JP2003238250A - Yttria refractory - Google Patents

Yttria refractory

Info

Publication number
JP2003238250A
JP2003238250A JP2002077307A JP2002077307A JP2003238250A JP 2003238250 A JP2003238250 A JP 2003238250A JP 2002077307 A JP2002077307 A JP 2002077307A JP 2002077307 A JP2002077307 A JP 2002077307A JP 2003238250 A JP2003238250 A JP 2003238250A
Authority
JP
Japan
Prior art keywords
refractory
corrosion resistance
yttria
ceo
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002077307A
Other languages
Japanese (ja)
Inventor
Takao Takada
隆夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Original Assignee
OSAKA YOGYO FIRE BRICK
Yotai Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA YOGYO FIRE BRICK, Yotai Refractories Co Ltd filed Critical OSAKA YOGYO FIRE BRICK
Priority to JP2002077307A priority Critical patent/JP2003238250A/en
Publication of JP2003238250A publication Critical patent/JP2003238250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractory for lining of various industrial furnaces necessitating high corrosion resistance, which has excellent corrosion resistance to molten slag and spalling resistance. <P>SOLUTION: The yttria refractory is obtained by blending so that Y<SB>2</SB>O<SB>3</SB>is contained in an amount of ≥60 and ≤99.9 wt.% and the balance is composed of one or more kinds of oxide among Al<SB>2</SB>O<SB>3</SB>, CeO<SB>2</SB>, ZrO<SB>2</SB>and MgO, then kneading the resulting mixture, forming, drying and firing at a high temperature. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、高耐食性を必要とする
各種工業炉の内張りに使用される耐火物に関するもので
ある。 【0002】 【従来の技術】従来、高耐食性を必要とする各種工業炉
の内張りに使用される耐火物としては、溶融スラグに対
する耐食性に優れる酸化クロム含有耐火物が用いられて
きた。 【0003】しかし、クロムは原子価が変動しやすい成
分であり、アルカリ塩が存在する雰囲気では容易に有害
な六価クロムになることが知られている。環境問題の観
点から、酸化クロムを含有しない、溶融スラグに対する
耐食性の優れた耐火物の開発が要求されている。 【0004】 【発明が解決しようとする課題】酸化クロムを含有しな
い耐火物として、炭化珪素質耐火物が用いられている
が、炭化珪素質は雰囲気の影響を受けやすい成分であ
り、安定した耐用は得られていない。そこで、本発明に
おいては、溶融スラグに対する耐食性に優れた各種工業
炉内張り用イットリア質耐火物を提供することを目的と
するものである。 【0005】 【課題を解決するための手段】上記の課題を解決するた
めの本発明のイットリア質耐火物は、60wt%以上、
99.9wt%以下のYを含有し、残部がAl
,CeO,MgO,ZrOのうち一種もしくは
二種以上の酸化物からなるように配合し、これを混練、
成形、乾燥、高温焼成を行なうことにより得られる耐火
物である。 【0006】 【作用】本発明におけるイットリア質耐火物は、Y
含有量が99.9wt%の高純度のものとするのが耐
熱性、耐食性、容積安定性の点から最も好ましい。しか
し、Yは高価であるため経済性をも考慮する必要
がある。60wt%以上、99.9wt%以下のY
を含有し、残部がAl,CeO,MgO,Z
rOのうち一種もしくは二種以上の酸化物とすること
が最も好ましい耐火物組成である。残部に使用されるA
の含有量がこの範囲を超えて多くなると、耐熱
性、耐食性が低下し、一方、CeO,MgO,ZrO
の含有量がこの範囲を超えて多くなると容積安定性が
低下するので望ましくない。 【0007】本発明に係る耐火物れんがに配合するY
原料、Al原料、CeO原料、MgO原
料、ZrO原料は、焼結品、電融品のいずれを使用し
てもよいが、低融点の固溶体を生成するような不純物、
特にSiOなどを含まないものを使用するのが好まし
い。 【0008】また、一種の酸化物からなる単独の原料だ
けではなく、Y,Al,CeO,Mg
O,ZrOのうち任意の組み合わせの二種以上の酸化
物からなる複合原料が使用できる。この複合原料につい
ても焼結品、電融品のいずれを使用してもよいが、前述
のようにSiOなどの低融点物を生成するような不純
物を含まないものを使用するのが好ましい。 【0009】成形体を得るために添加する結合剤は、多
価アルコール系、水系、フェノール樹脂系などの公知の
種々のバインダーのいずれを使用しても良い。 【0010】本発明での焼成温度は、1750℃以上の
温度で高温焼成するのが耐食性、耐熱性の点から好まし
い。 【0011】 【実施例】以下に実施例および比較例を示し、本発明の
特長とするところをより詳細に記述する。 【0012】表1に示す配合割合で各原料成分を加え、
これに結合剤(フェノール樹脂)を添加して混練後、フ
リクションプレス機で並形形状の耐火れんがに加圧成形
した。 【0013】このようにして得られた成形体を適宜乾燥
後、焼成はトンネルキルンにて1750℃×7時間で行
い、供試れんがとした。なお、表1に示された実施例な
らびに比較例における各原料は表2に示した組成割合を
有する原料を使用した。これら供試れんがを使用し、表
1に示した物性および特性を次に示す測定方法により評
価し、その結果についても表1に示した。 【0014】かさ比重および見掛気孔率:JIS R2
205に準じて測定した。圧縮強さ:JIS R220
6に準じて測定した。熱間線膨張率:JIS R220
7に準じて測定した。 【0015】耐熱スポーリング性は、並形の供試れんが
の114×65mmの面を先端として先端から三分の一
までを1500℃に保持した炉内で15分間保持し、次
