JP3922847B2 - Aluminum nitride sintered body for circuit board and manufacturing method thereof - Google Patents

Aluminum nitride sintered body for circuit board and manufacturing method thereof Download PDF

Info

Publication number
JP3922847B2
JP3922847B2 JP25966199A JP25966199A JP3922847B2 JP 3922847 B2 JP3922847 B2 JP 3922847B2 JP 25966199 A JP25966199 A JP 25966199A JP 25966199 A JP25966199 A JP 25966199A JP 3922847 B2 JP3922847 B2 JP 3922847B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
sintered body
circuit board
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25966199A
Other languages
Japanese (ja)
Other versions
JP2001089247A (en
Inventor
康人 伏井
豊 平島
正人 西川
秀幸 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP25966199A priority Critical patent/JP3922847B2/en
Publication of JP2001089247A publication Critical patent/JP2001089247A/en
Application granted granted Critical
Publication of JP3922847B2 publication Critical patent/JP3922847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パワーモジュール等に使用される回路基板用窒化アルミニウム焼結体及びその製造方法に関する。
【0002】
【従来の技術】
従来、パワーモジュール等に利用される半導体装置においては、アルミナ、ベリリア、窒化ケイ素、窒化アルミニウム等のセラミックス基板の表裏面に、Cu及び/又はAlの回路と放熱板とがそれぞれ形成されてなる回路基板が用いられている。このような回路基板は、樹脂基板と金属基板との複合基板ないしは樹脂基板よりも、高絶縁性が安定して得られることが特長である。
【0003】
絶縁性に次いでセラミックス基板に求められているのは放熱性であり、熱伝導率が20〜35W/mK程度しかないアルミナは、この点で他の材質に大きく劣る。ベリリアの熱伝導率は200W/mK以上あるが、毒性があるので、環境問題等を考慮すれば今後の使用はあまり期待できない。窒化アルミニウムは、無害で熱伝導性も良好であるが、Cuのような回路金属との熱膨張係数の違いに起因して発生する熱応力のため、繰り返しの熱履歴によって基板にクラック発生し易い等信頼性が十分に改善の余地がある。一方、窒化ケイ素は靱性が高くクラックは抑制できるが、量産品の熱伝導率は80W/mK止まりで十分とは言えない。
【0004】
そこで、窒化アルミニウムについては、Alのような軟らかい金属を用いて信頼性を向上させる試みも行われているが、Alは熱伝導性や電気伝導性の点でCuに劣り、コスト的にもCu回路に比べてかなり割高になる問題がある。一方、窒化ケイ素については、高熱伝導化の検討が続けられているが、これまでのところ、窒化アルミニウム並の130〜170W/mK品を量産化レベルで製造できる見通しはない。
【0005】
【発明が解決しようとする課題】
窒化アルミニウムを高靱性化すれば、上記問題は解決できる。しかし、不純物の添加等を行って粒子形状を変え高靱性化する方法では熱伝導率が低下し、不純物を添加せずに過焼成して粒成長させる方法では熱伝導率と靱性は向上するが、抗折強度が著しく低下する。従って、熱伝導率と抗折強度を十分に維持しながら、靱性を向上させる課題があった。
【0006】
本発明は、上記に鑑みてなされたものであり、その目的は、窒化アルミニウム基板に形成された回路又は放熱板の材質が銅であっても、熱履歴後の窒化アルミニウム基板にはクラックの発生が著しく少ない高信頼性回路基板を製造することのできる、窒化アルミニウム焼結体を提供することである。
【0007】
本発明の目的は、驚くべきことに、特定2種の窒化アルミニウム粉末と焼結助剤とを含む混合原料を焼成することによって、達成することができる。
【0008】
【課題を解決するための手段】
すなわち、本発明は、窒化アルミニウム粒子の平均径が3〜7μm、最大径が30μm以下、粒子径10〜20μmの個数頻度が3〜15%であり、しかもIF法による破壊靱性値K1Cが3.0MPa・m1/2以上、レーザーフラッシュ法による熱伝導率が170W/mK以上、3点曲げ抗折強度が450MPa以上であることを特徴とする回路基板用窒化アルミニウム焼結体である。
【0009】
また、本発明は、焼結助剤と窒化アルミニウム粉末とを含む混合原料粉末を、非酸化性雰囲気下で焼成するにあたり、上記窒化アルミニウム粉末が、レーザー回折散乱法による平均径が3〜15μmで、最大径が45μm以下である金属アルミニウム直接粉5〜20重量%と、残部が実質的にアルミナ還元粉とであることを特徴とする窒化アルミニウム焼結体の製造方法である。特に、窒化アルミニウム焼結体が、上記各特性を有し、その用途が回路基板であることを特徴とする窒化アルミニウム焼結体の製造方法である。
【0010】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0011】
本発明の大きな特徴は、これまでは、熱伝導率と抗折強度の点からのみ検討されてきた窒化アルミニウム焼結体の微構造を、破壊靱性値をも考慮し、粒径分布の観点から更にそれを適正化したことである。一般に、抗折強度は、微細で均一な組織、即ち微細な粒子からなるものが好適とされており、破壊靱性は、破断面を進行するクラックが真っ直ぐ進行しなくなるほど向上するので、粗大な粒子が存在する構造が好適とされている。従って、しばしば両者は二律背反となる。
【0012】
本発明者らは、30μmをこえる粗大な粒子は、破壊源となって抗折強度を低下させるが、10μm以上の粒子は、クラックを枝分かれさせたり、回折させる等破壊靱性を向上させる効果があることを見いだし、30μmをこえる粒子がなく、10〜20μmの個数頻度を3〜15%とする微構造の適正化を行った。即ち、抗折強度を低下させるほどの粗大な粒子はないが、破壊靱性を向上させる程度に粗大な粒子を適切量含んだ微構造である。更に、平均粒子径を3〜7、好ましくは4〜7μmとすることによって高い抗折強度を発現できた。
【0013】
本発明における窒化アルミニウムの微構造の評価法は、インターセプト法により行われる。以下、これについて説明すると、先ず、破断面のSEM写真上に任意のラインを引いてそのラインがAlN粒子10〜20個を横切る程度の倍率で観察する。次に、SEM写真を1.5〜3倍程度に拡大して、その拡大図を横切って任意の線を2本引く。この際に同一の粒子を横切らないように十分間隔をあけなければならない。次に線が横切った粒子の長さ(これをコード長という)を測定し倍率で換算した後、更に1.5倍して粒子径とする。測定する粒子は、300〜1000個が適当であり、SEM写真で10〜20視野程度である。通常の回路基板用窒化アルミニウム焼結体であれば、1000〜3500倍程度の倍率が採用される。
【0014】
本発明における抗折強度とは、JIS R 1601に準じて測定された3点曲げ強度である。試験片の大きさは、厚みが0.635mm又は1mm、広さ40mm×40mmである。熱伝導率はレーザーフラッシュ法での測定値であり、破壊靱性値はIF法による測定値である。
【0015】
本発明において、破壊靱性値K1Cが3.0MPa・m1/2未満では、回路基板とした際に十分な耐クラック性を発現しない恐れがあり、特に前述した銅回路を形成させた回路基板においては、ヒートサイクル等の熱履歴を受けると、回路パターンに沿った、しかも回路パターン内部へ進行した水平クラックが発生し易くなる。熱伝導率が170W/mK未満では、回路基板の熱抵抗が高くなって、特にパワーモジュールに使用する際に、チップでの発熱を十分放熱できなくなることがある。更に、3点曲げ抗折強度が450MPa未満では、回路基板をパワーモジュールに使用すると、ベース板への半田付け時や放熱フィンへの取り付け時に受ける熱的、機械的応力によって破損する恐れがある。また、この破損を回避するため、回路パターン等に厳しい制約が必要となる。
【0016】
本発明の窒化アルミニウム焼結体は、焼結助剤と窒化アルミニウム粉末との混合物を非酸化性雰囲気中で焼成する際、窒化アルミニウム粉末として、特定粒度の金属アルミニウム直接粉とアルミナ還元粉とを同時に用いることによって製造することができる。
【0017】
本発明において、「金属アルミニウム直接粉」とは、金属アルミニウム粉末を、窒素やアンモニア等窒素ガスを放出する雰囲気中、加熱により窒化反応させて窒化アルミニウムを得、粉砕や分級によって粒度を整えた粉末と定義される。金属アルミニウム直接粉は、耐酸化性にはやや劣るが、比較的広い粒度分布を持つため成形性に優れる。成分的には、0.7〜1.7重量%程度の酸素、0.01〜0.2重量%程度の鉄、及び不可避的に混入する鉄以外の金属不純物やカーボンの合計0.005〜0.2重量%程度を含有する。
