JPH03197356A - Zirconia refractory and its production - Google Patents

Zirconia refractory and its production

Info

Publication number
JPH03197356A
JPH03197356A JP1339829A JP33982989A JPH03197356A JP H03197356 A JPH03197356 A JP H03197356A JP 1339829 A JP1339829 A JP 1339829A JP 33982989 A JP33982989 A JP 33982989A JP H03197356 A JPH03197356 A JP H03197356A
Authority
JP
Japan
Prior art keywords
zirconia
layer
partially
composition
composition containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1339829A
Other languages
Japanese (ja)
Other versions
JP2844100B2 (en
Inventor
Katsuyuki Yamaguchi
山口 勝之
Fumio Takemura
文男 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP1339829A priority Critical patent/JP2844100B2/en
Publication of JPH03197356A publication Critical patent/JPH03197356A/en
Application granted granted Critical
Publication of JP2844100B2 publication Critical patent/JP2844100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a zirconia refractory having improved fire-resistance, corrosion resistance and spalling resistance by laminating and integrating a partially or completely stabilized ZrO2 composition containing Y2O3 and a partially or completely stabilized ZrO2 composition containing CaO and sintering the laminated product. CONSTITUTION:A partially or completely stabilized ZrO2 composition containing 4-10mol% of Y2O3 and a partially or completely stabilized ZrO2 composition containing 5-15mol% of CaO are filled in a mold to form prescribed shape and thickness, compression-molded to integrate both compositions and sintered at >=1500 deg.C to obtain the objective refractory.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、苛酷な使用条件に対して優れた耐火性、耐蝕
性および耐スポーリング性を備えるジルコニア耐火物と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zirconia refractory having excellent fire resistance, corrosion resistance and spalling resistance under severe usage conditions, and a method for producing the same.

〔従来の技術] 1800℃を越える高温域で使用することができる耐火
物としては、アルミナ(atios) 、マグネシア(
MgO) 、ジルコニア(ZrO2)等が一般に知られ
ているが、中でもジルコニアは2700℃という非常に
高い融点を持つうえ高温域での安定性(低蒸気圧性、耐
蝕性など)に優れているため、超高温耐火物として広い
分野で活用されている。
[Prior art] As refractories that can be used in a high temperature range exceeding 1800°C, alumina (atios) and magnesia (
MgO), zirconia (ZrO2), etc. are generally known, but zirconia in particular has a very high melting point of 2700°C and is excellent in stability in high temperature ranges (low vapor pressure, corrosion resistance, etc.). It is used in a wide range of fields as an ultra-high temperature refractory.

ところで、純粋なジルコニア(ZrOt)には温度段階
に応じて3種の異なる結晶構造が存在し、この結晶系が
可逆的に転移する際に大きな体積変化を伴うことから熱
的なスポーリング破壊を受は易い欠点がある。これを改
善する方策としてカルシウム、マグネシウム等のアルカ
リ土類金属、ランタン、セリウム等の稀土類元素または
イツトリウムを酸化物の形態で1種以上添加し、結晶構
造の−部もしくは全部を立方晶に安定化する方法が知ら
れており、従来から種々の提案がなされている。
By the way, pure zirconia (ZrOt) has three different crystal structures depending on the temperature stage, and when this crystal system undergoes a reversible transition, it undergoes a large volume change, which makes thermal spalling failure difficult. It has the disadvantage of being easy to receive. As a measure to improve this, one or more oxides of alkaline earth metals such as calcium and magnesium, rare earth elements such as lanthanum and cerium, or yttrium are added in the form of oxides to stabilize part or all of the crystal structure into cubic crystals. There are known methods to do this, and various proposals have been made in the past.

例えば、特公昭56−4507号公報には酸化カルシウ
ム(CaO)または酸化マグネシウム(MgO) 、特
開昭61−155257号公報にはイツトリア(YzO
s>、また特開昭59452266号公報には酸化セシ
ウム(CeO,)をそれぞれ添加して耐スポーリング性
を改善したジルコニア耐火物あるいはその製造方法が示
されている。
For example, Japanese Patent Publication No. 56-4507 discloses calcium oxide (CaO) or magnesium oxide (MgO), and JP-A No. 61-155257 discloses itria (YzO).
Furthermore, JP-A-59452266 discloses a zirconia refractory whose spalling resistance is improved by adding cesium oxide (CeO), and a method for producing the same.

