JPH0558748A - Alumina-zirconia-based calcining tool material - Google Patents

Alumina-zirconia-based calcining tool material

Info

Publication number
JPH0558748A
JPH0558748A JP3217196A JP21719691A JPH0558748A JP H0558748 A JPH0558748 A JP H0558748A JP 3217196 A JP3217196 A JP 3217196A JP 21719691 A JP21719691 A JP 21719691A JP H0558748 A JPH0558748 A JP H0558748A
Authority
JP
Japan
Prior art keywords
alumina
zirconia
magnesia
stabilized zirconia
tool material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3217196A
Other languages
Japanese (ja)
Inventor
Katsuhiro Wakasugi
勝廣 若杉
Keisuke Uemori
啓介 上森
Tetsuhiro Honjo
哲博 本荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP3217196A priority Critical patent/JPH0558748A/en
Publication of JPH0558748A publication Critical patent/JPH0558748A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the calcining tool material having high density and strength and excellent in resistance to heat and impact by mixing magnesia-stabilized zirconia into alpha-alumina in a specified weight ratio, forming and then calcining the mixture. CONSTITUTION:From 60 to 95wt.% alpha-alumina and 40-5wt.% magnesia-stabilized zirconia are mixed, a binder (e.g. PVA) is further added, and the admixture is formed. The formed body is then dried and calcined in the kiln at least 1500-1700 deg.C in the atmosphere to produce an alumina-zirconia-based calcining tool material. Consequently, since the magnesia-stabilized zirconia acts as a stress relieving body in the alumina structure, the resistance to heat and impact is improved. Meanwhile, the magnesia on the surface of the magnesia-stabilized zirconia is dissociated by heating and reacts with alumina to form spinel, hence the binding power between the zirconia and alumina is enhanced, and a decrease in strength due to the addition of zirconia is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックを焼成する際
に使用するアルミナ・ジルコニア質焼成用道具材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina / zirconia firing tool material used for firing ceramics.

【0002】[0002]

【従来の技術】成形したセラミックの焼成は、ほとんど
の場合道具材を使用して行われる。道具材の材質は焼成
条件や被焼成物(製品)により様々であるが、例を挙げる
と、比較的温度の高い条件下ではアルミナ質が使用さ
れ、また、製品を載せる台として両者間の反応を防止す
るためにはジルコニア質が使用されることが多い。
BACKGROUND OF THE INVENTION Firing of shaped ceramics is most often done using tooling. The material of the tool material varies depending on the firing conditions and the product (product) to be fired, but for example, alumina is used under conditions of relatively high temperature, and the reaction between the two is used as a platform for mounting the product. Zirconia is often used to prevent this.

【0003】[0003]

【発明が解決しようとする課題】様々な材質のなかで、
アルミナ質は耐火性が高く、耐反応性についても比較的
優れているため、色々な分野で使用されている。しか
し、軟化変形を防止したり、耐反応性を向上していく目
的で組織を緻密化していくと、熱衝撃に対して弱くな
り、割れ易くなるため、繰り返しの使用において短命と
なる。
[Problems to be Solved by the Invention] Among various materials,
Alumina has high fire resistance and is relatively excellent in reaction resistance, and is used in various fields. However, if the structure is densified for the purpose of preventing softening deformation and improving reaction resistance, it becomes vulnerable to thermal shock and easily cracks, which shortens the life of repeated use.

【0004】従って、本発明の目的は、アルミナ質の緻
密化に際して熱衝撃に弱くなる欠点を解決することにあ
る。
[0004] Therefore, an object of the present invention is to solve the drawback of becoming vulnerable to thermal shock when densifying alumina.

【0005】[0005]

【課題を解決するための手段】耐熱衝撃性を向上する手
段としては、熱膨張率を下げる、弾性率を下げる、熱伝
導率を上げるなどの手法が一般的である。本発明は、主
に弾性率を下げることで耐熱衝撃性を向上さしめた。す
なわち、アルミナ質の中に膨張率の異なるマグネシア安
定化ジルコニアを添加することにより組織的に緩い結合
部分を意図的に生ぜしめ、熱衝撃により発生する亀裂発
生エネルギーを吸収し、その伝播を抑制するものであ
る。
[Means for Solving the Problems] As a means for improving the thermal shock resistance, methods such as lowering the coefficient of thermal expansion, lowering the elastic modulus, and increasing the thermal conductivity are generally used. The present invention has improved the thermal shock resistance mainly by lowering the elastic modulus. That is, by adding magnesia-stabilized zirconia with different expansion coefficient to alumina, intentionally creating a structurally loose bond part, absorbing the cracking energy generated by thermal shock, and suppressing its propagation. It is a thing.

【0006】すなわち、本発明に係るアルミナ・ジルコ
ニア質焼成用道具材はα−アルミナ60〜95重量%及
びマグネシア安定化ジルコニア5〜40重量%からなる
ことを特徴とする。
That is, the alumina / zirconia firing tool material according to the present invention is characterized by comprising 60 to 95% by weight of α-alumina and 5 to 40% by weight of magnesia-stabilized zirconia.

【0007】[0007]

【作用】α−アルミナ(以下、アルミナと記載する)は2
000℃以上の融点を有し、高い耐クリープ性及び耐化
学反応性を有する中性耐火物である。こうした特徴を充
分発揮させる為には高い密度が要求されるが、一般的に
緻密化に伴ってアルミナの耐熱衝撃性は低下する。これ
は熱衝撃によって発生する亀裂が緻密組織であるが故に
伝播し易いためである。
[Function] α-alumina (hereinafter referred to as alumina) is 2
It is a neutral refractory material having a melting point of 000 ° C. or higher and high creep resistance and chemical reaction resistance. Although a high density is required to fully exhibit such characteristics, the thermal shock resistance of alumina generally decreases with densification. This is because cracks generated by thermal shock are easily propagated because of the dense structure.

【0008】高い密度及び強度を有し、かつ熱衝撃に強
い材質を得るために、本発明はアルミナにジルコニアそ
れもマグネシア安定化ジルコニアを添加したものであ
る。
In order to obtain a material having a high density and strength and being resistant to thermal shock, the present invention is the one in which zirconia or magnesia-stabilized zirconia is added to alumina.

【0009】マグネシア安定化ジルコニアを使用する理
由は、第1にジルコニア源としてであるが、ジルコニア
は融点が2850℃と非常に高く、化学安定性が高く、
マグネシアで安定化してもその融点は2600℃を保持
し、なお高い熱的安定性をもっている。マグネシア安定
化ジルコニアの配合量は5〜40重量%が適当で、該配
合量が5重量%未満であると添加効果が発現しない。ま
た、40重量%を超えると材質がアルミナの領域から離
れてくるし、比重が重くなって取り扱い上不便であり、
また、コストも上昇する。
The first reason for using magnesia-stabilized zirconia is as a zirconia source. However, zirconia has a very high melting point of 2850 ° C. and high chemical stability.
Even when stabilized with magnesia, its melting point maintains 2600 ° C and still has high thermal stability. A suitable amount of magnesia-stabilized zirconia is 5 to 40% by weight. If the amount is less than 5% by weight, the effect of addition will not be exhibited. Further, if it exceeds 40% by weight, the material is separated from the alumina region, and the specific gravity becomes heavy, which is inconvenient in handling.
Also, the cost will increase.

【0010】第2の理由はマグネシア安定化ジルコニア
の熱膨張特性である。未安定化のジルコニアは低温にお
いては単斜晶系であり、800℃までの熱膨張係数は8
×10-6/degで、800〜1200℃においては高
温型の正方晶系に結晶転移する際の異常線変化がある。
一方、安定化ジルコニアは、この異常線変化を防止する
ためにカルシア、マグネシア、イットリアなどを添加し
たもので、熱膨張係数は安定化度で異なるが、1.0〜
1.2×10-7/degでほぼ直線的な膨張となる。こ
れに対してアルミナは膨張係数が8×10-6で、結晶転
移はない。アルミナと安定化ジルコニア間の膨張係数の
差が製品の組織において熱衝撃緩和部分を形成する。
The second reason is the thermal expansion characteristics of magnesia-stabilized zirconia. Unstabilized zirconia is monoclinic at low temperatures and has a coefficient of thermal expansion of 8 up to 800 ° C.
There is an abnormal line change in crystal transition to a high temperature type tetragonal system at 800 to 1200 ° C. at × 10 −6 / deg.
On the other hand, the stabilized zirconia is added with calcia, magnesia, yttria, etc. to prevent this extraordinary line change.
The expansion is almost linear at 1.2 × 10 −7 / deg. In contrast, alumina has an expansion coefficient of 8 × 10 −6 and has no crystal transition. The difference in coefficient of expansion between the alumina and the stabilized zirconia forms the thermal shock mitigating portion in the structure of the product.

