JP2013249241A - Unburned brick - Google Patents

Unburned brick Download PDF

Info

Publication number
JP2013249241A
JP2013249241A JP2012126684A JP2012126684A JP2013249241A JP 2013249241 A JP2013249241 A JP 2013249241A JP 2012126684 A JP2012126684 A JP 2012126684A JP 2012126684 A JP2012126684 A JP 2012126684A JP 2013249241 A JP2013249241 A JP 2013249241A
Authority
JP
Japan
Prior art keywords
powder
magnesia
brick
carbon
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012126684A
Other languages
Japanese (ja)
Inventor
Akihiro Tsuchinari
昭弘 土成
Ryoko Omichi
良子 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rozai Kogyo Kaisha Ltd
Original Assignee
Rozai Kogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rozai Kogyo Kaisha Ltd filed Critical Rozai Kogyo Kaisha Ltd
Priority to JP2012126684A priority Critical patent/JP2013249241A/en
Priority to PCT/JP2012/004305 priority patent/WO2013183091A1/en
Publication of JP2013249241A publication Critical patent/JP2013249241A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide unburned brick excellent in corrosion resistance and spalling resistance, even though the carbon content is remarkably reduced.SOLUTION: Hexamine is added as a hardening agent to 100 wt.% compounded composition comprising 5-15 wt.% alumina powder, 3-8 wt.% titania powder, 0.5-5 wt.% barium titanate and the balance of magnesia, and the composition is mixed with a phenol resin to be kneaded and formed, subsequently dried, and furthermore 3-8 wt.% zirconia powder or 3-8 wt.% zircon powder may be added to the composition.

Description

本発明は製鋼炉や精錬炉などに用いられる内張り用耐火物に関する。    The present invention relates to a refractory for lining used in a steel making furnace, a refining furnace, and the like.

従来から各種の炉に用いられる内張り用耐火物には耐食性および耐スポーリング性に優れたマグネシア‐クロムれんがが使用されている。マグネシア‐クロムれんがは、使用後に人体や環境衛生に有害な六価クロムを生成することから、クロムを含まないれんが、所謂クロムフリーれんがが早くから求められていた。   Conventionally, magnesia-chromium bricks having excellent corrosion resistance and spalling resistance have been used for refractories for lining used in various furnaces. Since magnesia-chromium bricks produce hexavalent chromium which is harmful to the human body and environmental health after use, so-called chromium-free bricks have been sought since early on.

一方、製鋼用転炉や取鍋では、カーボンを10重量%以上含むマグネシア‐カーボンれんがが使用されている。カーボンが多く含まれるマグネシア‐カーボンれんがは、酸化によりれんが組織が脆弱になり長期間に亘る使用に耐えることができないという欠点がある。また、カーボンの酸化は二酸化炭素を発生させ、地球温暖化を促進することになり、現代に適しているとは言い難いという面もある。さらに、マグネシア‐カーボンれんがに用いられる鱗状黒鉛は使用量が増加傾向にあり、産出国および産出量が限られているため価格が急騰するといった経済的な問題もある。これらに加えて、マグネシア‐カーボンれんがの実炉における使用では、カーボン含有量が多いと溶鋼中へカーボンが溶け出すという、所謂カーボンピックアップの問題もある。   On the other hand, magnesia-carbon bricks containing 10% by weight or more of carbon are used in steelmaking converters and ladles. The magnesia-carbon brick, which contains a large amount of carbon, has the disadvantage that the brick structure becomes brittle due to oxidation and cannot withstand long-term use. In addition, the oxidation of carbon generates carbon dioxide and promotes global warming, and it is difficult to say that it is suitable for modern times. In addition, scaly graphite used in magnesia-carbon bricks has a tendency to increase its use amount, and there is an economic problem that the price rapidly rises due to the limited production country and production amount. In addition to these, when magnesia-carbon brick is used in an actual furnace, there is a problem of so-called carbon pickup in which carbon is dissolved into molten steel when the carbon content is high.

