JP2021158355A - Manufacturing method of thermoelectric conversion element and manufacturing method of thermoelectric conversion module using the same - Google Patents

Manufacturing method of thermoelectric conversion element and manufacturing method of thermoelectric conversion module using the same Download PDF

Info

Publication number
JP2021158355A
JP2021158355A JP2021047269A JP2021047269A JP2021158355A JP 2021158355 A JP2021158355 A JP 2021158355A JP 2021047269 A JP2021047269 A JP 2021047269A JP 2021047269 A JP2021047269 A JP 2021047269A JP 2021158355 A JP2021158355 A JP 2021158355A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
foil
conversion element
layer
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021047269A
Other languages
Japanese (ja)
Inventor
知丈 東平
Tomotake Tohira
知丈 東平
駿仁 中沢
Hayato Nakazawa
駿仁 中沢
武司 島田
Takeshi Shimada
武司 島田
三智子 松田
Michiko Matsuda
三智子 松田
玄也 能川
Genya Nokawa
玄也 能川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2021158355A publication Critical patent/JP2021158355A/en
Pending legal-status Critical Current

Links

Images

Abstract

To solve a problem in which a crack and the like occur in a diffusion prevention layer at a joint, and it is difficult to make the diffusion prevention layer dense at the same time as the powder of a thermoelectric conversion material.SOLUTION: A manufacturing method of a thermoelectric conversion element includes a step of sintering a thermoelectric conversion material powder containing Sb in contact with an alloy foil containing Ti and Al to obtain a thermoelectric conversion material having a diffusion prevention layer, and in the alloy foil containing Ti and Al, in a cross-section observation method that can determine an orientation difference of a crystal, when an area of 5000 μm2 or more is observed, the number of crystal grains defined by the grain boundaries with an orientation difference of 10 degrees or more is 1.0 or less/5000 μm2.SELECTED DRAWING: Figure 1

Description

本発明は、熱を電気に変換する熱電変換素子の製造方法、及び、それを用いた熱電変換モジュールの製造方法に関するものである。 The present invention relates to a method for manufacturing a thermoelectric conversion element that converts heat into electricity, and a method for manufacturing a thermoelectric conversion module using the same.

例えば、工場の排熱等の高温部の熱を有効に利用するため、熱を電気に変換する熱電変換モジュールの検討が進められている。熱電変換モジュールは、多数の熱電変換素子からなる。熱電変換素子は、高温側と低温側との温度差に応じた起電力を発生し、N型およびP型の熱電変換素子を直列に接続し、一方の面を高温側として、他方の面を低温側として配置することで、熱を電気に変換することができる。 For example, in order to effectively utilize the heat of a high temperature part such as the exhaust heat of a factory, a thermoelectric conversion module that converts heat into electricity is being studied. The thermoelectric conversion module is composed of a large number of thermoelectric conversion elements. The thermoelectric conversion element generates an electromotive force according to the temperature difference between the high temperature side and the low temperature side, and N-type and P-type thermoelectric conversion elements are connected in series, one surface is the high temperature side and the other surface is. By arranging it on the low temperature side, heat can be converted into electricity.

近年、電気的な特性(性能指数ZT)の高い熱電変換材料として、スクッテルダイト構造を有し、Sbを含む、Sb系熱電変換材料が注目されている。このスクッテルダイト系の熱電変換素子を用いれば、例えば、高温部が300℃〜500℃程度となる場合において、効率よく熱を電気に変換することができる。 In recent years, as a thermoelectric conversion material having a high electrical characteristic (figure of merit ZT), an Sb-based thermoelectric conversion material having a scutterdite structure and containing Sb has been attracting attention. By using this scutterdite-based thermoelectric conversion element, heat can be efficiently converted into electricity, for example, when the high temperature portion is about 300 ° C. to 500 ° C.

このような熱電変換素子は、熱電変換モジュールとして使用される際に、高温側と低温側とにそれぞれ電極が接合される。しかし、特に高温側においては、電極と熱電変換素子との間で固相拡散が進行し、熱電変換素子の一部が劣化するおそれがある。また、特に高温側では、熱サイクルが生じるため、接合部における拡散層にクラック等が生じる恐れがある。このような状態は、電気抵抗の増大などを引き起こし、電気的な性能の低下の要因となる。 When such a thermoelectric conversion element is used as a thermoelectric conversion module, electrodes are bonded to a high temperature side and a low temperature side, respectively. However, especially on the high temperature side, solid phase diffusion may proceed between the electrode and the thermoelectric conversion element, and a part of the thermoelectric conversion element may be deteriorated. Further, especially on the high temperature side, a thermal cycle occurs, so that there is a possibility that cracks or the like may occur in the diffusion layer at the joint. Such a state causes an increase in electrical resistance and causes a decrease in electrical performance.

これに対し、特許文献1では、Sb系スクッテルダイト熱電素子と電極材料との拡散を抑制するため、Ti粉末またはTi粉末とAl粉末の混合粉末を熱電素子合金粉末の端部に充填し同時焼結する方法が提案されている。また、特許文献2では、Sbを含む合金からなる熱電変換材料と、前記熱電変換材料に積層され、TiおよびAlを含む合金からなる拡散防止層と、を含む焼結体からなり、前記拡散防止層を構成する焼結体のネック部がTi−Al合金化しており、焼結体の各部におけるAl濃度が50at%以下である熱電変換素子を開示している。これにより、主にAlとSbからなる、周囲に比べて脆いAl濃化部(Al−Sb)を抑制し、当該部位を起点としたクラックを低減することで、電気的な特性を維持できる信頼性の高い熱電変換素子を提供できるとしている。ここで、Ti−Al合金などの表記は、Tiの元素とAlの元素とを主要元素(含有量における上位元素)として含む合金であることを意味している。 On the other hand, in Patent Document 1, in order to suppress the diffusion between the Sb-based sinterdite thermoelectric element and the electrode material, Ti powder or a mixed powder of Ti powder and Al powder is filled at the end of the thermoelectric element alloy powder at the same time. A method of sintering has been proposed. Further, in Patent Document 2, it is composed of a sintered body containing a thermoelectric conversion material made of an alloy containing Sb and a diffusion prevention layer made of an alloy containing Ti and Al laminated on the thermoelectric conversion material, and the diffusion prevention. A thermoelectric conversion element is disclosed in which the neck portion of the sintered body constituting the layer is Ti-Al alloyed and the Al concentration in each portion of the sintered body is 50 at% or less. As a result, the Al-concentrated portion (Al-Sb), which is mainly composed of Al and Sb and is fragile compared to the surroundings, is suppressed, and cracks originating from the portion are reduced, so that the electrical characteristics can be maintained. It is said that it can provide a thermoelectric conversion element with high performance. Here, the notation such as Ti—Al alloy means that the alloy contains an element of Ti and an element of Al as a main element (upper element in the content).

特開2011−249442号公報Japanese Unexamined Patent Publication No. 2011-249442 特開2019−169534号公報JP-A-2019-169534

特許文献1、及び、特許文献2に記載の拡散防止層は、いずれも粉末を用いて、熱電変換材料の粉末と同時に焼結していた。この場合に、熱電変換材料の粉末と同時に緻密化させる焼結の制御が難しいことが課題だった。 Both the diffusion prevention layer described in Patent Document 1 and Patent Document 2 were sintered using powder at the same time as the powder of the thermoelectric conversion material. In this case, the problem is that it is difficult to control sintering, which is densified at the same time as the powder of the thermoelectric conversion material.

本発明の目的は、特許文献1、及び、特許文献2に記載の、接合部における拡散層にクラック等が生じるという課題を解決し、熱電変換材料の粉末との同時焼結による緻密化という課題も解決することを目的とする。 An object of the present invention is to solve the problem of cracks or the like occurring in the diffusion layer at the joint portion described in Patent Documents 1 and 2, and the problem of densification by simultaneous sintering of the thermoelectric conversion material with powder. The purpose is to solve the problem.