(発明が解決しようとする課題) 上記した各種安定化剤のうち酸化カルシウム、酸化マグ
ネシウムなどは材料価格が安価であるという利点はある
ものの、シリカ、アルミナ等の不可避不純物または焼結
助剤の影響によって脱固溶が起こり易く充分な耐スポー
リング改善効果は期待できない。一方.イットリアの添
加はジルコニアの安定化には著効があり耐火性、耐蝕性
および耐スポーリング性の改善に大きく寄与する特性は
あるが、材料価格が非常に高いため、各種工業炉に汎用
できない問題点がある。
(Problem to be solved by the invention) Among the various stabilizers mentioned above, calcium oxide, magnesium oxide, etc. have the advantage of being inexpensive materials, but they are affected by unavoidable impurities such as silica, alumina, or sintering aids. As a result, solid solution removal is likely to occur, and a sufficient anti-spalling improvement effect cannot be expected. on the other hand. The addition of yttria has a remarkable effect on stabilizing zirconia and greatly contributes to improving fire resistance, corrosion resistance, and spalling resistance, but the material cost is extremely high, so there is a problem that it cannot be used widely in various industrial furnaces. There is a point.

本発明は、上記問題点の解消を図ったもので、その目的
は、安定化剤としてイツトリアを含むジルコニア組成物
と酸化カルシウムを含むジルコニア組成物とを積層一体
化することにより高度の耐火性、耐蝕性および耐スポー
リング性を備える安価な汎用性ジルコニア耐火物とその
製造方法を提供するところにある。
The present invention aims to solve the above-mentioned problems, and its purpose is to achieve a high degree of fire resistance by laminating and integrating a zirconia composition containing ittria as a stabilizer and a zirconia composition containing calcium oxide. An object of the present invention is to provide an inexpensive, general-purpose zirconia refractory having corrosion resistance and spalling resistance, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明によるジルコニア耐
火物は.イットリア(yios)を含む部分安定化もし
くは完全安定化したジルコニア(ZrOxi質層(以下
rYZ層」という、)と酸化カルシウム(CaO)を含
む部分安定化もしくは完全安定化したジルコニア質層(
以下102層」という、)が積層一体化した二層構造か
らなることを構成上の特徴としている。
The zirconia refractory according to the present invention achieves the above objects. A partially stabilized or fully stabilized zirconia layer (ZrOxi layer (hereinafter referred to as rYZ layer)) containing yttria (yios) and a partially or fully stabilized zirconia layer containing calcium oxide (CaO) (
The structure is characterized by a two-layer structure in which 102 layers (hereinafter referred to as "102 layers") are laminated and integrated.

72層および02層の部分安定化とは立方晶系ジルコニ
アが少なくとも70%以上の結晶組成をいい、完全安定
化とは100%立方晶型構造のジルコニアを指す、した
がって、本発明においては安定化率70%以上の組成性
状とする必要があり、70%未満の安定化率では高度の
耐スポーリング性を確保することができなくなる。
Partial stabilization of the 72 layer and 02 layer refers to a crystal composition in which cubic zirconia accounts for at least 70%, and complete stabilization refers to zirconia with a 100% cubic structure. Therefore, in the present invention, stabilized It is necessary to have a composition with a stabilization rate of 70% or more, and if the stabilization rate is less than 70%, it will not be possible to ensure a high degree of spalling resistance.

二層構造を構成する72層と02層の積層界面は、相互
が強固に結合して一体化した構造を呈している。
The laminated interface between the 72nd layer and the 02th layer constituting the two-layer structure is strongly bonded to each other to form an integrated structure.

上記のジルコニア耐火物を製造するための本発明による
方法は.イットリア(Y2O3)を含む部分安定化もし
くは完全安定化したジルコニア(ZrO,)質組成物(
以下「YZ組成物」という、)および酸化カルシウム(
CaO)を含む部分安定化もしくは完全安定化したジル
コニア(ZrO,)質組成物(以下rczl成物」とい
う、)を所定の層厚、形状に積層されるように一体成形
したのち、1500℃以上の温度で焼結することを特徴
とするプロセスからなる。
The method according to the present invention for producing the above-mentioned zirconia refractories. Partially stabilized or fully stabilized zirconia (ZrO) composition containing yttria (Y2O3) (
) and calcium oxide (hereinafter referred to as "YZ composition")
A partially stabilized or completely stabilized zirconia (ZrO) composition (hereinafter referred to as "rczl composition") containing CaO) is integrally molded so as to be laminated to a predetermined layer thickness and shape, and then heated to 1500°C or higher. It consists of a process characterized by sintering at a temperature of .