このような背景から種々の耐火物が提案されている。   Various refractories have been proposed from such a background.

例えば、クロムフリーれんがでは、マグネシア‐カルシア‐チタン酸アルミニウム系塩基性耐火物(特許文献1参照。)や、スピネルにチタン酸アルミニウムを添加した定形耐火物(特許文献2参照。)、マグネシア‐アルミナ‐チタニア質れんが(特許文献3参照。)などが提案されている。   For example, in a chromium-free brick, a magnesia-calcia-aluminum titanate-based basic refractory (see Patent Document 1), a regular refractory in which aluminum titanate is added to spinel (see Patent Document 2), magnesia-alumina. -Titania bricks (see Patent Document 3) have been proposed.

また、カーボンの含有量を少なくした低カーボンのマグネシア‐カーボンれんがでは、ピッチ粉を添加した転炉出鋼口スリーブ用低カーボン質マグネシア‐カーボン耐火物(特許文献4参照。)や、タールやピッチを添加したマグネシアカーボンれんが(特許文献5参照。)、あるいは、カーボンブラックを添加した低カーボン質炭素含有耐火物(特許文献6参照。)などが提案されている。   In addition, low-carbon magnesia-carbon bricks with low carbon content include low-carbon magnesia-carbon refractories for converter outlet sleeves to which pitch powder has been added (see Patent Document 4), tar and pitch. A magnesia carbon brick to which is added (see Patent Document 5) or a low carbonaceous carbon-containing refractory to which carbon black is added (see Patent Document 6) has been proposed.

特開平9−20550号公報Japanese Patent Laid-Open No. 9-20550 特開平11−147755号公報JP 11-147755 A 特開2001−253765号公報JP 2001-253765 A 特開平8−259312号公報Japanese Patent Laid-Open No. 8-259312 特開2007−76980号公報JP 2007-76980 A 特開平11−322405号公報Japanese Patent Laid-Open No. 11-322405

しかしながら、上述のクロムフリーれんがには、次のような問題がある。   However, the above-mentioned chromium-free brick has the following problems.

マグネシアとチタニアは高温度で反応してチタン酸マグネシウムを生成するが、この鉱物は、組織が非常に緻密で割れやすく、また、熱膨張に対して脆弱であり、耐スポーリング性が低く、長期間の使用に耐えられないという欠点がある。   Magnesia and titania react at high temperatures to produce magnesium titanate, but this mineral is very dense and fragile, vulnerable to thermal expansion, low spalling resistance, long There is a disadvantage that it cannot withstand the use of the period.

また、チタン酸アルミニウムはチタニアとアルミナから合成する必要があり、そのクリンカーを製造するためにコストが高くなるという欠点がある。   Moreover, it is necessary to synthesize aluminum titanate from titania and alumina, and there is a disadvantage that the cost is high for producing the clinker.

さらに、マグネシア‐アルミナ‐チタニア質れんがは、膨張係数の大きいマグネシアの含有量が多いことから、耐食性には優れていても、耐スポーリング性の点で劣るという欠点がある。   Furthermore, since magnesia-alumina-titania brick has a large content of magnesia having a large expansion coefficient, it has a drawback that it is inferior in spalling resistance even though it is excellent in corrosion resistance.

一方、タールやピッチを用いたマグネシア‐カーボンれんがでは、タールやピッチが発がん性物質であり人体に有害であるという問題がある。   On the other hand, in magnesia-carbon bricks using tar and pitch, there is a problem that tar and pitch are carcinogenic substances and are harmful to the human body.

また、カーボンブラックは非常に細かい粒子であるため、耐火物の製造に際して周囲に飛散しやすく人体や環境へ影響を及ぼすおそれがあるという問題がある。   In addition, since carbon black is very fine particles, there is a problem in that it is likely to be scattered around when producing a refractory and may affect the human body and the environment.