いで15分間室温で強制空冷した。この操作を1サイク
ルとして10回繰返し、初期重量に対する剥落重量の割
合(%)で評価した。 【0016】耐食性は、ドラムの内側に供試れんがを内
張りし、そのドラムを回転させながら酸素−プロパンバ
ーナーで内張りれんがを1850℃に3時間で加熱す
る。そこへ表3に示すC/S=0.5とC/S=2.5
に調整したスラグを投入し、1850℃で6時間侵食を
行なった。内張りれんがの耐食性は、侵食厚み(mm)
により評価した。 【0017】 【表1】 【0018】 【表2】 【0019】 【表3】 【0020】実施例1〜6は、従来から存在する比較例
1,2に示すような酸化クロム含有耐火物、炭化珪素質
耐火物と比較して、耐食性が優れていることがわかる。
また、熱間線膨張率が小さく、容積安定性についても優
れていることがわかる。 【0021】比較例3および4は、Y含有量が6
0wt%未満となった場合の例であり、容積安定性が低
下し、耐食性においても低下が認められる。 【0022】 【発明の効果】溶融スラグに対する高耐食性を必要とす
る各種工業炉の内張りで使用される耐火物において、特
定の割合でイットリア成分を含有する本発明のイットリ
ア質耐火物は、耐食性が従来の酸化クロム含有耐火物の
2倍以上に向上した。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory used for lining various industrial furnaces requiring high corrosion resistance. Heretofore, as a refractory used for lining various industrial furnaces requiring high corrosion resistance, a chromium oxide-containing refractory having excellent corrosion resistance to molten slag has been used. [0003] However, chromium is a component whose valence is liable to fluctuate, and is known to easily become harmful hexavalent chromium in an atmosphere containing an alkali salt. From the viewpoint of environmental issues, development of a refractory which does not contain chromium oxide and has excellent corrosion resistance to molten slag is required. [0004] Silicon carbide refractories are used as refractories containing no chromium oxide, but silicon carbide is a component that is easily affected by the atmosphere and has a stable durability. Has not been obtained. Then, in this invention, it aims at providing the yttria refractory for various industrial furnace lining which is excellent in the corrosion resistance with respect to a molten slag. [0005] To solve the above-mentioned problems, the yttria refractory of the present invention contains 60 wt% or more.
Contains 99.9 wt% or less of Y 2 O 3 , and the balance is Al 2
O 3 , CeO 2 , MgO, and ZrO 2 are blended so as to be composed of one or more oxides, and kneaded.
It is a refractory obtained by molding, drying and firing at high temperature. According to the present invention, the yttria refractory is Y 2 O
3 It is most preferable to use a high-purity material having a content of 99.9% by weight in terms of heat resistance, corrosion resistance and volume stability. However, since Y 2 O 3 is expensive, it is necessary to consider economics. 60 wt% or more and 99.9 wt% or less of Y 2 O
3 with the balance being Al 2 O 3 , CeO 2 , MgO, Z
The most preferred refractory composition is one or more oxides of rO 2 . A used for the rest
When the content of l 2 O 3 is increased beyond this range, heat resistance and corrosion resistance are reduced, while CeO 2 , MgO, and ZrO are reduced.
If the content of 2 exceeds this range, the volume stability decreases, which is not desirable. [0007] Y 2 compounded in the refractory brick according to the present invention.
As the O 3 raw material, the Al 2 O 3 raw material, the CeO 2 raw material, the MgO raw material, and the ZrO 2 raw material, any of a sintered product and an electrofused product may be used.
In particular, it is preferable to use one not containing SiO 2 or the like. Further, not only a single raw material made of a kind of oxide but also Y 2 O 3 , Al 2 O 3 , CeO 2 , Mg