本発明の熱電変換素子の製造方法は、Sbを含む前記熱電変換材料の粉末と、TiとAlを含む合金箔とを接触させた状態で焼結し、拡散防止層を備えた熱電変換材料を得る工程、を有し、前記TiとAlを含む合金箔は、結晶の方位差を判別可能な断面観察手法において、5000μm以上の広さの領域を観察したとき、10度以上の方位差の粒界で規定される結晶粒の数が1.0個以下/5000μmであることを特徴とする。 The method for producing a thermoelectric conversion element of the present invention is to obtain a thermoelectric conversion material provided with a diffusion prevention layer by sintering the powder of the thermoelectric conversion material containing Sb in contact with an alloy foil containing Ti and Al. The alloy foil containing Ti and Al has an orientation difference of 10 degrees or more when observing a region having an area of 5000 μm 2 or more in a cross-sectional observation method capable of discriminating the orientation difference of crystals. The number of crystal grains defined by the grain boundaries is 1.0 or less / 5000 μm 2 .

さらに、前記TiとAlを含む合金箔は、Alの含有量が8mass%以上36mass%以下であり、TiAl化合物を有することが好ましい。 Further, the alloy foil containing Ti and Al preferably has an Al content of 8 mass% or more and 36 mass% or less, and has a Ti 3 Al compound.

さらに、本発明の熱電変換モジュールの製造方法は、前述の熱電変換素子の製造方法で得られた熱電変換素子と、電極とを、前記拡散防止層を介して接合する工程を有することが好ましい。 Further, the method for manufacturing a thermoelectric conversion module of the present invention preferably includes a step of joining the thermoelectric conversion element obtained by the above-mentioned method for manufacturing a thermoelectric conversion element and an electrode via the diffusion prevention layer.

本発明によれば、接合部における拡散層にクラック等が生じることを抑制し、熱電変換材料の粉末と同時に緻密化させられる熱電変換素子の製造方法を提供できる。 According to the present invention, it is possible to provide a method for manufacturing a thermoelectric conversion element that suppresses the occurrence of cracks or the like in the diffusion layer at the joint portion and can be densified at the same time as the powder of the thermoelectric conversion material.

熱電変換モジュールの全体構造を示す斜視図。The perspective view which shows the whole structure of a thermoelectric conversion module. 熱電変換モジュールの断面拡大図。An enlarged cross-sectional view of the thermoelectric conversion module. Ti−Al箔のX線回折結果を示す図。The figure which shows the X-ray diffraction result of the Ti-Al foil. Ti−Al箔とSbを含む熱電変換素子の接合界面の断面SEM写真。A cross-sectional SEM photograph of the bonding interface of a thermoelectric conversion element containing Ti-Al foil and Sb. 図4の接合界面近傍のEDXライン分析結果。EDX line analysis result near the junction interface in FIG. Ti−Al箔付き熱電変換材料の製造プロセスフロー図。The manufacturing process flow diagram of the thermoelectric conversion material with Ti-Al foil. 実施例1のSEM−EDX分析結果。SEM-EDX analysis result of Example 1. 高温放置試験を施行した実施例1のSEM−EDX分析結果。Results of SEM-EDX analysis of Example 1 in which a high-temperature standing test was performed. 実施例2のSEM−EDX分析結果。SEM-EDX analysis result of Example 2. 実施例3のSEM−EDX分析結果。SEM-EDX analysis result of Example 3. 実施例4のSEM−EDX分析結果。SEM-EDX analysis result of Example 4. 高温放置試験を施行した実施例5のSEM−EDX分析結果。Results of SEM-EDX analysis of Example 5 in which a high-temperature standing test was performed. 比較例1のSEM観察結果。SEM observation result of Comparative Example 1.

以下、図面に沿って本発明の実施の形態を説明する。図1は本実施形態の熱電変換モジュール10の全体構造を示す斜視図である。熱電変換モジュール10はP型熱電変換素子21、N型熱電変換素子22、電極30、セラミックス配線基板40で構成される。隣り合うP型熱電変換素子21とN型熱電変換素子22は千鳥格子状に配列され、電極30とセラミックス配線基板40を介して電気的に直列となるように接続される。N型熱電変換素子22およびP型熱電変換素子はSbを含む熱電変換材料で、特にスクッテルダイト構造を有するものが好ましい。例えば、P型熱電変換素子21はCeFeMn4−ySb12、N型熱電変換素子22はYbCoSb12が好適である。Sbを含むスクッテルダイト構造の場合、上記の組成に他の微量元素が含まれていてもよい。スクッテルダイト構造の熱電変換材料は300〜500℃の温度域で発電性能が高く、大きな温度差を得ることで高い出力を得ることが可能である。そのため、Sbを含む熱電変換材料をXRDにより同定し、スクッテルダイト構造の単一相であることが好ましい。Sbを含む熱電変換材料とは、他の元素に比べてSbが多い組成や、Sbより安定な他の元素との組成物など、Sbが反応しやすい状態で含まれるということである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the overall structure of the thermoelectric conversion module 10 of the present embodiment. The thermoelectric conversion module 10 is composed of a P-type thermoelectric conversion element 21, an N-type thermoelectric conversion element 22, an electrode 30, and a ceramic wiring board 40. Adjacent P-type thermoelectric conversion elements 21 and N-type thermoelectric conversion elements 22 are arranged in a houndstooth pattern, and are electrically connected in series via an electrode 30 and a ceramic wiring board 40. The N-type thermoelectric conversion element 22 and the P-type thermoelectric conversion element are thermoelectric conversion materials containing Sb, and those having a scutterdite structure are particularly preferable. E.g., P-type thermoelectric conversion element 21 is Ce x Fe y Mn 4-y Sb 12, N -type thermoelectric conversion element 22 is suitably Yb x Co 4 Sb 12. In the case of a scutterdite structure containing Sb, other trace elements may be contained in the above composition. The thermoelectric conversion material having a scutterdite structure has high power generation performance in a temperature range of 300 to 500 ° C., and it is possible to obtain a high output by obtaining a large temperature difference. Therefore, it is preferable that the thermoelectric conversion material containing Sb is identified by XRD and has a single phase having a scutterdite structure. The thermoelectric conversion material containing Sb means that Sb is contained in a state in which Sb easily reacts, such as a composition having more Sb than other elements and a composition with other elements that are more stable than Sb.

電極30は300〜500℃の温度域でも通電可能な部材であればよい。さらにP型熱電変換素子21およびN型熱電変換素子22と熱膨張率の近い部材であればよく、単一層の純金属や合金または複数層の純金属や合金からなる構造を有してもよい。特にSbを含む熱電変換材料の場合は、Cuや、CuとMoとを混合(粒状で複合化、層状に複合化など)して熱膨張を調整した複合材であることが好ましい。 The electrode 30 may be a member that can be energized even in a temperature range of 300 to 500 ° C. Further, the member may have a thermal expansion coefficient close to that of the P-type thermoelectric conversion element 21 and the N-type thermoelectric conversion element 22, and may have a structure composed of a single layer of pure metal or alloy or a plurality of layers of pure metal or alloy. .. In particular, in the case of a thermoelectric conversion material containing Sb, it is preferable that it is a composite material in which Cu or Cu and Mo are mixed (composite in granular form, composite in layers, etc.) to adjust the thermal expansion.

セラミックス配線基板40は絶縁性を有していればよく、例えばアルミナ、窒化アルミニウム、窒化ケイ素等のセラミックス材料を使用することで、低温から高温まで広い温度範囲で利用できるため好ましい。 The ceramic wiring board 40 may have insulating properties, and it is preferable to use a ceramic material such as alumina, aluminum nitride, or silicon nitride because it can be used in a wide temperature range from low temperature to high temperature.

図2は熱電変換モジュールの一部を拡大した断面図を示している。セラミックス配線基板40の両面には第一の導電部材41と第二の導電部材42が形成される。第一の導電部材41および第二の導電部材42は電極30と同様にCu等の部材であればよい。第一の導電部材41は接合層60に対して接合性を向上させる目的でNi等の金属膜(図示せず)を形成してもよい。 FIG. 2 shows an enlarged cross-sectional view of a part of the thermoelectric conversion module. A first conductive member 41 and a second conductive member 42 are formed on both surfaces of the ceramic wiring board 40. The first conductive member 41 and the second conductive member 42 may be members such as Cu as well as the electrode 30. The first conductive member 41 may form a metal film (not shown) such as Ni for the purpose of improving the bondability with respect to the bonding layer 60.