YZ組成物におけるイツトリアの添加量は4〜lOモル
%の範囲に設定することが好適で、4モル%を下層る量
では安定化度が低くて耐火性、耐蝕性および耐スポーリ
ング性の改善効果が発揮されず、10モル%を越す添加
はもはや効果の向上がみとめられない、CZ組成物にお
ける酸化カルシウムの添加量は5〜15モル%の範囲に
することが望ましい、5モル%未満ではジルコニアが十
分安定化せず、15モル%を上田る添加は不必要となる
からである。
The amount of ittria added in the YZ composition is preferably set in the range of 4 to 10 mol%, and if the amount is less than 4 mol%, the degree of stabilization is low and the fire resistance, corrosion resistance, and spalling resistance are improved. The effect is not exhibited, and the addition of more than 10 mol% will no longer improve the effect. It is desirable that the amount of calcium oxide added in the CZ composition is in the range of 5 to 15 mol%. If it is less than 5 mol%, This is because zirconia is not sufficiently stabilized and addition of 15 mol % becomes unnecessary.

YZ&I成物とCZ&ll成物の積層成形は、例えば金
型のような非吸着性成形型にいずれかの組成物粉粒を入
れ、振動またはタッピングしたのち上層部に他の組成物
粉粒を充填して一軸プレスもしくは冷間静水圧プレス(
CIP)で成形する方法、あるいは石膏のような吸水性
成形型に一方の組成物をスラリー状態で流入し、半乾燥
後に別の組成物スラリーを流し込んで完全に乾燥する方
法によっておこなうことができる。この際、用いる型の
形状および各組成物の充填量を変えることにより所定の
層厚、形状に成形される。
For laminated molding of YZ&I and CZ&ll products, powder particles of either composition are placed in a non-adsorbent mold such as a metal mold, and after being vibrated or tapped, the upper layer is filled with powder particles of the other composition. uniaxial press or cold isostatic press (
CIP), or by pouring one composition in a slurry state into a water-absorbing mold such as plaster, and after semi-drying, pouring a slurry of another composition and drying completely. At this time, by changing the shape of the mold used and the filling amount of each composition, it is molded into a predetermined layer thickness and shape.

一体成形体は、常法により1500℃以上、望ましくは
1600〜1800℃の温度域で焼結して本発明のジル
コニア耐火物を得る。
The integral molded body is sintered by a conventional method at a temperature of 1500°C or higher, preferably in the range of 1600 to 1800°C to obtain the zirconia refractory of the present invention.

〔作 用〕[For production]

本発明によるジルコニア耐火物は、耐火性、耐蝕性およ
び耐スポーリング性に優れるイントリア成分で安定化さ
れたYZ層と酸化カルシウム成分で安定化されたCZ層
とが積層一体化した二層構造を有するから、ジルコニア
本来の耐火物性を大きく改善すると共に安価なCZ層と
の積層構造であるためYZ単味の場合と同等性能の耐火
物を安価に提供することができる。したがって、例えば
高温炉を築炉する際に、YZ層を苛酷な条件に晒される
炉内面に位置するように配することにより極めて耐久性
の良い炉壁が比較的低廉な費用で形成される。
The zirconia refractory according to the present invention has a two-layer structure in which a YZ layer stabilized with an intoria component, which has excellent fire resistance, corrosion resistance, and spalling resistance, and a CZ layer stabilized with a calcium oxide component are laminated and integrated. Since it has a laminated structure with an inexpensive CZ layer, it is possible to greatly improve the refractory properties inherent to zirconia, and to provide a refractory with the same performance as that of YZ alone at a low cost. Therefore, for example, when constructing a high-temperature furnace, an extremely durable furnace wall can be formed at a relatively low cost by arranging the YZ layer on the inner surface of the furnace which is exposed to severe conditions.