さらに、低カーボンのマグネシア‐カーボンれんがの場合、低カーボンであるがゆえに耐スポーリング性が低くなってしまうのが一般的である。   Further, in the case of a low carbon magnesia-carbon brick, the spalling resistance is generally lowered due to the low carbon.

そこで、本発明は、上記の問題点を解決することを課題として研究開発されたものであり、カーボンの含有量を著しく減じながらも、耐食性および耐スポーリング性に優れた不焼成れんがを提供することを目的とする。   Therefore, the present invention has been researched and developed to solve the above-mentioned problems, and provides a non-fired brick having excellent corrosion resistance and spalling resistance while significantly reducing the carbon content. For the purpose.

上記目的を達成するために、本発明に係る不焼成れんがは、アルミナ粉末5〜15wt%、チタニア粉末3〜8wt%、チタン酸バリウム0.5〜5wt%、および、残部をマグネシアとした配合組成100wt%に硬化剤を添加し、混練・成形した後、乾燥させてなることを特徴とする。   In order to achieve the above object, the non-fired brick according to the present invention comprises 5 to 15 wt% alumina powder, 3 to 8 wt% titania powder, 0.5 to 5 wt% barium titanate, and the balance of magnesia as the balance. A curing agent is added to 100 wt%, kneaded and molded, and then dried.

これにより、乾燥後では、マグネシア‐カーボンれんがよりも高い気孔率となり耐スポーリング性が維持され、かつ、マグネシアが多いため耐食性向上の効果を得ることができる。また、実炉での使用による加熱を受けた後では、カーボンを含まない不焼成れんがは、マグネシア‐チタニア‐アルミナの組織が別の組織に変化し、耐スポーリング性および耐食性に優れたものとなる。また不焼成れんがとしているため、製造コストを低く抑えることができるという副次的なメリットもある。   Thereby, after drying, magnesia-carbon brick has a higher porosity and maintains spalling resistance, and since there is much magnesia, the effect of improving corrosion resistance can be obtained. In addition, after being heated by use in an actual furnace, non-fired bricks that do not contain carbon change the structure of magnesia-titania-alumina to another structure, and have excellent spalling resistance and corrosion resistance. Become. In addition, since the non-fired brick is used, there is a secondary merit that the manufacturing cost can be kept low.

ここで、前記不焼成れんがにおいて、さらに、ジルコニア粉末またはジルコン粉末を3〜8wt%添加するとしてもよい。   Here, in the unfired brick, 3 to 8 wt% of zirconia powder or zircon powder may be further added.

これにより、ジルコニアの膨張収縮により耐スポーリング性向上の効果が得られるとともに、ジルコニアの融点が高いため、耐食性向上の効果も得ることができる。   Thereby, the effect of improving the spalling resistance can be obtained by the expansion and contraction of zirconia, and the effect of improving the corrosion resistance can be obtained because the melting point of zirconia is high.

また、アルミナ粉末5〜15wt%、ジルコニア粉末3〜8wt%またはジルコン粉末3〜8wt%、チタン酸バリウム0.5〜5wt%、および、残部をマグネシアとした配合組成100wt%に硬化剤を添加し、混練・成形した後、乾燥させてなることを特徴とする構成とすることもできる。   Moreover, a hardening agent is added to 5 wt% to 15 wt% of alumina powder, 3 to 8 wt% of zirconia powder or 3 to 8 wt% of zircon powder, 0.5 to 5 wt% of barium titanate, and 100 wt% of the blend composition containing magnesia as the balance. It is also possible to adopt a constitution characterized by drying after kneading and forming.

このように、チタニア粉末をジルコニア粉末またはジルコン粉末に置き換えても同様に、耐スポーリング性と耐食性に優れた不焼成れんがを実現することができる。   As described above, even when the titania powder is replaced with zirconia powder or zircon powder, non-fired bricks having excellent spalling resistance and corrosion resistance can be realized.

さらに、カーボン1〜8wt%、アルミナ粉末5〜15wt%、チタン酸バリウム0.5〜5wt%、ジルコニア粉末3〜8wt%又はジルコン粉末3〜8wt%、および、残部をマグネシアとした配合組成100wt%に硬化剤を添加し、混練・成形した後、乾燥させてなることを特徴とする構成としてもよい。   Further, carbon 1-8 wt%, alumina powder 5-15 wt%, barium titanate 0.5-5 wt%, zirconia powder 3-8 wt% or zircon powder 3-8 wt%, and the balance 100 wt% with magnesia as the balance It is good also as a structure characterized by adding a hardening | curing agent to, kneading | mixing and shaping | molding, and making it dry.

これにより、実炉における使用で、含有されているカーボンは酸化され、れんがの組織が変化するので、低カーボンでありながら耐スポーリング性と耐食性を向上させることができる。   As a result, the carbon contained therein is oxidized by use in an actual furnace, and the brick structure is changed, so that spalling resistance and corrosion resistance can be improved while being low carbon.

上述のように、本発明に係る不焼成れんがによれば、二段階で耐スポーリング性と耐食性を向上させることが可能になっている。すなわち、不焼成れんがとして乾燥後の時点ではマグネシア‐カーボンれんがよりも気孔率が高いため耐スポーリング性が維持されるとともに、マグネシア含有量が多いため耐食性も向上する。実炉での使用による加熱を受けた後の不焼成れんがは、マグネシア‐チタニア‐アルミナ等の組織が別の組織に変化することで、さらに耐スポーリング性と耐食性が向上する。よって、カーボンの含有量を著しく減じながらも、耐スポーリング性および耐食性に優れた不焼成れんがが実現されることになる。   As described above, according to the non-fired brick according to the present invention, it is possible to improve the spalling resistance and the corrosion resistance in two stages. That is, since the porosity is higher than that of magnesia-carbon brick at the time after drying as unfired brick, the spalling resistance is maintained, and the corrosion resistance is also improved because of the high magnesia content. The unfired brick after being heated by use in an actual furnace is further improved in spalling resistance and corrosion resistance by changing the structure such as magnesia-titania-alumina to another structure. Accordingly, non-fired bricks having excellent spalling resistance and corrosion resistance can be realized while significantly reducing the carbon content.

本発明に係る不焼成れんがにつき、以下詳細に説明する。   The non-fired brick according to the present invention will be described in detail below.

本発明の第一の実施形態に係る不焼成れんがは、アルミナ粉末5〜15wt%、チタニア粉末3〜8wt%、チタン酸バリウム0.5〜5wt%、および、残部をマグネシアとし、硬化剤を添加し、混練・成形した後、乾燥させることにより製造され、カーボンを含まない不焼成れんがである。   The unfired brick according to the first embodiment of the present invention is made of alumina powder 5 to 15 wt%, titania powder 3 to 8 wt%, barium titanate 0.5 to 5 wt%, and the balance is magnesia, and a curing agent is added. It is a non-fired brick which is produced by kneading and forming and then drying, and does not contain carbon.

主原料となるマグネシアは、融点が約2800℃と高く、高塩基性物質であるためスラグに対して優れた耐食性を示す。このため、マグネシアの成分比率の増大は、れんがの耐食性の向上につながる。一方、マグネシアの熱膨張率は、例えば、1500℃において約2.3%と高く、マグネシアの成分比率が大きくなると、れんがの組織が割れやすくなるという欠点がある。   Magnesia, which is the main raw material, has a high melting point of about 2800 ° C. and is a highly basic substance and exhibits excellent corrosion resistance against slag. For this reason, the increase in the component ratio of magnesia leads to the improvement of the corrosion resistance of the brick. On the other hand, the thermal expansion coefficient of magnesia is as high as about 2.3% at 1500 ° C., for example, and there is a drawback that the brick structure is easily broken when the component ratio of magnesia is increased.

この点、本実施の形態では、アルミナ粉末を添加することでマグネシアの熱膨張率が約2.0%に低下させ、れんが組織を割れにくくしている。また、実炉において不焼成れんがを使用すると、不焼成れんがには約1400℃以上の加熱がなされることになる。アルミナ粉末が添加されている本実施形態に係る不焼成れんがは、1100℃以上に加熱されると、アルミナとマグネシアが反応し、スピネルを生成する(MgO+Al→MgO・Al)。このスピネル生成により、スピネルとマグネシアとの膨張率が異なるためにれんがの組織中に微亀裂が発生し、この微亀裂が熱応力を吸収し、れんが組織が割れにくくなる。なお、アルミナが5wt%未満ではスピネルの生成量が減少し、耐スポーリング性の向上に寄与しなくなる。また、アルミナが15wt%を超えて添加されると、スピネルの生成量が増えすぎて、スピネル膨張による微亀裂が増え耐食性の低下をもたらすので好ましくない。 In this respect, in the present embodiment, by adding alumina powder, the thermal expansion coefficient of magnesia is reduced to about 2.0%, and the brick structure is hard to break. Further, when unfired brick is used in an actual furnace, the unfired brick is heated to about 1400 ° C. or more. When the unfired brick according to this embodiment to which alumina powder is added is heated to 1100 ° C. or higher, alumina and magnesia react to generate spinel (MgO + Al 2 O 3 → MgO · Al 2 O 3 ). . Due to the spinel generation, the expansion coefficient of spinel and magnesia is different, so that a microcrack is generated in the brick structure, the microcrack absorbs thermal stress, and the brick structure is difficult to break. If the alumina content is less than 5 wt%, the amount of spinel produced decreases, and it does not contribute to the improvement of spalling resistance. Moreover, if alumina is added in excess of 15 wt%, the amount of spinel generated is excessively increased, and microcracks due to spinel expansion increase, resulting in a decrease in corrosion resistance.

チタニアは、スラグ中のカルシアと反応してペロブスカイトを生成する(TiO+CaO→CaO・TiO)。ペロブスカイトは、緻密な組織で、れんがの稼働面付近に膜状に生成されるため、他のスラグ成分や溶融金属のれんが組織内への侵入を防止し、低融点物を生成しにくく、耐食性が向上する。また、1100℃以上で、マグネシアとチタニアとが反応して生成されるチタン酸マグネシウムと、スピネルとが固溶体を生成し、細長い気孔ができる。この気孔が熱応力を吸収し、さらに不焼成れんが割れにくいものにしている。なお、チタニアが3wt%未満ではチタン酸マグネシウムの生成量が少なくなり、上記の細長い気孔の生成量も少なくなるので、耐スポーリング性の向上が期待できない。一方、チタニアが8wt%を超えて添加されると、チタン酸マグネシウムとスピネルとの固溶体のほかに、遊離したチタン酸マグネシウムも増加する。この遊離したチタン酸マグネシウムが耐スポーリング性の低下を招くことになるので、好ましくない。 Titania reacts with calcia in the slag to produce perovskite (TiO 2 + CaO → CaO · TiO 2 ). Perovskite is a dense structure and is formed in the form of a film near the working surface of bricks, preventing other slag components and molten metal bricks from entering the structure, making it difficult for low melting point products to be formed, and providing corrosion resistance. improves. Further, at 1100 ° C. or higher, magnesium titanate produced by the reaction of magnesia and titania and spinel produce a solid solution, and elongated pores are formed. These pores absorb thermal stress and make unfired bricks difficult to break. If titania is less than 3 wt%, the amount of magnesium titanate produced is reduced, and the amount of elongated pores produced is also reduced. Therefore, improvement in spalling resistance cannot be expected. On the other hand, when titania is added in excess of 8 wt%, free magnesium titanate increases in addition to the solid solution of magnesium titanate and spinel. This released magnesium titanate is not preferable because it causes a decrease in spalling resistance.

チタン酸バリウムは、1300℃以上の加熱で不焼成れんがの強度を高め、耐スポーリング性および耐食性の向上をもたらす効果がある。これは、1300℃以上の加熱により、チタン酸バリウムが若干の液相を生成し、これがマグネシア粒子の周りに付着してマグネシア粒子間の結合力を高めている、又は、チタン酸バリウムのチタン酸とマグネシアが反応して、チタン酸マグネシウムが生成されて強度を高めていることによるものと考えられる。   Barium titanate has the effect of increasing the strength of unfired bricks by heating at 1300 ° C. or higher, and improving spalling resistance and corrosion resistance. This is because barium titanate produces a slight liquid phase by heating at 1300 ° C. or higher, which adheres around the magnesia particles and increases the bonding force between the magnesia particles, or barium titanate titanate And magnesia react to produce magnesium titanate to increase the strength.

ここで、本実施形態の不焼成れんがは、さらに、ジルコニアまたはジルコン粉末を3〜8wt%添加してもよく、チタニア粉末に替えてジルコニアまたはジルコン粉末を3〜8wt%添加するとしてもよい。   Here, the unfired brick of the present embodiment may further contain 3 to 8 wt% of zirconia or zircon powder, or may add 3 to 8 wt% of zirconia or zircon powder instead of titania powder.

未安定化ジルコニアは、加熱により単斜晶系から正方晶系に相転移するが、その過程で膨張収縮によりマイクロクラックが生成し、耐スポーリング性を向上させる。また、ジルコニアの融点は2950℃と高いので、耐食性も向上する。なお、ジルコニアが3wt%未満ではマイクロクラックの生成量が不足し、耐スポーリング性の向上に寄与しない。また、ジルコニアは高価な原料であるため、8wt%を超えると製造コストに占める原料費が高くなるので望ましくない。   Unstabilized zirconia undergoes a phase transition from a monoclinic system to a tetragonal system by heating, and microcracks are generated by expansion and contraction in the process, thereby improving the spalling resistance. Moreover, since the melting point of zirconia is as high as 2950 ° C., the corrosion resistance is also improved. Note that when the amount of zirconia is less than 3 wt%, the amount of microcracks generated is insufficient and does not contribute to the improvement of the spalling resistance. Moreover, since zirconia is an expensive raw material, if it exceeds 8 wt%, the raw material cost which occupies for a manufacturing cost will become high, and is not desirable.

ジルコンは、約1400℃からジルコニアとシリカに乖離する。ジルコンから乖離したジルコニアは上記と同じ効果をもたらす。一方、ジルコンから乖離したシリカはマグネシアと反応し、フォルステライトを生成する(SiO+2MgO→2MgO・SiO)。フォルステライトはマグネシアより融点が低いので、耐スポーリング性を向上させる効果がある。なお、ジルコンが3wt%未満ではジルコニアの場合と同様にマイクロクラックの生成量が不足し、耐スポーリング性の向上に寄与しない。また、ジルコンが8wt%を超えるとシリカの含有量が増え、耐食性の低下を招くので、8wt%以下とするのが好ましい。 Zircon dissociates from about 1400 ° C. to zirconia and silica. Zirconia deviated from zircon has the same effect as above. On the other hand, silica separated from zircon reacts with magnesia to produce forsterite (SiO 2 + 2MgO → 2MgO · SiO 2 ). Since forsterite has a lower melting point than magnesia, it has the effect of improving the spalling resistance. If zircon is less than 3 wt%, the amount of microcracks generated is insufficient as in the case of zirconia, and does not contribute to the improvement of the spalling resistance. Further, if the zircon content exceeds 8 wt%, the silica content increases and the corrosion resistance is lowered. Therefore, the content is preferably 8 wt% or less.

続いて、本実施形態の不焼成れんがの構成原料について詳細に説明する。   Next, the constituent materials of the unfired brick according to this embodiment will be described in detail.

マグネシアは、電融マグネシア、焼結マグネシアのいずれを使用してもよい。純度は75wt%以上が望ましく、粒度は5mm以下のものを使用する。   As for magnesia, either electrofused magnesia or sintered magnesia may be used. The purity is preferably 75 wt% or more, and the particle size is 5 mm or less.