接合層60は、はんだや、ろう材、または金属ナノ粒子焼結層などを用いればよい。接合層60として、金属ナノ粒子ペーストを用いた焼結層を形成する場合は、接合温度よりも高い温度で熱電変換モジュールが動作した場合も溶融が生じず、信頼性が高いため望ましい。第一の導電部材41がCuの場合、接合層60はCuの焼結層であることがより好ましい。すなわち、Cuが含まれる金属ナノ粒子ペーストを用いることでCuの焼結層を形成する。 As the bonding layer 60, solder, a brazing material, a metal nanoparticle sintered layer, or the like may be used. When a sintered layer using a metal nanoparticle paste is formed as the bonding layer 60, melting does not occur even when the thermoelectric conversion module operates at a temperature higher than the bonding temperature, which is desirable because of high reliability. When the first conductive member 41 is Cu, the bonding layer 60 is more preferably a sintered layer of Cu. That is, a Cu sintered layer is formed by using a metal nanoparticle paste containing Cu.

金属層51は、接合層60を介してセラミックス配線基板とP型熱電変換素子21およびN型熱電変換素子22を接合しやすくする役割を持つ。金属層51は接合層60との接合性を考慮して種々の選択が可能であり、接合層60をCuの焼結層とする場合はNiが特に好ましい。CuとNiは平衡状態図からも明らかなように全率固溶する。そのため、ネックが形成されやすく、強固に接合することが可能である。 The metal layer 51 has a role of facilitating bonding between the ceramic wiring board and the P-type thermoelectric conversion element 21 and the N-type thermoelectric conversion element 22 via the bonding layer 60. The metal layer 51 can be selected in various ways in consideration of the bondability with the bonding layer 60, and when the bonding layer 60 is a Cu sintered layer, Ni is particularly preferable. As is clear from the equilibrium phase diagram, Cu and Ni are completely solid-solved. Therefore, the neck is easily formed and can be firmly joined.

金属層51の形成方法は拡散防止層50の有無に合わせて適宜選択すればよい。例えば、拡散防止層50は少なくとも電極30側の一方に形成されていればよい。すなわち、セラミックス配線基板側の拡散防止層50は形成せずともよく、その場合はP型熱電変換素子21とN型熱電変換素子22の一方の面に金属層51を形成すればよい。P型熱電変換素子21およびN型熱電変換素子22の面に金属層51を形成する場合はめっき法等を適用することができる。拡散防止層50を形成する場合は、熱電変換材料と拡散防止層50の接合と同時に金属層51としてNiを接合すればよい。 The method for forming the metal layer 51 may be appropriately selected depending on the presence or absence of the diffusion prevention layer 50. For example, the diffusion prevention layer 50 may be formed on at least one of the electrodes 30 side. That is, the diffusion prevention layer 50 on the ceramic wiring board side does not have to be formed. In that case, the metal layer 51 may be formed on one surface of the P-type thermoelectric conversion element 21 and the N-type thermoelectric conversion element 22. When the metal layer 51 is formed on the surfaces of the P-type thermoelectric conversion element 21 and the N-type thermoelectric conversion element 22, a plating method or the like can be applied. When forming the diffusion prevention layer 50, Ni may be bonded as the metal layer 51 at the same time as the thermoelectric conversion material and the diffusion prevention layer 50 are bonded.

拡散防止層50は鋳造合金から製造されたTi−Al箔で形成されており、100μm×50μmの断面観察範囲で方位差が10度未満の結晶粒界で構成された結晶粒であることが望ましい。より好ましくは結晶粒界の方位差が2度以下の結晶粒で構成することが良い。ここでは金属組織中に1つ以上の結晶粒が存在する場合、まとめて結晶粒群と表記する。結晶粒群中の各々の結晶粒はEBSD(Electron Backscatter Diffraction)を用いたカラーマップ等で判別することが可能である。結晶粒の方位差が10度以上で構成される結晶粒群の場合はBSE像(Back Scattered Electron)等でも判別が可能である。EBSDを用いた評価では基準方位差を指定することで、指定の方位差以上の角度で結晶粒界の両側の結晶粒が存在する場合、個々の結晶粒と判定する。言い換えると基準の方位差未満の結晶粒界の両側の結晶粒を持つ場合は、個々の結晶粒と見なさずに一つの結晶粒として判定する。尚、熱電変換素子として使用中に拡散防止層としての機能を得られるものであれば、箔を、板、薄片、薄板、膜などと表記してもよく、厚さや形態を制限しない。 The diffusion prevention layer 50 is formed of a Ti—Al foil manufactured from a cast alloy, and is preferably a crystal grain composed of grain boundaries having an orientation difference of less than 10 degrees in a cross-sectional observation range of 100 μm × 50 μm. .. More preferably, it is preferably composed of crystal grains having a crystal grain boundary orientation difference of 2 degrees or less. Here, when one or more crystal grains are present in the metal structure, they are collectively referred to as a crystal grain group. Each crystal grain in the crystal grain group can be discriminated by a color map or the like using EBSD (Electron Backscatter Diffraction). In the case of a crystal grain group having a crystal grain orientation difference of 10 degrees or more, it can be discriminated by a BSE image (Back Scattered Electron) or the like. In the evaluation using EBSD, by designating the reference orientation difference, if crystal grains on both sides of the crystal grain boundary are present at an angle equal to or greater than the specified orientation difference, it is determined to be individual crystal grains. In other words, when there are crystal grains on both sides of the crystal grain boundary less than the reference orientation difference, it is determined as one crystal grain without considering it as an individual crystal grain. The foil may be referred to as a plate, a thin piece, a thin plate, a film, or the like as long as the function as a diffusion prevention layer can be obtained during use as a thermoelectric conversion element, and the thickness and form are not limited.

Ti−Al箔はTi−Alインゴットからワイヤーソー等を用いて機械的に切断した後、ラップ仕上げ等によって所定の厚みに調整することが望ましい。結晶粒界の方位差が10度未満の結晶粒で構成されるTi−Al箔を使用することで図2中に示した反応層501の厚みを30μm以下に抑制することが可能で、信頼性低下の原因となるAl−Sb化合物相の生成を防止することができる。反応層の厚みはSEM(Scanning Electron Microscope)の断面観察から算出した平均厚さ等であればよい。 It is desirable that the Ti-Al foil is mechanically cut from the Ti-Al ingot using a wire saw or the like, and then adjusted to a predetermined thickness by wrapping or the like. By using a Ti—Al foil composed of crystal grains having a crystal grain boundary orientation difference of less than 10 degrees, the thickness of the reaction layer 501 shown in FIG. 2 can be suppressed to 30 μm or less, and reliability is achieved. It is possible to prevent the formation of an Al—Sb compound phase that causes a decrease. The thickness of the reaction layer may be an average thickness calculated from a cross-sectional observation of a SEM (Scanning Electron Microscope) or the like.

Ti−Alインゴットはコールドクルーシブ溶解法で作製することが望ましい。AlとTiを所定の割合で水冷銅るつぼにて溶融保持し、溶解炉内に設置した黒鉛製鋳型へ出湯し、冷却させることでTi−Alインゴットを得ることができる。Ti−Alインゴットは冷却の影響によって、結晶粒サイズや結晶品質に差が生じる。そのため、コールドクルーシブ溶解法によってAlとTiを溶解させて、黒鉛製鋳型で1時間冷却を施すことが望ましい。本溶解法におけるインゴット冷却に際しては、るつぼ内の溶湯の温度勾配を考慮して、るつぼの下方など低温側から溶湯を引き抜くように出湯し鋳型へ流し込むことで、ひけ巣の発生を抑止する凝固プロセスで置き換えてもよい。また、凝固後のTi−Alインゴットに対して、加圧・加熱を実施しながら不活性雰囲気にて長時間放置するHIP(Hot Isostatic Pressing)をプロセスに追加し、ひけ巣を除斥することが好ましい。 It is desirable to prepare the Ti-Al ingot by the cold crucible dissolution method. A Ti-Al ingot can be obtained by melting and holding Al and Ti in a water-cooled copper crucible at a predetermined ratio, discharging hot water to a graphite mold installed in a melting furnace, and cooling the mixture. The Ti-Al ingot has a difference in crystal grain size and crystal quality due to the influence of cooling. Therefore, it is desirable to dissolve Al and Ti by the cold crucible dissolution method and cool them with a graphite mold for 1 hour. When cooling the ingot in this melting method, the temperature gradient of the molten metal in the crucible is taken into consideration, and the molten metal is drawn out from the low temperature side such as below the crucible and poured into the mold to suppress the occurrence of sink marks. May be replaced with. In addition, HIP (Hot Isostatic Pressing), which is left for a long time in an inert atmosphere while pressurizing and heating the Ti-Al ingot after coagulation, can be added to the process to eliminate sink marks. preferable.