また、本発明によるジルコニア耐火物の製造方法によれ
ば、YZ組成物とCZ組成物の主成分がいずれもジルコ
ニア質である事から積層界面で相互拡散し、常に強固な
焼結状態が得られる。このため、実用過程で異物質の積
層体に見られる剥離、ストレス破壊等の現象は全く生じ
ることはなく、長期間に亘る安定した使用状態が実現す
る。
In addition, according to the method for manufacturing zirconia refractories according to the present invention, since the main components of the YZ composition and the CZ composition are both zirconia, they interdiffuse at the laminated interface, and a strong sintered state can always be obtained. . Therefore, phenomena such as peeling and stress fracture that are observed in laminates made of foreign substances during practical use do not occur at all, and stable usage over a long period of time is achieved.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

(1)耐火物の製造 イツトリア(YxO3)を5゜1モル%含有する組成の
安定化率90%のジルコニア(ZrO2)クリンカー(
Y2組成物)および酸化カルシウム(CaO)8.3モ
ル%を含有する組成の安定化率84%のジルコニア(Z
r02)クリンカー(czl成物)を原料とした。  
これらYZ組成物とCZ組成物をそれぞれ粗粒(粒度l
〜2m5)、中粒(粒度250μ−〜1−―)、微粒(
粒度250μ園以下)として重量比5:1  :4の割
合で配合し、ポリビニルアルコール5%水1液40td
/klをバインダーとして加えて十分に混練した。
(1) Manufacture of refractories Zirconia (ZrO2) clinker (with a stabilization rate of 90%) containing 5°1 mol% of ittria (YxO3)
Y2 composition) and zirconia (Z
r02) Clinker (czl product) was used as the raw material.
These YZ composition and CZ composition were each made into coarse particles (particle size l
~2m5), medium grains (particle size 250μ-~1--), fine grains (
(particle size 250 μm or less) in a weight ratio of 5:1:4, and 40 td of polyvinyl alcohol 5% water 1 part.
/kl was added as a binder and thoroughly kneaded.

混練したyz組成物とCZ組成物を所定の層厚になるよ
うに順次に金型中に充填して200kgf/cm”の圧
力で一軸プレス成形し、60℃の温度で48時間乾燥処
理した。ついで、得られた成形体を電気炉に移し、17
00℃の温度で1時間焼結した。
The kneaded YZ composition and CZ composition were sequentially filled into a mold to a predetermined layer thickness, uniaxially press-molded at a pressure of 200 kgf/cm'', and dried at a temperature of 60° C. for 48 hours. Then, the obtained molded body was transferred to an electric furnace and heated at 17
Sintering was carried out at a temperature of 00°C for 1 hour.

このようにして、N230−■、横114m5.厚さ6
5−でYZ層が5I■、CZ層が60mmの形状を有す
る一体二層構造の笠形レンガを製造した。
In this way, N230-■, width 114m5. thickness 6
A cap-shaped brick having an integral two-layer structure with a YZ layer of 5I and a CZ layer of 60 mm was manufactured.

比較のために、実施例で原料としたYZ組成物(比較例
1)およびCZ&lI成物(比較例2)のみを用い、実
施例と同一方法によって笠形レンガを製造した。
For comparison, cap-shaped bricks were manufactured using only the YZ composition (Comparative Example 1) and the CZ&lI composition (Comparative Example 2) used as raw materials in the Examples, and in the same manner as in the Examples.

(2)性能評価 上記で得られた各笠形レンガを、液体プロパンガス(L
PG)と酸素を燃料源とした小型高温ガス炉内にセント
した。この際、実施例の笠形レンガについてはYZ層が
炉内高温度側にくるように装着した。
(2) Performance evaluation Each cap-shaped brick obtained above was heated using liquid propane gas (L
PG) and oxygen in a small high-temperature gas reactor as fuel sources. At this time, the cap-shaped bricks of the example were installed so that the YZ layer was on the high temperature side in the furnace.

炉を燃焼させ、燃焼率110%の酸化雰囲気下にて、2
000℃まで昇温(昇温速度800℃/hr)したのち
消火、約30分間炉冷し1200″Cの時点で再昇温す
る条件でヒートサイクル試験をおこなった。
2. Burn the furnace in an oxidizing atmosphere with a combustion rate of 110%.
A heat cycle test was conducted under the following conditions: the temperature was raised to 1,200"C (heating rate: 800"C/hr), the fire was extinguished, the furnace was cooled for about 30 minutes, and the temperature was raised again at 1,200"C.