【0018】
また、「アルミナ還元粉」とは、アルミナとカーボンの混合粉末を焼成して得られた窒化アルミニウム粉末と定義される。アルミナ還元粉は、高純度で耐酸化性に優れ微細で均一な粒径を持っていることが特徴である。
【0019】
金属アルミニウム直接粉とアルミナ還元粉を同時に用いると、金属アルミニウム直接粉の方がやや焼結し難いため、焼結体の粒度は金属アルミニウム直接粉原料の粒度の影響を強く受ける。従って、やや粗粒の金属アルミニウム直接粉を添加すれば、得られる焼結体中の窒化アルミニウム粒子には、粗粒と微粒が混ざり合った粒度分布となって破壊靱性が向上する。
【0020】
従って、本発明で使用される金属アルミニウム直接粉は、平均径3〜15μm、最大45μm以下であることが必要である。これより細かい粒子では、焼結体の粒度分布を拡げる効果が小さく、破壊靱性はあまり向上しない。また、これより大きい粒子では、破壊源となって抗折強度の低下を招き易い。好ましくは、平均径4〜12μm、最大径40μm以下であり、特に好ましくは、平均径4〜10μm、最大径35μm以下である。
【0021】
金属アルミニウム直接粉の割合は、金属アルミニウム直接粉とアルミナ還元粉の合計に対し、5〜20重量%の含有率である。5重量%未満では効果が小さく、20重量%超であると、粗大粒子が生成し易くなってしまう。適切な添加量は、用いる焼結助剤の量や種類によって異なるが、最も一般的に用いられるイットリア3〜5重量%程度では、7〜15重量%の範囲が好ましい。
【0022】
原料粉の粒度はレーザー回折散乱法で測定する。この方法は、1〜数十μm程度の粉末の粒度測定法としては最も汎用的な方法であり、多くの装置が市販されている。測定も比較的容易である。
【0023】
焼結助剤の種類と割合については、特にこれを制限するものではなく、一般的に窒化アルミニウムの焼結に用いられているものでよい。焼成温度があまり高温になるものは粒成長が著しく促進されるので好ましくない。最も一般的に用いられる焼結助剤は、酸化イットリウム(イットリア)であり、添加量は2〜6重量%程度である。イットリア以外には、酸化イッテルビウム、酸化リチウム、酸化カルシウム、フッ化イットリウム、フッ化イッテルビウム等が用いられる。
【0024】
本発明における窒化アルミニウム焼結体は、原料の混合・成形・脱脂・焼成の各工程を経て製造される。
【0025】
原料の混合には、窒化アルミニウム粒子が酸化してしまったり、粒度分布が著しく変化させないよう配慮し、比表面積が20%以上増加しないようにして行う。
【0026】
成形は、ドクターブレード法、押し出し成形法、プレス法、ロール成形法等各種の方法が知られており、本発明においてはこれを制限するものではない。それぞれに一長一短あり、成形バインダー等が異なる。本発明のように窒化アルミニウム原料に2種の混合粉を用いる場合には、粗粉の偏析が少ない押し出し成形法が最も好ましい。脱脂も有機成分が十分に除去できればこれを制限するものではないが、窒化アルミニウムの酸化を防ぐ点からは、窒素中又は真空中の脱脂が好ましい。
【0027】
焼成条件は用いる原料によって適切な範囲が異なる。十分緻0密な焼結体が得られる温度が必要であるが、あまり高温過ぎて、焼結を進める液相成分が表面に移動しないようにしなければならない。具体的には1900℃以下である。通常、このような適正な温度範囲は10〜20℃程度しかなく、適切な粒度分布を得るためには、その温度範囲で数〜十数時間加熱することが好ましい。1〜2時間程度の加熱では微細な窒化アルミニウム粒子からなる微構造が得られ易くなり、また、あまり長時間の加熱は生産性を著しく低下させる。
【0028】
本発明の窒化アルミニウム焼結体の好適な用途は、回路基板である。回路基板の製造方法も特にこれを制限するものではない。窒化アルミニウム基板表面は必要に応じて加工されるが、通常はホーニング等の清浄化処理を行い、接合材を用いてCuやAl等の回路金属板と接合される。または、回路金属が印刷され、焼き付けられる。パターンは、接合時に必要なパターン形状を接合するか、接合後にエッチングにより形成される。形成された回路及び放熱板にはメッキ等の表面処理が必要に応じて行われる。
【0029】
【実施例】
以下、実施例と比較例をあげて更に具体的に本発明を説明する。
【0030】
実施例1〜3 比較例1〜5
アルミナ還元粉として、市販品(トクヤマ社製「Hグレード」平均粒径1.5μm)を用いた。金属アルミニウム直接粉としては、45μm以下の市販Al粉(>99.9%)をアンモニアガス中で1400℃まで加熱窒化し、得られたインゴットを窒素ガス中で乾式ボールミル粉砕し、表1に示される粒度のものを用いた。なお、粒度は、日機装社製「マイクロトラックSPA」を用いレーザー回折散乱法で測定した。焼結助剤のイットリアとアルミナは、市販の試薬(>99.9%)をボールミルで12時間乾式混合して用いた。
【0031】
先ず、表1に示す各配合原料を予めビニール袋内で予備混合した後、アルミナボールを用いて30分間乾式混合し、有機バインダーと水を加えてヘンシェルミキサーで1分間混合した。
【0032】
混合粉は、焼成後に厚さ0.635mmとなるように押し出し成形機でシート成形し、乾燥後、焼成後40mm角となるようにプレス打ち抜きした。それを、BN板に挟んで真空中で脱脂、続いて大気中で脱炭処理した。更に、脱脂体はBN箱中にセットし、重石をのせて窒素中で加熱焼成した。焼成条件を表2に示す。
【0033】
焼成後の各試料は、レーザーフラッシュ法による熱伝導率(n=3の平均)、3点曲げ強度(n=5の平均)、IF法によるK1C(n=5の平均)を測定し、走査型電子顕微鏡で2500倍に拡大した二次電子像を無作為に7視野選び、視野内の各窒化アルミニウム粒子各々約800個の粒度を調べて粒度分布を求めた。それらの結果を表3に示す。
【0034】
得られた焼結体の窒化アルミニウム基板としての性能を評価するため、72%Ag−28%Cuに3重量%の水素化チタンを添加した接合材ペーストを固形分で15mg/cm2両面に印刷塗布、乾燥し、0.3mm厚さの無酸素銅板を両面に積層した後、重石を置いて、真空中で加熱接合した。加熱は、400℃で十分に脱脂後、1×10-3Pa、820℃で30分間行った。
【0035】
得られた接合体にエッチングレジストをスクリーン印刷し、FeCl3液でエッチングした。次いで、レジストを剥離した後、無電解Ni−Pメッキを3μm施して回路基板を製造した。
【0036】
各回路基板は10枚づつヒートサイクル試験を行った。ヒートサイクル試験は、−40℃×30分→室温×10分→125℃×30分→室温×10分を1サイクルとして1000サイクル実施した。ヒートサイクル試験後、回路及び放熱板を硝酸で溶解し、窒化アルミニウム基板のクラックの有無を観察した。それらの結果を表3に示す。
【0037】
【表1】

Figure 0003922847
【0038】
【表2】
Figure 0003922847
【0039】
【表3】
Figure 0003922847
【0040】
表1〜3から明らかなように、本発明の実施例は、いずれも高強度、高熱伝導率を示し、しかも比較的高靱性である窒化アルミニウム基板を用いていることから、ヒートサイクル試験1000サイクル後においても基板の損傷が殆どなかった。これに対して、比較例1、4では、焼結体が微細で均一な窒化アルミニウム粒子のみからなるもであったので、抗折強度は比較的高いが、靱性値が低かい窒化アルミニウム基板であった。逆に、粒成長が進んで平均的に粒子が粗大化した比較例2、30μmをこえる非常に粗大な粒子が焼結体中にある比較例3、更には10〜20μmの粒子が多すぎる比較例5では、いずれも靱性値は比較的高いが、強度は低い窒化アルミニウム基板であった。これらの結果、ヒートサイクル後にクラックが発生する基板が多く、回路基板としては、信頼性の低いものであった。
【0041】
【発明の効果】
本発明によれば、窒化アルミニウム基板に形成された回路又は放熱板の材質が銅であっても、熱履歴後の窒化アルミニウム基板にはクラックの発生が著しく少ない高信頼性回路基板を製造することができる、窒化アルミニウム焼結体が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum nitride sintered body for a circuit board used for a power module or the like and a method for producing the same.
[0002]
[Prior art]
Conventionally, in a semiconductor device used for a power module or the like, a circuit in which a Cu and / or Al circuit and a heat sink are respectively formed on the front and back surfaces of a ceramic substrate such as alumina, beryllia, silicon nitride, and aluminum nitride. A substrate is used. Such a circuit board is characterized in that a high insulating property can be obtained more stably than a composite substrate of a resin substrate and a metal substrate or a resin substrate.
[0003]
Next to insulation, the ceramic substrate is required to have heat dissipation, and alumina having a thermal conductivity of only about 20 to 35 W / mK is greatly inferior to other materials in this respect. Although the thermal conductivity of beryllia is 200 W / mK or more, it is toxic, so it cannot be expected to be used in the future considering environmental issues. Aluminum nitride is harmless and has good thermal conductivity, but due to thermal stress caused by the difference in thermal expansion coefficient from circuit metals such as Cu, cracks are likely to occur in the substrate due to repeated thermal history. There is room for improvement in reliability. On the other hand, silicon nitride has high toughness and can suppress cracking, but the thermal conductivity of mass-produced products cannot be said to be sufficient if it is only 80 W / mK.
[0004]
Therefore, for aluminum nitride, attempts have been made to improve the reliability by using a soft metal such as Al. However, Al is inferior to Cu in terms of thermal conductivity and electrical conductivity, and Cu is also low in cost. There is a problem that it is considerably more expensive than the circuit. On the other hand, with regard to silicon nitride, investigations for high thermal conductivity have been continued, but so far there is no prospect that 130-170 W / mK products comparable to aluminum nitride can be produced at the mass production level.
[0005]
[Problems to be solved by the invention]
If the aluminum nitride is made tougher, the above problem can be solved. However, the method of increasing the toughness by changing the particle shape by adding impurities etc. decreases the thermal conductivity, and the method of overbaking without adding impurities to grow the grains improves the thermal conductivity and toughness. The bending strength is significantly reduced. Therefore, there has been a problem of improving toughness while sufficiently maintaining thermal conductivity and bending strength.
[0006]
The present invention has been made in view of the above, and its purpose is to generate cracks in the aluminum nitride substrate after heat history even if the material of the circuit or heat sink formed on the aluminum nitride substrate is copper. It is an object of the present invention to provide an aluminum nitride sintered body capable of producing a highly reliable circuit board with a significantly reduced amount of.
[0007]
The object of the present invention can be surprisingly achieved by firing a mixed raw material containing two specific types of aluminum nitride powder and a sintering aid.
[0008]
[Means for Solving the Problems]
That is, according to the present invention, the average diameter of aluminum nitride particles is 3 to 7 μm, the maximum diameter is 30 μm or less, the number frequency of the particle diameter is 10 to 20 μm is 3 to 15%, and the fracture toughness value K 1C by the IF method is 3 An aluminum nitride sintered body for a circuit board, having a thermal conductivity of 170 W / mK or more by a laser flash method of not less than 0.0 MPa · m 1/2 and a three-point bending strength of 450 MPa or more.
[0009]
Further, in the present invention, when the mixed raw material powder containing the sintering aid and the aluminum nitride powder is fired in a non-oxidizing atmosphere, the aluminum nitride powder has an average diameter of 3 to 15 μm by a laser diffraction scattering method. The aluminum nitride sintered body is characterized in that the metal aluminum direct powder having a maximum diameter of 45 μm or less is 5 to 20% by weight and the balance is substantially reduced alumina powder. In particular, the aluminum nitride sintered body has the characteristics described above, and the use thereof is a circuit board.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
The major feature of the present invention is that the microstructure of the aluminum nitride sintered body, which has been studied only from the viewpoint of thermal conductivity and bending strength, has been considered from the viewpoint of the particle size distribution, considering the fracture toughness value. Furthermore, it was made appropriate. In general, the bending strength is preferably a fine and uniform structure, i.e., composed of fine particles, and the fracture toughness is improved so that cracks that progress through the fractured surface do not progress straight. A structure in which is present is preferred. Therefore, both are often contradictory.
[0012]
The inventors of the present invention use coarse particles exceeding 30 μm as a fracture source to reduce the bending strength, but particles of 10 μm or more have an effect of improving fracture toughness such as branching or diffracting cracks. As a result, the microstructure was optimized so that there was no particle exceeding 30 μm and the number frequency of 10 to 20 μm was 3 to 15%. In other words, there are no coarse particles that reduce the bending strength, but the microstructure contains an appropriate amount of coarse particles to the extent that fracture toughness is improved. Furthermore, high bending strength could be expressed by setting the average particle diameter to 3 to 7, preferably 4 to 7 μm.
[0013]
The method for evaluating the microstructure of aluminum nitride in the present invention is performed by the intercept method. Hereinafter, this will be described. First, an arbitrary line is drawn on the SEM photograph of the fracture surface, and the line is observed at a magnification that crosses 10 to 20 AlN particles. Next, the SEM photograph is enlarged to about 1.5 to 3 times, and two arbitrary lines are drawn across the enlarged view. In this case, a sufficient interval must be provided so as not to cross the same particle. Next, after measuring the length of the particle crossed by the line (this is referred to as the cord length) and converting it with a magnification, the particle size is further increased by 1.5. The number of particles to be measured is suitably 300 to 1,000, and is about 10 to 20 fields of view in the SEM photograph. In the case of a normal aluminum nitride sintered body for circuit boards, a magnification of about 1000 to 3500 times is employed.
[0014]
The bending strength in the present invention is a three-point bending strength measured according to JIS R 1601. The test piece has a thickness of 0.635 mm or 1 mm and a width of 40 mm × 40 mm. The thermal conductivity is a value measured by the laser flash method, and the fracture toughness value is a value measured by the IF method.
[0015]
In the present invention, when the fracture toughness value K 1C is less than 3.0 MPa · m 1/2 , there is a possibility that sufficient crack resistance is not exhibited when a circuit board is formed, and in particular, a circuit board on which the above-described copper circuit is formed. When a thermal history such as a heat cycle is received, horizontal cracks along the circuit pattern and proceed into the circuit pattern are likely to occur. When the thermal conductivity is less than 170 W / mK, the thermal resistance of the circuit board is increased, and particularly when used in a power module, the heat generated by the chip may not be sufficiently dissipated. Further, when the three-point bending strength is less than 450 MPa, when the circuit board is used for a power module, it may be damaged by thermal and mechanical stress received during soldering to the base plate or mounting to the radiation fin. In order to avoid this damage, severe restrictions are required on the circuit pattern and the like.
[0016]
When the aluminum nitride sintered body of the present invention is baked in a non-oxidizing atmosphere with a mixture of a sintering aid and an aluminum nitride powder, the aluminum nitride powder includes a direct metal aluminum powder of specific particle size and an alumina reduced powder. It can manufacture by using simultaneously.
[0017]
In the present invention, “metal aluminum direct powder” means a powder in which metal aluminum powder is subjected to nitriding reaction by heating in an atmosphere in which nitrogen gas such as nitrogen or ammonia is released to obtain aluminum nitride, and the particle size is adjusted by pulverization or classification Is defined. Metal aluminum direct powder is slightly inferior in oxidation resistance, but is excellent in formability because of its relatively wide particle size distribution. In terms of components, a total of 0.005 to 0.75 to 1.7% by weight of oxygen, 0.01 to 0.2% by weight of iron, and metal impurities and carbon other than iron inevitably mixed in. About 0.2% by weight is contained.
[0018]
“Reduced alumina powder” is defined as an aluminum nitride powder obtained by firing a mixed powder of alumina and carbon. The reduced alumina powder is characterized by high purity, excellent oxidation resistance, and a fine and uniform particle size.
[0019]
When the metal aluminum direct powder and the alumina reduced powder are used at the same time, the metal aluminum direct powder is somewhat difficult to sinter, so the particle size of the sintered body is strongly influenced by the particle size of the metal aluminum direct powder raw material. Therefore, when a slightly coarse metal aluminum powder is added, the aluminum nitride particles in the obtained sintered body have a particle size distribution in which coarse particles and fine particles are mixed, and the fracture toughness is improved.
[0020]
Therefore, the metal aluminum direct powder used in the present invention needs to have an average diameter of 3 to 15 μm and a maximum of 45 μm or less. Finer particles are less effective in expanding the particle size distribution of the sintered body, and the fracture toughness is not so improved. In addition, particles larger than this tend to be a fracture source and cause a decrease in bending strength. The average diameter is preferably 4 to 12 μm and the maximum diameter is 40 μm or less, and particularly preferably the average diameter is 4 to 10 μm and the maximum diameter is 35 μm or less.
[0021]
The ratio of the metal aluminum direct powder is a content of 5 to 20% by weight with respect to the total of the metal aluminum direct powder and the alumina reduced powder. If it is less than 5% by weight, the effect is small, and if it exceeds 20% by weight, coarse particles are likely to be produced. The appropriate amount of addition varies depending on the amount and type of sintering aid used, but the most commonly used yttria is about 3 to 5% by weight, preferably 7 to 15% by weight.
[0022]
The particle size of the raw material powder is measured by a laser diffraction scattering method. This method is the most versatile method for measuring the particle size of powder of about 1 to several tens of micrometers, and many apparatuses are commercially available. Measurement is also relatively easy.
[0023]
The type and ratio of the sintering aid are not particularly limited, and may be those generally used for sintering aluminum nitride. It is not preferable that the firing temperature is too high because grain growth is significantly accelerated. The sintering agent most commonly used is yttrium oxide (yttria), and the addition amount is about 2 to 6% by weight. In addition to yttria, ytterbium oxide, lithium oxide, calcium oxide, yttrium fluoride, ytterbium fluoride, and the like are used.