A composite material composed of two or more oxides in any combination of O and ZrO 2 can be used. Either a sintered product or an electrofused product may be used for the composite raw material, but it is preferable to use a material that does not contain impurities such as SiO 2 that generates a low melting point material as described above. As the binder to be added to obtain a molded article, any of various known binders such as polyhydric alcohols, water, and phenolic resins may be used. The firing temperature in the present invention is preferably high-temperature firing at a temperature of 1750 ° C. or higher from the viewpoint of corrosion resistance and heat resistance. The present invention will be described in more detail below with reference to Examples and Comparative Examples. Each raw material component was added in the mixing ratio shown in Table 1,
A binder (phenolic resin) was added to the mixture, and the mixture was kneaded, followed by pressure molding into a refractory brick having a regular shape using a friction press. After the molded body thus obtained was appropriately dried, firing was performed in a tunnel kiln at 1750 ° C. for 7 hours to obtain a test brick. In addition, as each raw material in the examples and comparative examples shown in Table 1, raw materials having the composition ratios shown in Table 2 were used. Using these test bricks, the physical properties and properties shown in Table 1 were evaluated by the following measurement methods, and the results are also shown in Table 1. Bulk specific gravity and apparent porosity: JIS R2
It measured according to 205. Compressive strength: JIS R220
6 was measured. Hot linear expansion coefficient: JIS R220
7 was measured. [0015] The heat-resistant spalling property is measured by holding a sample of a regular brick at a surface of 114 x 65 mm from the tip to one third from the tip at 1500 ° C for 15 minutes and then at room temperature for 15 minutes. Forced air cooling. This operation was repeated 10 times as one cycle, and evaluated by the ratio (%) of the separated weight to the initial weight. For corrosion resistance, a test brick is lined inside a drum, and the brick is heated to 1850 ° C. for 3 hours with an oxygen-propane burner while rotating the drum. There C / S = 0.5 and C / S = 2.5 shown in Table 3
Was adjusted, and eroded at 1850 ° C. for 6 hours. Corrosion resistance of lining brick is erosion thickness (mm)
Was evaluated. [Table 1] [Table 2] [Table 3] It can be seen that Examples 1 to 6 have excellent corrosion resistance as compared with the conventional refractories containing chromium oxide and silicon carbide refractories as shown in Comparative Examples 1 and 2.
Further, it can be seen that the coefficient of linear thermal expansion is small and the volume stability is excellent. Comparative Examples 3 and 4 have a Y 2 O 3 content of 6
This is an example in which the content is less than 0 wt%, the volume stability is reduced, and the corrosion resistance is also reduced. The refractory used in the lining of various industrial furnaces that require high corrosion resistance to molten slag, the yttria refractory of the present invention containing a specific proportion of yttria component has a high corrosion resistance. It is more than twice as high as conventional chromium oxide-containing refractories.