なお、特性のうち気孔率の測定はアルキメデス法(媒体
:蒸留水)、また耐蝕試験は1soo″C炉内に炭酸ナ
トリウム水溶液を注入してレンガ面(実施例ではYZ層
)に接触させ、反応および溶損の状態をX線回折および
外観により判定(反応なし:良、反応あり:否)する方
法によった。これらの結果を対比して表1に示した。
Among the characteristics, the porosity was measured using the Archimedes method (medium: distilled water), and the corrosion resistance test was conducted by injecting a sodium carbonate aqueous solution into a 1soo"C furnace and bringing it into contact with the brick surface (YZ layer in the example). The state of dissolution was determined by X-ray diffraction and appearance (no reaction: good, reaction: no).Table 1 shows a comparison of these results.

表  1 表1の結果から、実施例のレンガはイツトリア含有層が
51であるにも拘わらず比較例1と同様に10回のヒー
トサイクル後も溶損、亀裂等の欠陥部分は全く認められ
ず、優れた耐火性、耐蝕性および耐スポーリング性を備
えていることが判明した。これに対し、比較例2では2
回のヒートサイクル時点で表面に多数の亀裂が発生し、
1部には欠損部分が認められた。
Table 1 From the results in Table 1, it can be seen that even though the brick of the example had an yttria-containing layer of 51, no defective parts such as melting damage or cracks were observed even after 10 heat cycles as in Comparative Example 1. It was found to have excellent fire resistance, corrosion resistance and spalling resistance. On the other hand, in Comparative Example 2, 2
Many cracks appeared on the surface during the second heat cycle,
One part had a missing part.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によればイツトリア含有ジルコニ
ア層と酸化カルシウム含有ジルコニア層とを積層一体化
して2層構造に形成することによって、安価で耐火性、
耐蝕性および耐スポーリング性に優れるジルコニア耐火
物を提供し製造することができる。
As described above, according to the present invention, the ittria-containing zirconia layer and the calcium oxide-containing zirconia layer are laminated and integrated to form a two-layer structure, thereby achieving low cost, fire resistance,
Zirconia refractories with excellent corrosion resistance and spalling resistance can be provided and manufactured.

したがって、各種の高温加熱炉、溶解炉の内張り材など
として汎用性が期待される。
Therefore, it is expected to be versatile as a lining material for various high-temperature heating furnaces and melting furnaces.

Claims (2)

【特許請求の範囲】[Claims] 1.イットリア(Y_2O_3)を含む部分安定化もし
くは完全安定化したジルコニア(ZrO_2)質層と酸
化カルシウム(CaO)を含む部分安定化もしくは完全
安定化したジルコニア(ZrO_2)質層が積層一体化
した二層構造からなるジルコニア耐火物。
1. A two-layer structure in which a partially stabilized or fully stabilized zirconia (ZrO_2) layer containing yttria (Y_2O_3) and a partially or fully stabilized zirconia (ZrO_2) layer containing calcium oxide (CaO) are integrated. A zirconia refractory made of.
2.イットリア(Y_2O_3)を含む部分安定化もし
くは完全安定化したジルコニア(ZrO_2)質組成物
および酸化カルシウム(CaO)を含む部分安定化もし
くは完全安定化したジルコニア(ZrO_2)質組成物
を所定の層厚、形状に積層されるように一体成形したの
ち、1500℃以上の温度で焼結することを特徴とする
ジルコニア耐火物の製造方法。
2. A partially stabilized or fully stabilized zirconia (ZrO_2) composition containing yttria (Y_2O_3) and a partially stabilized or fully stabilized zirconia (ZrO_2) composition containing calcium oxide (CaO) are coated to a predetermined layer thickness, A method for producing a zirconia refractory, which comprises integrally molding the zirconia refractory so that it is laminated into a shape, and then sintering it at a temperature of 1500°C or higher.
JP1339829A 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same Expired - Fee Related JP2844100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339829A JP2844100B2 (en) 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339829A JP2844100B2 (en) 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03197356A true JPH03197356A (en) 1991-08-28
JP2844100B2 JP2844100B2 (en) 1999-01-06

Family

ID=18331205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339829A Expired - Fee Related JP2844100B2 (en) 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same

Country Status (1)