【0011】第3の理由は安定化剤とアルミナの反応で
ある。製品の製造過程及び製品の使用時における加熱に
より添加したジルコニアと母材であるアルミナと接触に
よる反応が起こる。アルミナは安定化ジルコニア中の解
離した安定化剤と反応生成物を造るが、マグネシアとの
場合はスピネル(MgO・Al23)を形成する。スピネ
ルは融点が2135℃、最も低いところでも1850℃
であり比較的高い。これに対してカルシア(CaO)安定
化ジルコニアの場合、カルシアはアルミナと5CaO・
3Al23(融点1455℃)という低い融点の反応物を
形成するので熱間の強度においてマグネシアより劣る。
一方、イットリア(Y23)安定化ジルコニアのごとく、
非常に安定で解離しにくいものは粒の接触部の反応が起
こりにくいことから、粒子間の結合が強固にならない。
The third reason is the reaction between the stabilizer and alumina. A reaction occurs when the zirconia added by heating during the manufacturing process of the product and the use of the product comes into contact with alumina which is the base material. Alumina forms a reaction product with the dissociated stabilizer in stabilized zirconia, but in the case of magnesia it forms spinel (MgO.Al 2 O 3 ). Spinel has a melting point of 2135 ° C, and the lowest temperature is 1850 ° C.
Is relatively high. On the other hand, in the case of calcia (CaO) -stabilized zirconia, calcia is alumina and 5CaO.
Since it forms a reaction product having a low melting point of 3Al 2 O 3 (melting point 1455 ° C.), it is inferior to magnesia in hot strength.
On the other hand, like yttria (Y 2 O 3 ) stabilized zirconia,
If the particles are extremely stable and difficult to dissociate, the reaction between the contact portions of the particles is unlikely to occur, so that the bond between the particles does not become strong.

【0012】以上のような理由から、マグネシアによる
ジルコニアの安定化度は40〜100%が好ましく、4
0%よりも低いと前述の第2、第3の効果が発揮されな
い。
For the above reasons, the degree of stabilization of zirconia by magnesia is preferably 40-100%.
If it is less than 0%, the above-mentioned second and third effects are not exhibited.

【0013】マグネシア安定化ジルコニアの粒度は微粉
で添加する方がアルミナと効率良く結合する点で優れて
いるが、熱応力の緩衝体としては粒で使用した方が良
く、一長一短である。目的に応じて粒度分布を設定する
が、通常、粒径はアルミナ原料の粒度範囲内のものを使
用する。
Regarding the particle size of magnesia-stabilized zirconia, it is better to add it in the form of fine powder in that it is more efficiently combined with alumina, but it is better to use it as a grain as a buffer for thermal stress, and there are advantages and disadvantages. The particle size distribution is set according to the purpose, but the particle size is usually within the particle size range of the alumina raw material.

【0014】アルミナについては一般的なα−アルミナ
であれば電融品でも、焼結品でもどちらでも良い。ま
た、軽量化のためにアルミナの中空球原料を30重量%
未満使うこともできる。しかし、中空球原料が30重量
%以上になると充分な強度が得られなくなる。
Regarding alumina, either a fused product or a sintered product may be used as long as it is a general α-alumina. Also, to reduce the weight, 30% by weight of alumina hollow sphere raw material was used.
You can use less than. However, when the hollow sphere raw material is 30% by weight or more, sufficient strength cannot be obtained.

【0015】本発明のアルミナ・ジルコニア質焼成用道
具材の製造方法は、一般的な一軸式の機械成形法を基本
とするが、それ以外の例えば泥漿鋳込み成形も可能であ
る。機械成形法を使用する場合には、ミックスマーラ
ー、アイリッヒなどの混練機で練り込むが、その際、成
形圧力、製品形状に応じてバインダーとしてPVC、C
MC、アルギン酸ソーダなどの水溶液を2〜5%適宜添
加する。
The method for producing the alumina / zirconia firing tool material of the present invention is based on a general uniaxial mechanical molding method, but other methods such as slurry casting can be used. When the mechanical molding method is used, the mixture is kneaded with a kneading machine such as Mix Mahler or Eirich. At that time, PVC or C is used as a binder depending on the molding pressure and the product shape.
An aqueous solution of MC, sodium alginate or the like is appropriately added in an amount of 2 to 5%.

【0016】機械成形は加圧力50〜200MPaで行
い、成形後80〜120℃で乾燥する。焼成は通常の焼
成炉の大気雰囲気で行い、最高温度は1500〜170
0℃が適当である。
Mechanical molding is carried out under a pressure of 50 to 200 MPa, and after molding is dried at 80 to 120 ° C. Firing is performed in the air atmosphere of a normal firing furnace, and the maximum temperature is 1500 to 170.
0 ° C is suitable.

【0017】[0017]

【実施例】【Example】

実施例 下記の表1に記載する各配合物を800kg/cm2
圧力にて成形し、大気雰囲気中1600℃で2時間焼成
した。
Example Each of the formulations described in Table 1 below was molded at a pressure of 800 kg / cm 2 and fired at 1600 ° C. for 2 hours in the air atmosphere.

【0018】[0018]

【表1】 [Table 1]

【0019】表1中、比較例E、Fはアルミナ質であ
り、比較例A〜Cは80%カルシア安定化ジルコニア、
比較例Dは80%イットリア安定化ジルコニアを添加し
た例である。比較例G、Hはそれぞれジルコニアが本発
明範囲より少ない場合と、多い場合の例である。
In Table 1, Comparative Examples E and F are alumina, Comparative Examples A to C are 80% calcia-stabilized zirconia,
Comparative Example D is an example in which 80% yttria-stabilized zirconia was added. Comparative Examples G and H are examples of cases where the amount of zirconia is less than and greater than the range of the present invention.

【0020】これらの配合は製品としてチタン酸バリウ
ム系のキャパシターの焼成に比較試用されたが、本発明
による80%マグネシア安定化ジルコニアを添加した実
施例1〜6は耐熱衝撃性が向上し、また、耐反応性も良
くなったことから、他の材質に比べて耐用が大幅に向上
した。実施例5、6はアルミナ粒に中空球原料を使用し
て軽量化を図ったものである。強度及び耐軟化性が低下
したが、耐熱衝撃性は最も高かった。
These formulations were comparatively used as a product for firing a barium titanate-based capacitor, and Examples 1 to 6 to which 80% magnesia-stabilized zirconia according to the present invention was added had improved thermal shock resistance. Since the reaction resistance is also improved, the durability is greatly improved compared to other materials. Examples 5 and 6 are intended to reduce the weight by using hollow sphere raw material for alumina particles. Although the strength and softening resistance decreased, the thermal shock resistance was the highest.

【0021】[0021]

【発明の効果】アルミナへのマグネシア安定化ジルコニ
アの添加は次の結果をもたらせた: マグネシア安定化ジルコニアはアルミナ組織内におい
て応力の緩衝体となり、耐熱衝撃抵抗性を向上する; マグネシア安定化ジルコニア表面のマグネシアは加熱
により解離し、アルミナと反応してスピネルを形成す
る。この反応によってジルコニアとアルミナの結合力を
高め、ジルコニア添加による強度の低下を抑制した。こ
の結合は熱間でも安定した強さを発揮することから軟化
変形に対して強くなる; これらのことにより本発明による道具材は従来のアル
ミナ質に比べて高い耐用を得ることができた。
Effects of the Invention Addition of magnesia-stabilized zirconia to alumina has the following results: Magnesia-stabilized zirconia serves as a buffer for stress in the alumina structure and improves thermal shock resistance; Magnesia on the surface of zirconia is dissociated by heating and reacts with alumina to form spinel. By this reaction, the binding force between zirconia and alumina was increased, and the decrease in strength due to the addition of zirconia was suppressed. Since this bond exhibits stable strength even in the hot state, it becomes strong against softening deformation; thus, the tool material according to the present invention can have higher durability than conventional alumina materials.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 α−アルミナ60〜95重量%及びマグ
ネシア安定化ジルコニア5〜40重量%からなることを
特徴とするアルミナ・ジルコニア質焼成用道具材。
1. A tool material for firing an alumina-zirconia material, which comprises 60 to 95% by weight of α-alumina and 5 to 40% by weight of magnesia-stabilized zirconia.
JP3217196A 1991-08-28 1991-08-28 Alumina-zirconia-based calcining tool material Pending JPH0558748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3217196A JPH0558748A (en) 1991-08-28 1991-08-28 Alumina-zirconia-based calcining tool material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3217196A JPH0558748A (en) 1991-08-28 1991-08-28 Alumina-zirconia-based calcining tool material

Publications (1)

Publication Number Publication Date
JPH0558748A true JPH0558748A (en) 1993-03-09

Family

ID=16700368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3217196A Pending JPH0558748A (en) 1991-08-28 1991-08-28 Alumina-zirconia-based calcining tool material

Country Status (1)

Country Link
JP (1) JPH0558748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244762A (en) * 1988-03-28 1989-09-29 Hoya Corp Contact lens
EP0825158A2 (en) * 1996-08-20 1998-02-25 Eastman Kodak Company Core shell structured articles based on alumina ceramics and having spinel surfaces
EP2168935A1 (en) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Material compound for producing a fire-retardant material and its application and fire-retardant moulding body and method for its manufacture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244762A (en) * 1988-03-28 1989-09-29 Hoya Corp Contact lens
JPH0761357B2 (en) * 1988-03-28 1995-07-05 ホーヤ株式会社 Intraocular lens
EP0825158A2 (en) * 1996-08-20 1998-02-25 Eastman Kodak Company Core shell structured articles based on alumina ceramics and having spinel surfaces
EP0825158A3 (en) * 1996-08-20 1998-09-23 Eastman Kodak Company Core shell structured articles based on alumina ceramics and having spinel surfaces
EP2168935A1 (en) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Material compound for producing a fire-retardant material and its application and fire-retardant moulding body and method for its manufacture
WO2010034529A1 (en) * 2008-09-29 2010-04-01 Siemens Aktiengesellschaft Material composition for producing a fireproof material and the use thereof, and fireproof moulding body and method for the production thereof
US8609019B2 (en) 2008-09-29 2013-12-17 Siemens Aktiengesellschaft Material composition for producing a fireproof material and the use thereof, and fireproof molded body and method for the production thereof
CN104003696A (en) * 2008-09-29 2014-08-27 西门子公司 Material composition for producing a fireproof material and the use thereof, and fireproof moulding body and method for the production thereof
US9108886B2 (en) 2008-09-29 2015-08-18 Siemens Aktiengesellschaft Material composition for producing a fireproof material and the use thereof, and fireproof molded body and method for the production thereof

Similar Documents

Publication Publication Date Title
JP2533992B2 (en) Aluminum titanate ceramics and manufacturing method thereof
EP0361356B1 (en) Heat-resistant and inorganic shaped article
JPH0558748A (en) Alumina-zirconia-based calcining tool material
JP3103480B2 (en) Method for producing zirconia refractory for thermal insulation
JPH0236547B2 (en)
KR100356736B1 (en) Silicon carbide (SiC) quality urinary ware and its manufacturing method
JP3127514B2 (en) Furnace material for ceramic firing
JP3368960B2 (en) SiC refractory
JPH0232228B2 (en)
JPH04280874A (en) Box
JP2611405B2 (en) Method for producing zirconia refractories
JP2001220260A (en) Alumina-based porous refractory sheet and method for producing the same
JP2572543B2 (en) Tool material for cordierite firing
JP3368035B2 (en) Setter
JPS60186462A (en) Thermal impact-resistant refractories
JP2508511B2 (en) Alumina composite
JPH09183658A (en) Silicon carbide refractory
JPH0794347B2 (en) Insulation
JP3155054B2 (en) Zirconia refractory setter
JP2001080960A (en) Production of zirconia refractory and zirconia refractory manufactured by the same
JPH01160862A (en) Calcined firebrick of magnesia base
JPH06219864A (en) Production of porous ceramic
JPH07121825B2 (en) Spalling resistant ceramics and tool materials for firing electronic parts
JPH0674178B2 (en) Porous refractory
JPH1072269A (en) High alumina heat insulating refractory for use at high temperature

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091026

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101026

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131026