[0024]
The aluminum nitride sintered body in the present invention is manufactured through each step of mixing, forming, degreasing, and firing raw materials.
[0025]
The mixing of the raw materials is performed so that the specific surface area does not increase by 20% or more, taking care not to oxidize the aluminum nitride particles or to change the particle size distribution significantly.
[0026]
Various methods such as a doctor blade method, an extrusion method, a press method, and a roll forming method are known for forming, and the method is not limited in the present invention. Each has advantages and disadvantages, and the molding binder is different. When two types of mixed powder are used for the aluminum nitride raw material as in the present invention, an extrusion molding method with little segregation of coarse powder is most preferable. Degreasing is not limited as long as the organic components can be sufficiently removed. However, degreasing in nitrogen or vacuum is preferable from the viewpoint of preventing oxidation of aluminum nitride.
[0027]
The appropriate range of firing conditions varies depending on the raw materials used. A temperature at which a sufficiently dense sintered body is obtained is necessary, but it must be so high that the liquid phase component that promotes sintering does not move to the surface. Specifically, it is 1900 degrees C or less. Usually, such an appropriate temperature range is only about 10 to 20 ° C., and in order to obtain an appropriate particle size distribution, it is preferable to heat within the temperature range for several to several tens of hours. Heating for about 1 to 2 hours makes it easy to obtain a fine structure composed of fine aluminum nitride particles, and heating for an excessively long time significantly reduces productivity.
[0028]
A preferred application of the aluminum nitride sintered body of the present invention is a circuit board. The circuit board manufacturing method is not particularly limited. The surface of the aluminum nitride substrate is processed as necessary, but usually a cleaning process such as honing is performed, and a bonding material is used to join a circuit metal plate such as Cu or Al. Alternatively, circuit metal is printed and baked. The pattern is formed by bonding a pattern shape required at the time of bonding or by etching after bonding. The formed circuit and heat sink are subjected to surface treatment such as plating as necessary.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0030]
Examples 1-3 Comparative Examples 1-5
As the alumina reduced powder, a commercially available product (“H grade” average particle size 1.5 μm, manufactured by Tokuyama Corporation) was used. As metal aluminum direct powder, commercially available Al powder (> 99.9%) of 45 μm or less was heated and nitrided to 1400 ° C. in ammonia gas, and the obtained ingot was dry ball milled in nitrogen gas and shown in Table 1. The particle size was used. The particle size was measured by a laser diffraction scattering method using “Microtrac SPA” manufactured by Nikkiso Co., Ltd. The sintering aids yttria and alumina were used by commercially mixing a commercially available reagent (> 99.9%) with a ball mill for 12 hours.
[0031]
First, each compounding raw material shown in Table 1 was preliminarily mixed in a plastic bag, then dry mixed for 30 minutes using an alumina ball, an organic binder and water were added, and the mixture was mixed for 1 minute using a Henschel mixer.
[0032]
The mixed powder was formed into a sheet by an extrusion molding machine so as to have a thickness of 0.635 mm after firing, dried, and press-punched to a 40 mm square after firing. It was degreased in a vacuum sandwiched between BN plates and subsequently decarburized in the atmosphere. Further, the degreased body was set in a BN box, and was calcined in nitrogen with a weight placed thereon. Table 2 shows the firing conditions.
[0033]
Each sample after firing was measured for thermal conductivity (average of n = 3) by laser flash method, 3-point bending strength (average of n = 5), K 1C (average of n = 5) by IF method, Seven fields of view were randomly selected from a secondary electron image magnified 2500 times with a scanning electron microscope, and the particle size distribution was determined by examining the particle size of about 800 individual aluminum nitride particles in the field of view. The results are shown in Table 3.
[0034]
In order to evaluate the performance of the obtained sintered body as an aluminum nitride substrate, a bonding material paste in which 3% by weight of titanium hydride is added to 72% Ag-28% Cu is printed on both sides at a solid content of 15 mg / cm 2. After coating and drying and laminating an oxygen-free copper plate having a thickness of 0.3 mm on both sides, a weight was placed and heat bonding was performed in a vacuum. Heating was carried out at 1 × 10 −3 Pa and 820 ° C. for 30 minutes after sufficient degreasing at 400 ° C.
[0035]
An etching resist was screen-printed on the obtained bonded body and etched with FeCl 3 solution. Next, after peeling off the resist, electroless Ni—P plating was applied by 3 μm to manufacture a circuit board.
[0036]
Each circuit board was subjected to a heat cycle test for 10 sheets. The heat cycle test was carried out 1000 cycles with -40 ° C. × 30 minutes → room temperature × 10 minutes → 125 ° C. × 30 minutes → room temperature × 10 minutes as one cycle. After the heat cycle test, the circuit and the heat sink were dissolved in nitric acid, and the presence or absence of cracks in the aluminum nitride substrate was observed. The results are shown in Table 3.
[0037]
[Table 1]
Figure 0003922847
[0038]
[Table 2]
Figure 0003922847
[0039]
[Table 3]
Figure 0003922847
[0040]
As is apparent from Tables 1 to 3, since the examples of the present invention all use an aluminum nitride substrate that exhibits high strength and high thermal conductivity and is relatively tough, 1000 cycles of the heat cycle test. Even after that, there was almost no damage to the substrate. On the other hand, in Comparative Examples 1 and 4, since the sintered body was composed only of fine and uniform aluminum nitride particles, an aluminum nitride substrate having a relatively high bending strength but a low toughness value was used. there were. On the contrary, Comparative Example 2 in which grain growth progressed and the particles became coarse on average, Comparative Example 3 in which very coarse particles exceeding 30 μm were present in the sintered body, and furthermore, there were too many particles of 10 to 20 μm In Example 5, each aluminum nitride substrate had a relatively high toughness value but a low strength. As a result, there are many substrates on which cracks occur after the heat cycle, and the circuit substrate has low reliability.
[0041]
【The invention's effect】
According to the present invention, even if the material of the circuit or the heat sink formed on the aluminum nitride substrate is copper, a highly reliable circuit substrate in which the occurrence of cracks in the aluminum nitride substrate after the thermal history is extremely small is manufactured. An aluminum nitride sintered body is provided.

Claims (1)

焼結助剤と窒化アルミニウム粉末とを含む混合原料粉末を、非酸化性雰囲気下で焼成するにあたり、上記窒化アルミニウム粉末が、レーザー回折散乱法による平均径が3〜15μmで、最大径が45μm以下である金属アルミニウム直接粉5〜20重量%と、残部が実質的にアルミナ還元粉であり、焼成条件が1900℃以下で10時間加熱することを特徴とする窒化アルミニウム焼結体の製造方法。In firing the mixed raw material powder containing the sintering aid and the aluminum nitride powder in a non-oxidizing atmosphere, the aluminum nitride powder has an average diameter of 3 to 15 μm and a maximum diameter of 45 μm or less by a laser diffraction scattering method. A method for producing an aluminum nitride sintered body, characterized in that the metal aluminum direct powder is 5 to 20% by weight, the balance is substantially alumina reduced powder, and the firing condition is heated at 1900 ° C. or lower for 6 to 10 hours. .
JP25966199A 1999-09-14 1999-09-14 Aluminum nitride sintered body for circuit board and manufacturing method thereof Expired - Lifetime JP3922847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25966199A JP3922847B2 (en) 1999-09-14 1999-09-14 Aluminum nitride sintered body for circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25966199A JP3922847B2 (en) 1999-09-14 1999-09-14 Aluminum nitride sintered body for circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001089247A JP2001089247A (en) 2001-04-03
JP3922847B2 true JP3922847B2 (en) 2007-05-30

Family

ID=17337156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25966199A Expired - Lifetime JP3922847B2 (en) 1999-09-14 1999-09-14 Aluminum nitride sintered body for circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3922847B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398430B2 (en) * 2009-03-31 2014-01-29 株式会社トクヤマ Aluminum nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2001089247A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP2018184333A (en) Method of manufacturing silicon nitride substrate and silicon nitride substrate
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2002097005A5 (en)
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
JP3775335B2 (en) Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same
JP2002265276A (en) Silicon nitride powder and silicon nitride sintered compact
JP3922847B2 (en) Aluminum nitride sintered body for circuit board and manufacturing method thereof
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
KR101402501B1 (en) Sintered body of aluminium nitride using yttria nitrate as sintering aid and preparation method of the same
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP6720053B2 (en) Method for manufacturing silicon nitride sintered body
JP2012111671A (en) Method for producing aluminum nitride sintered compact workpiece
JPH09328365A (en) Silicon nitride powder, sintered silicon nitride and circuit board made thereof
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
KR20200021023A (en) Memufacturing method of High thermal conductivity AlN subtrate
JP2002293641A (en) Silicon nitride-based sintered compact
JP5031147B2 (en) Method for producing aluminum nitride sintered body
JP4142556B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JP2001019555A (en) Silicon nitride sintered compact and substrate using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Ref document number: 3922847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term