Country Link
JP (1) JP2844100B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270911A (en) * 1992-03-25 1993-10-19 Ngk Insulators Ltd Zirconia refractory setter
JP2002516746A (en) * 1998-05-30 2002-06-11 カンザス ステイト ユニバーシティ リサーチ ファウンデーション Porous pellet adsorbent made from microcrystals
JP2013511592A (en) * 2009-11-20 2013-04-04 エクソンモービル・ケミカル・パテンツ・インク Porous pyrolysis reactor material and method
US8821806B2 (en) 2009-05-18 2014-09-02 Exxonmobil Chemical Patents Inc. Pyrolysis reactor materials and methods
US8932534B2 (en) 2009-11-20 2015-01-13 Exxonmobil Chemical Patents Inc. Porous pyrolysis reactor materials and methods
US10407349B2 (en) 2015-04-24 2019-09-10 Corning Incorporated Bonded zirconia refractories and methods for making the same
CN116209409A (en) * 2020-09-25 2023-06-02 可乐丽则武齿科株式会社 Method for producing zirconia sintered body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270911A (en) * 1992-03-25 1993-10-19 Ngk Insulators Ltd Zirconia refractory setter
JP2002516746A (en) * 1998-05-30 2002-06-11 カンザス ステイト ユニバーシティ リサーチ ファウンデーション Porous pellet adsorbent made from microcrystals
JP4959051B2 (en) * 1998-05-30 2012-06-20 カンザス ステイト ユニバーシティ リサーチ ファウンデーション Porous pellet adsorbent made from microcrystals
US8821806B2 (en) 2009-05-18 2014-09-02 Exxonmobil Chemical Patents Inc. Pyrolysis reactor materials and methods
US9441166B2 (en) 2009-05-18 2016-09-13 Exxonmobil Chemical Patents Inc. Pyrolysis reactor materials and methods
US10053390B2 (en) 2009-05-18 2018-08-21 Exxonmobil Chemical Patents Inc. Pyrolysis reactor materials and methods
JP2013511592A (en) * 2009-11-20 2013-04-04 エクソンモービル・ケミカル・パテンツ・インク Porous pyrolysis reactor material and method
US8932534B2 (en) 2009-11-20 2015-01-13 Exxonmobil Chemical Patents Inc. Porous pyrolysis reactor materials and methods
US10407349B2 (en) 2015-04-24 2019-09-10 Corning Incorporated Bonded zirconia refractories and methods for making the same
CN116209409A (en) * 2020-09-25 2023-06-02 可乐丽则武齿科株式会社 Method for producing zirconia sintered body

Also Published As

Publication number Publication date
JP2844100B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
TWI433824B (en) Sintered and doped product based on zircon + nb2o5or ta2o5
JP3007684B2 (en) Zircon refractories with improved thermal shock resistance
KR101685945B1 (en) Zircon powder
JPH07277814A (en) Alumina-based ceramic sintered compact
JPH1160240A (en) Production of aluminum titanate powder and sintered compact of aluminum titanate
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
Standard et al. Densification of zirconia-conventional methods
JP2844100B2 (en) Zirconia refractory and method for producing the same
JP2003238250A (en) Yttria refractory
JPH06305828A (en) Aluminum titanate composite material and its production
JP2015512846A (en) Formulations for the production of refractory materials, refractory materials, methods for producing refractory materials, and use of substances as sintering aids
EP0232095A2 (en) Ceramic composites from chemically derived magnesium-aluminate and zirconium oxide
JP2005170703A (en) Method of manufacturing translucent ceramic and translucent ceramic
US20020027315A1 (en) Low-firing temperature method for producing Al2O3 bodies having enhanced chemical resistance
EP1044177A1 (en) Dense refractories with improved thermal shock resistance
JPH0710746B2 (en) High toughness zirconia sintered body
JP2975849B2 (en) Refractories for steelmaking
Rana et al. Dolomite stabilized zirconia for refractory application: Part-I phase analysis, densification behavior and microstructure of partial stabilized zirconia
JPH03197357A (en) Zirconia/hafnia-based refractory material
JPS6059189B2 (en) Sintered refractory brick for ultra-dense glass furnace and its manufacturing method
JP2004359534A (en) Zirconia sintered compact
JP2515604B2 (en) Zirconia / hafnia composite material
JPH03197354A (en) Alumina/yttria refractory
JPH0840770A (en) Zirconia sintered product and method for producing the same
JP3510642B2 (en) Magnesia clinker and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees