ2mmの円盤状の熱伝導率測定用試験片を切り出した。これら各試験片に、真空中1050℃にて60分間保持し溶体化処理を行なった後、30℃/分の冷却速度で冷却した。さらに真空中、500〜700℃において60分保持する時効熱処理を施した後、熱伝導率および熱膨張率を測定した。得られた結果を表1に併せて示す。なお、熱伝導率および熱膨張率は実施例1と同様にして求めた。
Further, the density of the rolled sheets of Invention Example 3 and Comparative Example 3 was measured, and the composition ratio was determined on the assumption that the porosity was approximately zero. The results are shown in Table 1.
Further, from the rolled plates of Invention Example 3 and Comparative Example 3, a plate-shaped test piece for measuring the thermal expansion coefficient having a length of 25 mm, a width of 8 mm, and a thickness of 2 mm, and a disk shape having a diameter of 16 mm and a thickness of 2 mm. A test piece for measuring thermal conductivity was cut out. Each of these test pieces was subjected to a solution treatment by being held at 1050 ° C. for 60 minutes in a vacuum, and then cooled at a cooling rate of 30 ° C./min. Furthermore, after conducting an aging heat treatment in a vacuum at 500 to 700 ° C. for 60 minutes, the thermal conductivity and the thermal expansion coefficient were measured. The obtained results are also shown in Table 1. The thermal conductivity and the coefficient of thermal expansion were determined in the same manner as in Example 1.

表1から明らかなように、発明例3は少量のCrを含有することにより、比較例3と比べて熱伝導率を同等に維持しながら、熱膨張率を約15%低減することに成功している。
<実施例4>
平均粒径100μmのCr粉末に平均粒径2μmのW粉末と平均粒径5μmのMo粉末を表1に示す組成でパラフィンワックスを添加したエタノール溶液中に添加し、混練乾燥させた。この混合粉末を型に自然充填して、600℃水素中でパラフィンワックスを脱脂後、1350℃に焼結し、気孔率約38%となる焼結体(70mm×70mm×4mm)を作製した。その焼結体上面に純Cu板を載置し、真空中にて1200℃に加熱してCuを溶解し、焼結体に溶浸させて溶浸体を得た。次いでフライス盤を用いて、溶浸体の表面に残留するCuを除去して厚さ2mmの溶浸体を作製した。これを発明例4とする。
As is clear from Table 1, Invention Example 3 contains a small amount of Cr, and has succeeded in reducing the coefficient of thermal expansion by about 15% while maintaining the same thermal conductivity as Comparative Example 3. ing.
<Example 4>
W powder with an average particle size of 2 μm and Mo powder with an average particle size of 5 μm were added to an Cr solution with an average particle size of 100 μm in an ethanol solution with paraffin wax added in the composition shown in Table 1, and kneaded and dried. This mixed powder was naturally filled in a mold, degreased with paraffin wax in hydrogen at 600 ° C., and then sintered at 1350 ° C. to produce a sintered body (70 mm × 70 mm × 4 mm) having a porosity of about 38%. A pure Cu plate was placed on the upper surface of the sintered body, heated to 1200 ° C. in vacuum to dissolve Cu, and infiltrated into the sintered body to obtain an infiltrated body. Next, using a milling machine, Cu remaining on the surface of the infiltrated body was removed to prepare an infiltrated body having a thickness of 2 mm. This is referred to as Invention Example 4.