Alリッチ側のTi−Al化合物(例えばTiAl)の場合、熱電変換材料中のSbとAlが反応することでAl−Sbの形成を助長する懸念がある。そのため、Tiリッチ側のTiAlをTi−Al箔の組成とすることが望ましい。従って、コールドクルーシブ溶解の原料比はTi−19.5mass%Alの比率でTi−Alインゴットを作製することが好ましい。また、TiAlはAl含有量がTiAlよりも増加するが、融点が高い金属間化合物のため、Ti−34.2mass%Alの比率でTi−Alインゴットを作製してもよい。これらは、いずれもTiAlやTiAlなどの化合物の化学量論比を狙ったものであるが、これらの化合物を得られる組成比であればよい。従って、全体に対するAlの原料比は8mass%以上36mass%以下であることが好ましく、さらに19.5mass%〜34.2mass%であれば好ましい。 In the case of a Ti-Al compound on the Al-rich side (for example, TiAl 3 ), there is a concern that Sb in the thermoelectric conversion material reacts with Al to promote the formation of Al-Sb. Therefore, it is desirable to use Ti 3 Al on the Ti-rich side as the composition of the Ti-Al foil. Therefore, it is preferable to prepare a Ti-Al ingot at a ratio of Ti-19.5 mass% Al as a raw material ratio for cold crucible dissolution. Further, TiAl is Al content increases than Ti 3 Al, because the melting point is higher intermetallic compound, may be produced TiAl ingot in a ratio of Ti-34.2mass% Al. These are those both aimed at the stoichiometric ratio of the compound, such as TiAl and Ti 3 Al, it may be a composition ratio obtained these compounds. Therefore, the raw material ratio of Al to the whole is preferably 8 mass% or more and 36 mass% or less, and more preferably 19.5 mass% to 34.2 mass%.

図3にTi−Al箔の表面をX線回折評価した結果を示す。Ti−Alインゴットは溶解原料比Ti−19.5mass%Alの溶解原料比でコールドクルーシブ溶解法にて作製している。Ti−Alインゴットを切断してTi−Al箔を作製し、その表面を分析したX線回折結果である。TiAlの回折ピークが得られている。図3に示すようにTiAlの(201)面でピーク強度が最大になるTi−Al箔を使用することが望ましい。 FIG. 3 shows the results of X-ray diffraction evaluation of the surface of the Ti—Al foil. The Ti-Al ingot is produced by a cold crucible dissolution method with a dissolution raw material ratio of Ti-19.5 mass% Al. This is an X-ray diffraction result obtained by cutting a Ti-Al ingot to prepare a Ti-Al foil and analyzing the surface thereof. The diffraction peak of Ti 3 Al is obtained. As shown in FIG. 3, it is desirable to use a Ti—Al foil having the maximum peak intensity on the (201) plane of Ti 3 Al.

図4に拡散防止層50としてTi−Al箔を使用してN型熱電変換素子22を接合した場合の接合断面の電子顕微鏡写真の例を示す。電子顕微鏡写真はBSE像で示している。BSE像の場合、チャネリングコントラストの影響を受けるため、結晶方位に対する電子の入射角によって像のコントラストに変化が伴う。そのため、結晶粒界の方位差が10度以上の場合、粒界が明瞭に観察される。Ti−Al箔はEBSD分析による結晶粒界の方位差が10度未満で構成されるため、BSE像ではコントラストの差が明瞭にみられない。 FIG. 4 shows an example of an electron micrograph of a joining cross section when the N-type thermoelectric conversion element 22 is joined using Ti—Al foil as the diffusion prevention layer 50. The electron micrograph is shown as a BSE image. In the case of a BSE image, since it is affected by the channeling contrast, the contrast of the image changes depending on the angle of incidence of electrons with respect to the crystal orientation. Therefore, when the orientation difference of the crystal grain boundaries is 10 degrees or more, the grain boundaries are clearly observed. Since the Ti-Al foil is composed of the orientation difference of the crystal grain boundaries of less than 10 degrees by EBSD analysis, the difference in contrast is not clearly seen in the BSE image.

方位差の大きい結晶粒界は、転位等の欠陥が多く含まれる。従って原子配列の秩序が乱れているため、粒界での原子の拡散速度は粒内の体拡散よりも遥かに早い。すなわち方位差の大きい結晶粒界がTi−Al合金中に含まれる場合、熱電変換材料中のSb等の拡散が生じやすくなることで相変化を起こしやすい。Ti−Alが相変化を起こすと、熱電変換材料との接合界面には反応層が形成される。Ti−Alの相変化が多くなるほど、反応層の厚みは増加し、信頼性低下の原因となるAl−Sb等の化合物相を生成する。 Grain boundaries with a large orientation difference include many defects such as dislocations. Therefore, due to the disorder of the atomic arrangement, the diffusion rate of atoms at grain boundaries is much faster than that of body diffusion within grains. That is, when the grain boundaries having a large orientation difference are contained in the Ti—Al alloy, the diffusion of Sb and the like in the thermoelectric conversion material is likely to occur, so that a phase change is likely to occur. When Ti—Al undergoes a phase change, a reaction layer is formed at the bonding interface with the thermoelectric conversion material. As the phase change of Ti—Al increases, the thickness of the reaction layer increases, and a compound phase such as Al—Sb that causes a decrease in reliability is generated.

拡散防止層50としてTi−Al箔を使用した場合、Al−Sbの生成を防止して接合することが可能である。図5はTi−Al箔を使用した拡散防止層50とN型熱電変換素子22の接合界面をEDX(Energy Dispersive x−ray Spectroscopy)でライン分析した例を示す。AlとSbが相対的に高い部分は存在しておらず、図2中の反応層501のような明確な反応層が出ていないことがわかる。すなわち、信頼性低下の原因となるAl−Sbは確認されない。部位によっては、反応層501を形成するが、反応層501の厚みは30μm以下であり、信頼性低下の原因となるAl−Sbは確認されない。反応層501はAl−Sbの生成を防止できればよく、TiSb、Ti−Co−Sb、Ti−Al−Sbで形成される反応層であれば問題ない。Ti−Al箔を構成する結晶粒界の方位差を10度未満とすることで、反応層の厚さの抑制が可能である。このように、Ti−Al箔は、隣接する熱電変換材料粉末や金属層などと反応する可能性は想定される。拡散防止層は、少なくとも熱電変換素子として使用中にクラックの発生するような反応層の拡散を防止する機能を有していればよく、例えば、隣接する熱電変換材料粉末や金属層との間に少なくともTi−Alの層があればよい。ここで、クラックはその長さが、熱電変換材料の電気的な特性を妨げるものでなければよい。例えば、クラック有無は、電子顕微鏡写真の観察面20μm四方中に存在する5μmを超える長さのクラックを確認することで判別すればよい。この20μm四方の観察視野は界面を含む任意の箇所を観察すればよく、複数箇所確認することが好ましい。 When Ti—Al foil is used as the diffusion prevention layer 50, it is possible to prevent the formation of Al—Sb and join them. FIG. 5 shows an example in which the junction interface between the diffusion prevention layer 50 using Ti-Al foil and the N-type thermoelectric conversion element 22 is line-analyzed by EDX (Energy Dispersive x-ray Spectroscopy). It can be seen that there is no portion where Al and Sb are relatively high, and a clear reaction layer such as the reaction layer 501 in FIG. 2 does not appear. That is, Al-Sb, which causes a decrease in reliability, is not confirmed. Depending on the site, the reaction layer 501 is formed, but the thickness of the reaction layer 501 is 30 μm or less, and Al-Sb, which causes a decrease in reliability, is not confirmed. The reaction layer 501 only needs to be able to prevent the formation of Al—Sb, and there is no problem as long as it is a reaction layer formed of TiSb 2, Ti—Co—Sb, and Ti—Al—Sb. By setting the orientation difference of the crystal grain boundaries constituting the Ti—Al foil to less than 10 degrees, it is possible to suppress the thickness of the reaction layer. As described above, it is assumed that the Ti-Al foil may react with the adjacent thermoelectric conversion material powder, metal layer, or the like. The diffusion prevention layer may have at least a function of preventing the diffusion of the reaction layer that causes cracks during use as a thermoelectric conversion element, for example, between adjacent thermoelectric conversion material powders and metal layers. At least a Ti-Al layer is sufficient. Here, the length of the crack does not have to interfere with the electrical properties of the thermoelectric conversion material. For example, the presence or absence of cracks may be determined by confirming cracks having a length exceeding 5 μm existing in 20 μm square of the observation surface of the electron micrograph. In this 20 μm square observation field of view, any part including the interface may be observed, and it is preferable to confirm a plurality of parts.

反応層501の生成に寄与しない領域のTi−Al箔は熱電変換材料との焼結前後で相の変化は生じない。例えば、溶解原料比Ti−19.5mass%AlでTi−Al箔を製造すると、主要な相はTiAlとなるが、焼結後の拡散防止層50もTiAlを維持している。そのため、拡散防止効果の高い拡散防止層50を得ることができる。 The phase of the Ti—Al foil in the region that does not contribute to the formation of the reaction layer 501 does not change before and after sintering with the thermoelectric conversion material. For example, when a Ti-Al foil is produced with a dissolution raw material ratio of Ti-19.5 mass% Al, the main phase is Ti 3 Al, but the diffusion prevention layer 50 after sintering also maintains Ti 3 Al. Therefore, the diffusion prevention layer 50 having a high diffusion prevention effect can be obtained.

図6にTi−Al箔の拡散防止層付き熱電変換材料の製造プロセスフローを示す。Ti−Al箔の製造方法については、前述した通り、コールドクルーシブ法等によって黒鉛性鋳型に出湯することでTi−Alインゴットを得た後、ワイヤーソー等によって厚み50μm〜300μmの箔状に切り出す。切り出したTi−Al箔を研磨、洗浄することで拡散防止層50としてTi−Al箔を得る。 FIG. 6 shows a manufacturing process flow of a thermoelectric conversion material with a diffusion prevention layer of Ti—Al foil. As for the method for producing the Ti-Al foil, as described above, a Ti-Al ingot is obtained by pouring hot water into a graphite mold by a cold crucible method or the like, and then the Ti-Al ingot is cut into a foil having a thickness of 50 μm to 300 μm by a wire saw or the like. .. The cut out Ti-Al foil is polished and washed to obtain a Ti-Al foil as the diffusion prevention layer 50.

次に型の中へNi箔、Ti−Al箔、Sbを含む熱電変換材料を充填する。熱電変換材料の両面にTi−Al箔を形成する場合は、Ni箔、Ti−Al箔、Sbを含む熱電変換材料、Ti−Al箔、Ni箔の順で型の底面から積層すればよい。熱電変換材料の片面のみにTi−Al箔を形成する場合は、例えば、Ni箔、Ti−Al箔、Sbを含む熱電変換材料の順で型の底面から積層すればよく、Sbを含む熱電変換材料とNi箔を入れ替えて積層させてもよい。Sbを含む熱電変換材料は所定量型の中に直接充填してもよいし、事前に簡易プレス等で成型し、圧粉体の状態で型の中に積層させてもよい。 Next, a thermoelectric conversion material containing Ni foil, Ti—Al foil, and Sb is filled in the mold. When forming Ti-Al foil on both sides of the thermoelectric conversion material, the Ni foil, the Ti-Al foil, the thermoelectric conversion material containing Sb, the Ti-Al foil, and the Ni foil may be laminated in this order from the bottom surface of the mold. When the Ti-Al foil is formed on only one side of the thermoelectric conversion material, for example, the Ni foil, the Ti-Al foil, and the thermoelectric conversion material containing Sb may be laminated in this order from the bottom surface of the mold. The material and Ni foil may be exchanged and laminated. The thermoelectric conversion material containing Sb may be directly filled in a predetermined amount mold, or may be molded in advance by a simple press or the like and laminated in the mold in the state of a green compact.

次に熱電変換材料とTi−Al箔およびNi箔をホットプレス等を用いて加圧焼結する。焼結は例えばSbを含むN型熱電変換材料の場合はAr等の不活性ガス中で700℃で60分保持し、15MPa〜68MPaで加圧することでTi−Al箔とSbを含むN型熱電変換材料、およびTi−Al箔とNi箔の接合が可能である。 Next, the thermoelectric conversion material, the Ti-Al foil, and the Ni foil are pressure-sintered using a hot press or the like. For example, in the case of an N-type thermoelectric conversion material containing Sb, sintering is carried out by holding at 700 ° C. for 60 minutes in an inert gas such as Ar and pressurizing at 15 MPa to 68 MPa to obtain N-type thermoelectric including Ti-Al foil and Sb. The conversion material and the Ti-Al foil and Ni foil can be bonded.

例えばN型熱電変換材料であるYbCoSb12の場合、焼結性を向上させることを目的とした焼結助剤合金が含まれていても、本実施形態のTi−Al箔を使用することで同様の効果を発揮することができる。すなわち、熱電変換材料とTi−Al箔の界面に形成される反応層厚さを30μm以下に抑制することが可能で、Al−Sbの生成を防止することができる。 For example, in the case of Yb x Co 4 Sb 12 , which is an N-type thermoelectric conversion material, the Ti—Al foil of the present embodiment is used even if a sintering aid alloy for the purpose of improving sinterability is contained. By doing so, the same effect can be exhibited. That is, the thickness of the reaction layer formed at the interface between the thermoelectric conversion material and the Ti—Al foil can be suppressed to 30 μm or less, and the formation of Al—Sb can be prevented.

Ti−Al箔とNi箔は固相接合されており、一部Ti−NiやNi−Al、またはTi−Ni−Al等の反応層が生成してもよい。また、Ti−Al箔とNi箔の接合性を向上させるために融点の低いAl層(660℃)を挟持してもよい。この場合、固相接合と同様にTi−Ni、Ni−Al、またはTi−Ni−Alの反応層が接合界面に形成される。 The Ti—Al foil and the Ni foil are solid-phase bonded, and a reaction layer such as Ti—Ni, Ni—Al, or Ti—Ni—Al may be partially formed. Further, an Al layer (660 ° C.) having a low melting point may be sandwiched in order to improve the bondability between the Ti—Al foil and the Ni foil. In this case, a reaction layer of Ti—Ni, Ni—Al, or Ti—Ni—Al is formed at the bonding interface as in the case of solid phase bonding.

以上の方法で拡散防止層付き熱電変換材料を製造することが可能である。拡散防止層付き熱電変換材料はワイヤーソー等によって図1および図2中に示すP型熱電変換素子21やN型熱電変換素子22の形状に切り出す。切り出し後は治具等を用いてセラミックス配線基板40上に接合材を介して配置し、電極を搭載して加圧加熱することによって図1に示す熱電変換モジュール10を得ることができる。 It is possible to manufacture a thermoelectric conversion material with a diffusion prevention layer by the above method. The thermoelectric conversion material with a diffusion prevention layer is cut into the shapes of the P-type thermoelectric conversion element 21 and the N-type thermoelectric conversion element 22 shown in FIGS. 1 and 2 using a wire saw or the like. After cutting out, the thermoelectric conversion module 10 shown in FIG. 1 can be obtained by arranging the ceramic wiring board 40 on the ceramic wiring board 40 via a bonding material using a jig or the like, mounting electrodes, and heating under pressure.

(実施例1)
Ni箔とTi−Al箔およびSbを含む熱電変換材料を接合することで、熱電変換素子を作製した。Ti−Al箔の原料となるTi−Alインゴットはコールドクルーシブ法にて作製した。ペレット状のTiとAlをTi−19.5mass%Alの比率で配合し、水冷銅るつぼに装入後、溶解炉内を6.6×10−2Paで真空排気し、Arガスを導入した。Arガス導入後に高周波溶解にて溶湯とした後、溶解炉内に設置した円柱状の黒鉛製鋳型へ出湯し、冷却し、1時間後に黒鉛製鋳型からTi−Al合金を取り出すことでTi−Alインゴットを得た。
(Example 1)
A thermoelectric conversion element was produced by joining a thermoelectric conversion material containing Ni foil, Ti-Al foil and Sb. The Ti-Al ingot, which is a raw material for the Ti-Al foil, was produced by the cold crucible method. The pellets of Ti and Al were mixed in a ratio of Ti-19.5mass% Al, after charged into a water-cooled copper crucible, the melting furnace was evacuated at 6.6 × 10 -2 Pa, Ar gas was introduced .. After introducing Ar gas, the molten metal is melted by high-frequency melting, then the hot water is discharged to a columnar graphite mold installed in the melting furnace, cooled, and after 1 hour, the Ti-Al alloy is taken out from the graphite mold to remove Ti-Al. I got an ingot.

得られた丸棒状のTi−Alインゴットをワイヤー放電加工によって、φ30mmのTi−Al丸棒に加工し、さらにマルチワイヤーソーによって厚み0.3mm程度のTi−Al箔を作製した。Ti−Al箔をラップ加工にて0.2mm程度まで加工した後、アセトンで洗浄することでTi−Al箔を得た。なお、得られたTi−Al箔は図3で評価したTi−Al箔と同ロットで作製したものである。Ti−Al箔は100μm×50μmの範囲における断面EBSD分析より、10度以上の方位差を持つ結晶粒群が存在しないものを用いた。 The obtained round bar-shaped Ti-Al ingot was machined into a Ti-Al round bar having a diameter of 30 mm by wire electric discharge machining, and further, a Ti-Al foil having a thickness of about 0.3 mm was produced by a multi-wire saw. The Ti-Al foil was processed to about 0.2 mm by wrapping and then washed with acetone to obtain a Ti-Al foil. The obtained Ti-Al foil was produced in the same lot as the Ti-Al foil evaluated in FIG. The Ti-Al foil used was one in which no crystal grain group having an orientation difference of 10 degrees or more was present from the cross-sectional EBSD analysis in the range of 100 μm × 50 μm.

熱電変換材料はYb0.3CoSb12の粉末を21MPaの圧力で圧粉体成型したものを用いた。黒鉛金型の中にNi箔、Ti−Al箔、Yb0.3CoSb12の圧粉体、Ti−Al箔、Ni箔の順で積層し、加圧焼結を行った。焼結はAr雰囲気中で700℃60分保持、68MPaの加圧で実施した。得られた接合体を樹脂に包埋して、研磨し、断面観察を実施することで熱電変換材料とTi−Al箔の界面に生成する反応層の厚みとAl−Sbの生成有無の確認を行った。 As the thermoelectric conversion material, a powder of Yb 0.3 Co 4 Sb 12 was compactly molded at a pressure of 21 MPa. Ni foil, Ti-Al foil, Yb 0.3 Co 4 Sb 12 green compact, Ti-Al foil, and Ni foil were laminated in this order in a graphite mold, and pressure sintering was performed. Sintering was carried out in an Ar atmosphere at 700 ° C. for 60 minutes under a pressure of 68 MPa. By embedding the obtained bonded body in resin, polishing it, and observing the cross section, it is possible to confirm the thickness of the reaction layer formed at the interface between the thermoelectric conversion material and the Ti-Al foil and the presence or absence of Al-Sb formation. went.

図7に実施例1のSEM−EDXマッピング分析結果を示す。マッピング分析結果はグレースケールで表示しているため、必ずしも元素の存在比を絶対的に表示しているわけではない。Ti−Al箔とYb0.3CoSb12の界面に沿った約30μmの視野には1μmを超える反応層の形成はみられず、Al−Sbは生成しないことを確認した。さらに、破線で示す20μm四方の観察視野に5μmを超える長さのクラックがないことを確認した。 FIG. 7 shows the SEM-EDX mapping analysis result of Example 1. Since the mapping analysis results are displayed in grayscale, the abundance ratio of the elements is not necessarily displayed absolutely. It was confirmed that no reaction layer exceeding 1 μm was formed in the field of view of about 30 μm along the interface between the Ti—Al foil and Yb 0.3 Co 4 Sb 12, and Al—Sb was not formed. Furthermore, it was confirmed that there were no cracks having a length exceeding 5 μm in the observation field of view of 20 μm square shown by the broken line.

実施例1の熱電変換素子に対して、アルゴン雰囲気中、600℃で100時間保持の高温放置試験を行った。高温放置試験後のSEM−EDXマッピング分析結果を図8示す。Ti−Al箔とYb0.3CoSb12の界面の沿った約10μmの範囲の視野には、大きさ1μmを超える反応層の形成はみられず、Al−Sbの生成しないことを確認した。さらに、破線で示す20μm四方の観察視野に5μmを超える長さのクラックがないことを確認した。 The thermoelectric conversion element of Example 1 was subjected to a high temperature standing test of holding at 600 ° C. for 100 hours in an argon atmosphere. The result of SEM-EDX mapping analysis after the high temperature standing test is shown in FIG. It was confirmed that no reaction layer exceeding 1 μm was formed in the field of view in the range of about 10 μm along the interface between the Ti—Al foil and Yb 0.3 Co 4 Sb 12, and Al—Sb was not formed. bottom. Furthermore, it was confirmed that there were no cracks having a length exceeding 5 μm in the observation field of view of 20 μm square shown by the broken line.

(実施例2)
Yb0.3CoSb12の熱電変換材料粉末に1mass%の比率で焼結助剤となるMnSb粉末を混合し、68MPaの圧力で圧粉体成型した圧粉体を、Ni箔、Ti−Al箔と15MPaの加圧で接合した以外は実施例1と同様とした。図9に実施例2のSEM−EDXマッピング分析結果を示す。Ti−Al箔とYb0.3CoSb12の界面には平均厚さ20μm以下のTi−Sb、Ti−Co−Sb、Ti−Al−Sb、Co−Alからなる反応層が生成し、Al−Sbは生成していないことを確認した。さらに、破線で示す20μm四方の観察視野に5μmを超える長さのクラックがないことを確認した。EDXの半定量分析結果から、Ti−Sbは既知の化合物であるTiSb等を含むと考えられる。
(Example 2)
MnSb powder, which is a sintering aid, was mixed with the thermoelectric conversion material powder of Yb 0.3 Co 4 Sb 12 at a ratio of 1 mass%, and the green compact was molded at a pressure of 68 MPa. The same procedure as in Example 1 was carried out except that the Al foil was bonded to the Al foil under a pressure of 15 MPa. FIG. 9 shows the SEM-EDX mapping analysis result of Example 2. At the interface between the Ti-Al foil and Yb 0.3 Co 4 Sb 12 , a reaction layer composed of Ti-Sb, Ti-Co-Sb, Ti-Al-Sb, and Co-Al having an average thickness of 20 μm or less is formed. It was confirmed that Al-Sb was not generated. Furthermore, it was confirmed that there were no cracks having a length exceeding 5 μm in the observation field of view of 20 μm square shown by the broken line. From the results of semi-quantitative analysis of EDX, it is considered that Ti-Sb contains a known compound such as TiSb 2.

(実施例3)
Yb0.3CoSb12の熱電変換材料粉末に1mass%の比率で焼結助剤となるMnSb粉末を混合し、68MPaの加圧で接合した以外は実施例2と同様とした。図10に実施例3のSEM−EDXマッピング分析結果を示す。
Ti−Al箔とYb0.3CoSb12の界面には層厚30μm以下のTi−Sb、Ti−Co−Sb、Ti−Al−Sb、Co−Alからなる反応層が生成し、Al−Sbは生成していないことを確認した。さらに、破線で示す20μm四方の観察視野に5μmを超える長さのクラックがないことを確認した。
(Example 3)
The same procedure as in Example 2 was carried out except that MnSb powder, which is a sintering aid, was mixed with the thermoelectric conversion material powder of Yb 0.3 Co 4 Sb 12 at a ratio of 1 mass% and bonded under a pressure of 68 MPa. FIG. 10 shows the SEM-EDX mapping analysis result of Example 3.
At the interface between the Ti-Al foil and Yb 0.3 Co 4 Sb 12 , a reaction layer composed of Ti-Sb, Ti-Co-Sb, Ti-Al-Sb, and Co-Al having a layer thickness of 30 μm or less is formed, and Al is formed. It was confirmed that -Sb was not generated. Furthermore, it was confirmed that there were no cracks having a length exceeding 5 μm in the observation field of view of 20 μm square shown by the broken line.

(実施例4)
熱電変換材料粉末にCeFe3.925Mn0.075Sb12の粉末を用いて、Ar雰囲気中で580℃80分保持、68MPaの加圧焼結を実施した以外は実施例3と同様とした。図11に実施例4のSEM−EDXマッピング分析結果を示す。
Ti−Al箔とCeFe3.925Mn0.075Sb12の界面には層厚1μm以下のTi−Sbからなる反応層が形成し、Al−Sbは生成しないことを確認した。さらに、破線で示す20μm四方の観察視野に5μmを超える長さのクラックがないことを確認した。
(Example 4)
The same procedure as in Example 3 was carried out except that CeFe 3.925 Mn 0.075 Sb 12 powder was used as the thermoelectric conversion material powder, held at 580 ° C. for 80 minutes in an Ar atmosphere, and pressure-sintered at 68 MPa. FIG. 11 shows the SEM-EDX mapping analysis result of Example 4.
It was confirmed that a reaction layer composed of Ti-Sb having a layer thickness of 1 μm or less was formed at the interface between the Ti-Al foil and CeFe 3.925 Mn 0.075 Sb 12, and Al-Sb was not formed. Furthermore, it was confirmed that there were no cracks having a length exceeding 5 μm in the observation field of view of 20 μm square shown by the broken line.

(実施例5)
インゴット作製時、るつぼの下方から溶湯を引き抜き凝固させ、かつ、凝固後のインゴットに対してHIPプロセスを施行した緻密なTi−Al箔体と、68MPaの圧力で圧粉体成型したYb0.3CoSb12の熱電変換材料粉末を用いた以外は実施例1と同様とした。
Ti−Al箔とYb0.3CoSb12の界面には層厚30μm以下のTi−Sb、Ti−Co−Sb、Ti−Al−Sb、Co−Alからなる反応層が形成し、Al−Sbは生成しないことを確認した。さらに、破線で示す20μm四方の観察視野に5μmを超える長さのクラックがないことを確認した。
(Example 5)
When the ingot produced, from the lower side of the crucible to pull solidifying the melt, and a dense Ti-Al foil which underwent HIP process on the ingot after solidification, Yb 0.3 was green compact molded at a pressure of 68MPa The same procedure as in Example 1 was carried out except that the thermoelectric conversion material powder of Co 4 Sb 12 was used.
At the interface between the Ti-Al foil and Yb 0.3 Co 4 Sb 12 , a reaction layer composed of Ti-Sb, Ti-Co-Sb, Ti-Al-Sb, and Co-Al having a layer thickness of 30 μm or less is formed, and Al is formed. It was confirmed that -Sb was not generated. Furthermore, it was confirmed that there were no cracks having a length exceeding 5 μm in the observation field of view of 20 μm square shown by the broken line.

実施例5の熱電変換素子に対して、600℃100時間保持の高温放置試験を行った。高温放置試験後のSEM−EDXマッピング分析結果を図12に示す。Ti−Al箔とYb0.3CoSb12の界面には30μmのTi−Sb、Ti−Co−Sb、Ti−Al−Sb、Co−Alからなる反応層が形成し、Al−Sbの生成およびクラックの発生がないことを確認した。 The thermoelectric conversion element of Example 5 was subjected to a high temperature standing test of holding at 600 ° C. for 100 hours. The result of SEM-EDX mapping analysis after the high temperature standing test is shown in FIG. A reaction layer composed of 30 μm Ti-Sb, Ti-Co-Sb, Ti-Al-Sb, and Co-Al is formed at the interface between the Ti-Al foil and Yb 0.3 Co 4 Sb 12, and the Al-Sb It was confirmed that there was no formation or cracking.

高温放置試験後、熱電特性評価装置(アルバック理工製 ZEM−3)を使用した発電特性の評価を行った。N型熱電材変換素子のゼーベック係数Sと電気抵抗率ρから算出した出力因子PF(PF=S/ρ)は高温放置試験前後において、誤差の範囲で一致する値であった。 After the high temperature standing test, the power generation characteristics were evaluated using a thermoelectric characteristic evaluation device (ZEM-3 manufactured by ULVAC Riko). The output factor PF (PF = S 2 / ρ) calculated from the Seebeck coefficient S of the N-type thermoelectric material conversion element and the electrical resistivity ρ was a value that matched within the error range before and after the high temperature standing test.

(実施例6)
Ti−Al箔の組成をTi−34.2mass%Alとした以外は実施例3と同様とした。
Ti−Al箔とYb0.3CoSb12の界面には層厚30μm以下のTi−Sb、Ti−Co−Sb、Ti−Al−Sb、Co−Alからなる反応層が形成した。反応層には微量のAl−Sbが生成したが、20μm四方の観察視野に5μmを超えるクラックは発生しないことを確認した。
(Example 6)
The composition of the Ti-Al foil was the same as that of Example 3 except that the composition was Ti-34.2 mass% Al.
A reaction layer composed of Ti-Sb, Ti-Co-Sb, Ti-Al-Sb, and Co-Al having a layer thickness of 30 μm or less was formed at the interface between the Ti-Al foil and Yb 0.3 Co 4 Sb 12. Although a small amount of Al-Sb was generated in the reaction layer, it was confirmed that cracks exceeding 5 μm did not occur in the observation field of view of 20 μm square.

(比較例1)
目開き45μm以下の篩通しされたTi粉末と目開き30μm以下の篩通しされたAl粉末とを、Ti粉末66mass%、Al粉末34mass%の比率で混合し、900℃2時間保持した。得られた粉末を解砕してTi−Al合金粉末を得た。得られたTi−Al合金粉末とYb0.3CoSb12の粉末を35mass%の比率で混合し、簡易プレスにて圧粉体を成型した。Ti−Al合金粉末とYb0.3CoSb12粉末で構成された圧粉体を拡散防止層として用いた以外は実施例1と同様とした。
(Comparative Example 1)
The sieved Ti powder having a mesh size of 45 μm or less and the sieved Al powder having a mesh size of 30 μm or less were mixed at a ratio of 66 mass% of Ti powder and 34 mass% of Al powder, and held at 900 ° C. for 2 hours. The obtained powder was crushed to obtain a Ti—Al alloy powder. The obtained Ti—Al alloy powder and Yb 0.3 Co 4 Sb 12 powder were mixed at a ratio of 35 mass%, and a green compact was molded by a simple press. The same procedure as in Example 1 was carried out except that a green compact composed of Ti—Al alloy powder and Yb 0.3 Co 4 Sb 12 powder was used as the diffusion prevention layer.

図13(a)、(a)’は使用したTi−Al合金粉末70の断面SEM観察結果である。点線で囲った範囲が結晶粒界を示しており、個々のTi−Al粉末の内部は方位差の異なる結晶粒界を有する結晶粒群で構成されていることがわかる。観察の結果、Ti−Al粉末の個々の結晶粒数の合計は67個であり、断面観察からのTi−Al粉の総面積は0.0027mmであった。これを矩形面積に換算した場合は縦50μm×横54μmの範囲で67個の結晶粒を含むことになる。 13 (a) and 13 (a)'are cross-sectional SEM observation results of the Ti—Al alloy powder 70 used. The range surrounded by the dotted line shows the crystal grain boundaries, and it can be seen that the inside of each Ti-Al powder is composed of crystal grain groups having crystal grain boundaries having different orientation differences. As a result of the observation, the total number of individual crystal grains of the Ti-Al powder was 67, and the total area of the Ti-Al powder from the cross-sectional observation was 0.0027 mm 2 . When this is converted into a rectangular area, 67 crystal grains are included in the range of 50 μm in length × 54 μm in width.

図13(b)はYb0.3CoSb12からなる熱電変換素子とTi−Al粉末を使用して焼結し、N型熱電変換素子22と拡散防止層50との間に生じた接合界面反応層を示す断面SEM像である。反応層501は40μmの厚みを超える反応層が形成されており、EDXの示す組成分析の結果も含めて推察すると、TiSb反応層502中にAl−Sb反応層503が分散したような組織を有していた。さらに図13(c)は、10Paの減圧雰囲気にて、500℃の温度で125時間熱処理を行った場合の熱電変換素子とTi−Al粉末を使用して焼結した接合界面反応層を示す断面SEM像である。図13(c)の観察を行った破線で示す20μm四方の視野では、生成したAl−Sb反応層503を起点にクラックが生じているように見えており、Al−Sb反応層503の生成は信頼性低下の原因となることがわかった。 FIG. 13B shows a junction formed between the N-type thermoelectric conversion element 22 and the diffusion prevention layer 50 by sintering using a thermoelectric conversion element made of Yb 0.3 Co 4 Sb 12 and Ti—Al powder. 6 is a cross-sectional SEM image showing an interfacial reaction layer. The reaction layer 501 is formed with a reaction layer having a thickness of more than 40 μm, and when it is inferred including the result of the composition analysis indicated by EDX, a structure in which the Al—Sb reaction layer 503 is dispersed in the TiSb 2 reaction layer 502 is formed. Had had. Further, FIG. 13 (c) shows a cross section showing a bonded interfacial reaction layer sintered using a thermoelectric conversion element and Ti—Al powder when heat-treated at a temperature of 500 ° C. for 125 hours in a reduced pressure atmosphere of 10 Pa. It is an SEM image. In the 20 μm square field of view shown by the broken line observed in FIG. 13 (c), it seems that cracks are generated starting from the formed Al—Sb reaction layer 503, and the formation of the Al—Sb reaction layer 503 is generated. It was found to cause a decrease in reliability.

本発明を実施例を用いて説明した。結果を表1にまとめて示す。本発明はこれらに限定されるものではなく、種々組み合わせた場合でも効果を十分発揮することができる。 The present invention has been described with reference to examples. The results are summarized in Table 1. The present invention is not limited to these, and the effect can be sufficiently exhibited even when various combinations are used.

Figure 2021158355
Figure 2021158355

10…熱電変換モジュール
21…P型熱電変換素子
22…N型熱電変換素子
30…電極
40…セラミックス配線基板
41…第一の導電部材
42…第二の導電部材
50…拡散防止層
501…反応層
502…TiSb反応層
503…Al−Sb反応層
51…金属層
60…接合層
70…Ti−Al合金粉末
80…界面

10 ... Thermoelectric conversion module 21 ... P-type thermoelectric conversion element 22 ... N-type thermoelectric conversion element 30 ... Electrode 40 ... Ceramics wiring substrate 41 ... First conductive member 42 ... Second conductive member 50 ... Diffusion prevention layer 501 ... Reaction layer 502 ... TiSb 2 reaction layer 503 ... Al-Sb reaction layer 51 ... metal layer 60 ... bonding layer 70 ... Ti-Al alloy powder 80 ... interface

Claims (3)

Sbを含む熱電変換材料の粉末と、TiとAlを含む合金箔とを接触させた状態で焼結し、拡散防止層を備えた熱電変換材料を得る工程、を有し、
前記TiとAlを含む合金箔は、結晶の方位差を判別可能な断面観察手法において、
5000μm以上の広さの領域を観察したとき、10度以上の方位差の粒界で規定される結晶粒の数が1.0個以下/5000μmである
ことを特徴とする熱電変換素子の製造方法。
It has a step of sintering a powder of a thermoelectric conversion material containing Sb in a state where an alloy foil containing Ti and Al are in contact with each other to obtain a thermoelectric conversion material having a diffusion prevention layer.
The alloy foil containing Ti and Al is used in a cross-section observation method capable of discriminating the orientation difference of crystals.
When observing a region having an area of 5000 μm 2 or more, the number of crystal grains defined by the grain boundaries having an orientation difference of 10 degrees or more is 1.0 or less / 5000 μm 2 . Production method.
前記TiとAlを含む合金箔は、
Alの含有量が8mass%以上36mass%以下であり、TiAl化合物を有することを特徴とする請求項1に記載の熱電変換素子の製造方法。
The alloy foil containing Ti and Al is
The method for producing a thermoelectric conversion element according to claim 1, wherein the Al content is 8 mass% or more and 36 mass% or less, and the mixture has a Ti 3 Al compound.
請求項1または請求項2に記載の熱電変換素子の製造方法で得られた熱電変換素子と、電極とを、前記拡散防止層を介して接合する工程を有することを特徴とする熱電変換モジュールの製造方法。

A thermoelectric conversion module comprising a step of joining a thermoelectric conversion element obtained by the method for manufacturing a thermoelectric conversion element according to claim 1 or 2 and an electrode via the diffusion prevention layer. Production method.

JP2021047269A 2020-03-26 2021-03-22 Manufacturing method of thermoelectric conversion element and manufacturing method of thermoelectric conversion module using the same Pending JP2021158355A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055252 2020-03-26
JP2020055252 2020-03-26

Publications (1)

Publication Number Publication Date
JP2021158355A true JP2021158355A (en) 2021-10-07

Family

ID=77919799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021047269A Pending JP2021158355A (en) 2020-03-26 2021-03-22 Manufacturing method of thermoelectric conversion element and manufacturing method of thermoelectric conversion module using the same

Country Status (1)

Country Link
JP (1) JP2021158355A (en)

Similar Documents

Publication Publication Date Title
JP2007535151A (en) Heat sink made of boron-containing diamond and copper composite
WO2007034632A1 (en) Thermo-electric converting material and process for producing the same
JP4854215B2 (en) Thermoelectric material and manufacturing method thereof
JP7235751B2 (en) Silicon nitride sintered body, silicon nitride substrate, and silicon nitride circuit substrate
JP6162423B2 (en) Thermoelectric conversion element
JP6623003B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JPWO2018021540A1 (en) Thermoelectric material, method of manufacturing thermoelectric material, thermoelectric conversion element, and thermoelectric conversion module
WO2013047474A1 (en) Sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
US9960335B2 (en) Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JP6382093B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JP6433245B2 (en) Thermoelectric element and thermoelectric module
JP2021158355A (en) Manufacturing method of thermoelectric conversion element and manufacturing method of thermoelectric conversion module using the same
JP2000297301A (en) Silicon carbide based composite material, its powder, and their manufacture
JP4305986B2 (en) Method for producing silicon carbide composite material
JP6809852B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
JP2004235367A (en) Thermoelectric module
JP4228444B2 (en) Silicon carbide based composite material and method for producing the same
JP7419917B2 (en) Manufacturing method of thermoelectric conversion element
JP2021005593A (en) Magnesium silicide and usage thereof
JP6826925B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements, thermoelectric conversion modules, and mobiles
JP7079082B2 (en) Thermoelectric conversion elements, thermoelectric conversion modules, and moving objects
WO2023145339A1 (en) Thermoelectric conversion material, thermoelectric conversion material composition, thermoelectric conversion element, thermoelectric conversion module, thermoelectric conversion system, method for producing thermoelectric conversion material composition, and method for producing thermoelectric conversion material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115