Claims (1)

【特許請求の範囲】 【請求項1】Y 60〜99.9重量%と、Al
,CeO、MgOおよびZrOから選ばれた
1種または2種以上の酸化物0.1%〜40%からなる
ことを特徴とする高耐食性イットリア質耐火物。
Claims: 1. An amount of 60 to 99.9% by weight of Y 2 O 3 and Al
A highly corrosion-resistant yttria refractory comprising one or more oxides of 0.1% to 40% selected from 2 O 3 , CeO 2 , MgO and ZrO 2 .
JP2002077307A 2002-02-12 2002-02-12 Yttria refractory Pending JP2003238250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077307A JP2003238250A (en) 2002-02-12 2002-02-12 Yttria refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077307A JP2003238250A (en) 2002-02-12 2002-02-12 Yttria refractory

Publications (1)

Publication Number Publication Date
JP2003238250A true JP2003238250A (en) 2003-08-27

Family

ID=27785279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077307A Pending JP2003238250A (en) 2002-02-12 2002-02-12 Yttria refractory

Country Status (1)

Country Link
JP (1) JP2003238250A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239385A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Composite material and its manufacturing method
JP2008273823A (en) * 2007-04-27 2008-11-13 Applied Materials Inc Apparatus and method for reducing erosion rate of surface exposed to halogen-containing plasma
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
US9051219B2 (en) 2007-04-27 2015-06-09 Applied Materials, Inc. Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
JP2016516887A (en) * 2013-06-05 2016-06-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rare earth oxide corrosion resistant coating for semiconductor applications
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
WO2021015474A1 (en) * 2019-07-22 2021-01-28 한국기계연구원 Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor
US11014853B2 (en) 2018-03-07 2021-05-25 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239385A (en) * 2007-03-27 2008-10-09 Ngk Insulators Ltd Composite material and its manufacturing method
US10840112B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
JP2008273823A (en) * 2007-04-27 2008-11-13 Applied Materials Inc Apparatus and method for reducing erosion rate of surface exposed to halogen-containing plasma
US9051219B2 (en) 2007-04-27 2015-06-09 Applied Materials, Inc. Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
US11373882B2 (en) 2007-04-27 2022-06-28 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US10847386B2 (en) 2007-04-27 2020-11-24 Applied Materials, Inc. Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
JP2010095393A (en) * 2008-10-14 2010-04-30 Nikkato:Kk Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
US10734202B2 (en) 2013-06-05 2020-08-04 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
JP2016516887A (en) * 2013-06-05 2016-06-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rare earth oxide corrosion resistant coating for semiconductor applications
US11014853B2 (en) 2018-03-07 2021-05-25 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
US11667577B2 (en) 2018-03-07 2023-06-06 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
WO2021015474A1 (en) * 2019-07-22 2021-01-28 한국기계연구원 Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor

Similar Documents

Publication Publication Date Title
WO1995015932A1 (en) Chromium-free brick
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP2003238250A (en) Yttria refractory
JPH0456785B2 (en)
JPH04119962A (en) Magnesia-carbon refractories
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2021147275A (en) Magnesia-spinel refractory brick
JP2013249241A (en) Unburned brick
JP3281338B2 (en) Magnesia spinel refractories for cement rotary kilns
JP4960541B2 (en) Magnesia-alumina-titania brick
JP2000191363A (en) Spalling resistant spinel brick
JP4538779B2 (en) Magnesia-alumina clinker and refractory obtained using the same
WO2013032065A1 (en) Low cement corrosion-resistive unshaped refractories
JP4269148B2 (en) Basic refractory
JP2000044329A (en) Production of basic refractory
JP2014024689A (en) Magnesia monolithic refractory
JP2999134B2 (en) Magnesia chrome refractory and cement rotary kiln
JP2003342080A (en) Castable chromia refractory and precast block manufactured using the same
JPH05117019A (en) Basic refractory brick
JPH046150A (en) Magnesia-chrome refractories
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JP2004123501A (en) Refractory brick
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JPH01160862A (en) Calcined firebrick of magnesia base
JPH06172044A (en) Castable refractory of alumina spinel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401