また発明例4の用浸体の密度を測定し、気孔率≒0と仮定して組成比を求めた。その結果を表1に示す。
さらに発明例4の溶浸体から長さ25mm,幅8mm,厚さ2mmの板状の熱膨張率測定用試験片、および直径16mm,厚さ2mmの円盤状の熱伝導率測定用試験片を切り出した。この各試験片に、真空中1050℃にて60分間保持し溶体化処理を行なった後、30℃/分の冷却速度で冷却した。さらに真空中、500〜700℃において60分保持する時効熱処理を施した後、熱伝導率および熱膨張率を測定した。得られた結果を表1に併せて示す。なお、熱伝導率および熱膨張率は実施例1と同様にして求めた。
Further, the density of the immersion body of Invention Example 4 was measured, and the composition ratio was determined on the assumption that the porosity was approximately zero. The results are shown in Table 1.
Furthermore, a plate-like thermal expansion coefficient test piece having a length of 25 mm, a width of 8 mm, and a thickness of 2 mm, and a disk-shaped test piece of thermal conductivity measurement having a diameter of 16 mm and a thickness of 2 mm are obtained from the infiltrated body of Invention Example 4. Cut out. Each test piece was subjected to a solution treatment by being held at 1050 ° C. in a vacuum for 60 minutes, and then cooled at a cooling rate of 30 ° C./min. Furthermore, after conducting an aging heat treatment in a vacuum at 500 to 700 ° C. for 60 minutes, the thermal conductivity and the thermal expansion coefficient were measured. The obtained results are also shown in Table 1. The thermal conductivity and the coefficient of thermal expansion were determined in the same manner as in Example 1.

表1から明らかなように発明例4と比較例1では、熱膨張率および熱伝導率が同等の放熱材料が得られている。ただし発明例4は、Mo量とW量を合計した量を比較例1のMo量の27%に低減することに成功しており、大幅なコスト削減が可能となる。さらに発明例4は、比較例1に比べて密度を約10%低減しており、放熱材料の軽量化にも寄与できる。
As is apparent from Table 1, in Invention Example 4 and Comparative Example 1, heat dissipation materials having the same thermal expansion coefficient and thermal conductivity are obtained. However, Invention Example 4 has succeeded in reducing the total amount of Mo and W to 27% of the amount of Mo of Comparative Example 1, and can greatly reduce the cost. Further, Invention Example 4 has a density reduced by about 10% compared to Comparative Example 1, and can contribute to weight reduction of the heat dissipation material.

Claims (11)

CrとCuに加えてWおよび/またはMoを含有し、残部が不可避的不純物からなる組成を有し、かつCr相粒子に加えて、W相粒子および/またはMo相粒子がCu相基地中に分散した組織を有することを特徴とする放熱材料。   In addition to Cr and Cu, it contains W and / or Mo, the balance is composed of inevitable impurities, and in addition to Cr phase particles, W phase particles and / or Mo phase particles are in the Cu phase matrix. A heat-dissipating material characterized by having a dispersed structure. 前記組成のW含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であることを特徴とする請求項1に記載の放熱材料。   2. The heat dissipation material according to claim 1, wherein a total of the W content and / or the Mo content and the Cr content of the composition is more than 30% by mass and 90% by mass or less. 前記Cr相粒子に加えて前記W相粒子および/または前記Mo相粒子がCu相基地中に分散し、かつ長径100nm以下の微細粒Cr相がCu相中に分散されることを特徴とする請求項1または2に記載の放熱材料。   The W phase particles and / or the Mo phase particles are dispersed in the Cu phase matrix in addition to the Cr phase particles, and a fine grain Cr phase having a major axis of 100 nm or less is dispersed in the Cu phase. Item 3. A heat dissipation material according to item 1 or 2. 前記微細粒Cr相のアスペクト比が10未満であることを特徴とする請求項3に記載の放熱材料。   The heat dissipation material according to claim 3, wherein an aspect ratio of the fine grain Cr phase is less than 10. 前記微細粒Cr相の分布密度が20個/μm2 以上であることを特徴とする請求項3または4に記載の放熱材料。 The heat dissipation material according to claim 3 or 4, wherein a distribution density of the fine grain Cr phase is 20 pieces / µm 2 or more. 請求項1〜5のいずれか一項に記載の放熱材料を使用することを特徴とする半導体用放熱板。   A heat dissipation plate for a semiconductor, wherein the heat dissipation material according to any one of claims 1 to 5 is used. 請求項1〜5のいずれか一項に記載の放熱材料を一部に取付けたことを特徴とする半導体用放熱部品。   A heat dissipating part for semiconductor, wherein the heat dissipating material according to claim 1 is attached to a part thereof. W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、CrとCuに加えてWおよび/またはMoの粉末を混合した後、焼結して30℃/分以下の冷却速度で冷却し、得られた焼結体を500〜750℃の温度範囲で時効熱処理することを特徴とする放熱材料の製造方法。   In the method of manufacturing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities, in addition to Cr and Cu After mixing W and / or Mo powder, sintering and cooling at a cooling rate of 30 ° C./min or less, and subjecting the obtained sintered body to an aging heat treatment in a temperature range of 500 to 750 ° C. Manufacturing method of heat dissipation material. W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、CrとCuに加えてWおよび/またはMoの粉末を混合した後、焼結し、得られた焼結体に900〜1050℃の温度範囲で溶体化熱処理を施して30℃/分以下の冷却速度で冷却し、さらに500〜750℃の温度範囲で時効熱処理することを特徴とする放熱材料の製造方法。   In the method of manufacturing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities, in addition to Cr and Cu After the W and / or Mo powders are mixed and sintered, the obtained sintered body is subjected to solution heat treatment in a temperature range of 900 to 1,050 ° C. and cooled at a cooling rate of 30 ° C./min. A method for producing a heat-dissipating material, characterized by performing an aging heat treatment in a temperature range of 500 to 750 ° C. W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、Cr、またはCrとCu、に加えてWおよび/またはMoの粉末を混合した後、焼結し、得られた焼結体にCuまたはCu−Cr合金を溶浸して30℃/分以下の冷却速度で冷却し、さらに得られた溶浸体を500〜750℃の温度範囲で時効熱処理することを特徴とする放熱材料の製造方法。   In the method for manufacturing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities, Cr, or Cr and Cu In addition, W and / or Mo powders are mixed and then sintered, and Cu or Cu-Cr alloy is infiltrated into the obtained sintered body and cooled at a cooling rate of 30 ° C./min. A method for producing a heat-dissipating material, characterized by subjecting the obtained infiltrant to an aging heat treatment in a temperature range of 500 to 750 ° C. W含有量および/またはMo含有量とCr含有量との合計が30質量%超え90質量%以下であり、残部がCuと不可避的不純物である放熱材料の製造方法において、Cr、またはCrとCu、に加えてWおよび/またはMoの粉末を混合した後、焼結し、得られた焼結体にCuまたはCu−Cr合金を溶浸し、得られた溶浸体に900〜1050℃の温度範囲で溶体化熱処理を施して30℃/分以下の冷却速度で冷却し、さらに500〜750℃の温度範囲で時効熱処理することを特徴とする放熱材料の製造方法。
In the method for manufacturing a heat dissipation material in which the total of W content and / or Mo content and Cr content is more than 30% by mass and 90% by mass or less, and the balance is Cu and inevitable impurities, Cr, or Cr and Cu In addition to mixing W and / or Mo powder, sintering is performed, Cu or Cu-Cr alloy is infiltrated into the obtained sintered body, and the obtained infiltrated body has a temperature of 900 to 1050 ° C. A method for producing a heat-dissipating material, comprising subjecting a solution heat treatment in a range, cooling at a cooling rate of 30 ° C./min or less, and further performing an aging heat treatment in a temperature range of 500 to 750 ° C.
JP2008304828A 2008-11-28 2008-11-28 Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material Pending JP2010126791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304828A JP2010126791A (en) 2008-11-28 2008-11-28 Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304828A JP2010126791A (en) 2008-11-28 2008-11-28 Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material

Publications (1)

Publication Number Publication Date
JP2010126791A true JP2010126791A (en) 2010-06-10

Family

ID=42327380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304828A Pending JP2010126791A (en) 2008-11-28 2008-11-28 Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material

Country Status (1)

Country Link
JP (1) JP2010126791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007203A (en) * 2010-06-24 2012-01-12 Japan Ae Power Systems Corp Method of manufacturing electrode material for vacuum circuit breaker and electrode material for vacuum circuit breaker
WO2012133001A1 (en) * 2011-03-30 2012-10-04 株式会社東芝 Sintered mo part for heat sink plate for semiconductor device and semiconductor device including same
EP2586882A1 (en) * 2010-06-24 2013-05-01 Meiden T&D Corporation Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538457A (en) * 1991-08-03 1993-02-19 Fujitsu Ltd Method and apparatus for holding liquid in minute gravity environment
JP2000239762A (en) * 1999-02-24 2000-09-05 Furukawa Electric Co Ltd:The Copper alloy low in thermal expansion coefficient and high in thermal conductivity, and electrical and electronic equipment parts using the copper alloy
JP2005330583A (en) * 2004-04-15 2005-12-02 Jfe Seimitsu Kk Cu-Cr ALLOY AND Cu-Cr ALLOY PRODUCTION METHOD
JP2008240007A (en) * 2007-03-26 2008-10-09 Jfe Steel Kk Cr-Cu ALLOY SHEET, HEAT SINK FOR SEMICONDUCTOR, AND HEAT DISSIPATING COMPONENT FOR SEMICONDUCTOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538457A (en) * 1991-08-03 1993-02-19 Fujitsu Ltd Method and apparatus for holding liquid in minute gravity environment
JP2000239762A (en) * 1999-02-24 2000-09-05 Furukawa Electric Co Ltd:The Copper alloy low in thermal expansion coefficient and high in thermal conductivity, and electrical and electronic equipment parts using the copper alloy
JP2005330583A (en) * 2004-04-15 2005-12-02 Jfe Seimitsu Kk Cu-Cr ALLOY AND Cu-Cr ALLOY PRODUCTION METHOD
JP2008240007A (en) * 2007-03-26 2008-10-09 Jfe Steel Kk Cr-Cu ALLOY SHEET, HEAT SINK FOR SEMICONDUCTOR, AND HEAT DISSIPATING COMPONENT FOR SEMICONDUCTOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007203A (en) * 2010-06-24 2012-01-12 Japan Ae Power Systems Corp Method of manufacturing electrode material for vacuum circuit breaker and electrode material for vacuum circuit breaker
EP2586882A1 (en) * 2010-06-24 2013-05-01 Meiden T&D Corporation Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
EP2586882A4 (en) * 2010-06-24 2014-05-21 Meidensha Electric Mfg Co Ltd Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
WO2012133001A1 (en) * 2011-03-30 2012-10-04 株式会社東芝 Sintered mo part for heat sink plate for semiconductor device and semiconductor device including same

Similar Documents

Publication Publication Date Title
JP4213134B2 (en) Cu-Cr alloy and method for producing Cu-Cr alloy
US7955448B2 (en) Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
US8557015B2 (en) Cr-Cu alloy, method for producing the same, heat-release plate for semiconductor, and heat-release component for semiconductor
WO2020122230A1 (en) Pure copper sheet, member for electronic/electric device, and member for heat dissipation
WO2011040044A1 (en) Heat sink for electronic device, and process for production thereof
JP5531329B2 (en) Package based on semiconductor heat dissipation parts
JP6083634B2 (en) Heat dissipation substrate and method for manufacturing the heat dissipation substrate
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
JP4138844B2 (en) Cr-Cu alloy, manufacturing method thereof, heat sink for semiconductor, and heat dissipation component for semiconductor
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
JP5208616B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP6595740B1 (en) Metal-silicon carbide composite and method for producing the same
JP5286507B2 (en) Method for producing Cr-Cu alloy plate
JP5368766B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP5211314B2 (en) Cr-Cu alloy plate, heat radiating plate for electronic device using the same, and heat radiating component for electronic device
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP2001217364A (en) Al-SiC COMPOSITE
JP2016111328A (en) Heat-dissipating substrate, and semiconductor package and semiconductor module using the same
JP2021158355A (en) Manufacturing method of thermoelectric conversion element and manufacturing method of thermoelectric conversion module using the same
JP2007103968A (en) Substrate material for mounting semiconductor element
JP2001246492A (en) Alloy brazing filler metal for die bonding
JP2006054297A (en) Heat dissipation substrate and its manufacturing method
JP2017098574A (en) Heat dissipating substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Effective date: 20130212

Free format text: JAPANESE INTERMEDIATE CODE: A02