アルミナは、1mm以下の焼結アルミナまたは仮焼アルミナを使用することができる。純度は98wt%以上、粒度は平均粒子径50μm以下であることが望ましい。   As the alumina, 1 mm or less of sintered alumina or calcined alumina can be used. The purity is desirably 98 wt% or more, and the particle size is desirably an average particle diameter of 50 μm or less.

チタニアは、純度が90wt%以上、粒度が平均粒子径30μm以下であるものを使用するのが望ましい。   It is desirable to use titania having a purity of 90 wt% or more and a particle size of 30 μm or less in average particle size.

ジルコニアは、純度が98wt%以上の1mm以下のものであれば使用可能であるが、粒度は平均粒子径50μm以下であることが望ましい。   Zirconia can be used if its purity is 98 wt% or more and 1 mm or less, but the particle size is desirably an average particle size of 50 μm or less.

ジルコンは、1mm以下のジルコンサンド等を使用できるが、ジルコニア含有量は62wt%以上、粒度の平均粒子径が50μm以下のジルコン粉末を使用するのが好ましい。   As zircon, zircon sand of 1 mm or less can be used, but it is preferable to use zircon powder having a zirconia content of 62 wt% or more and an average particle size of 50 μm or less.

チタン酸バリウムは、純度が96wt%以上、粒度が平均粒子径5μm(20μm以下のものを90%以上含むもの)のものを使用することが望ましい。   It is desirable to use barium titanate having a purity of 96 wt% or more and a particle size of 5 μm (including 90% or more of 20 μm or less).

本実施形態の不焼成れんがは、上記の構成に、硬化剤としてヘキサミンを添加し、フェノール樹脂で混練・成形し、乾燥させて製造される。乾燥温度は、160〜300℃とし、180〜250℃とするのがより好ましい。乾燥温度が低ければ硬化剤のヘキサミンが十分に硬化せず、強度が低くなる。また、乾燥温度が高ければフェノール樹脂の成分が揮発してしまい、強度が低くなる。   The non-fired brick of this embodiment is manufactured by adding hexamine as a curing agent to the above configuration, kneading and molding with a phenol resin, and drying. A drying temperature shall be 160-300 degreeC, and it is more preferable to set it as 180-250 degreeC. If the drying temperature is low, the curing agent hexamine is not sufficiently cured and the strength is lowered. Moreover, if the drying temperature is high, the components of the phenol resin are volatilized and the strength is lowered.

次に、本発明の第二の実施形態に係る不焼成れんがについて説明する。   Next, the non-fired brick according to the second embodiment of the present invention will be described.

第二実施形態に係る不焼成れんがは、カーボン1〜8wt%、アルミナ粉末5〜15wt%、チタン酸バリウム0.5〜5wt%、ジルコニア粉末3〜8wt%又はジルコン粉末3〜8wt%、および、残部をマグネシアとし、硬化剤としてヘキサミンを添加し、フェノール樹脂で混練・成形した後、乾燥させることにより製造され、低カーボン質の不焼成れんがである。   Non-fired bricks according to the second embodiment are carbon 1-8 wt%, alumina powder 5-15 wt%, barium titanate 0.5-5 wt%, zirconia powder 3-8 wt% or zircon powder 3-8 wt%, and The remainder is magnesia, hexamine is added as a curing agent, kneaded and molded with a phenol resin, and then dried to produce a low-carbon non-fired brick.

カーボンを含んでおり、チタニアを含まない点を除けば、上記した第一の実施形態と共通するので、異なる点のみを説明する。   Except for the point that it contains carbon and does not contain titania, it is the same as the first embodiment described above, so only the differences will be described.

第二実施形態の不焼成れんがを実炉において使用すると、含有されているカーボンは酸化される。酸化後の組織は、マグネシア‐ジルコニア‐アルミナを主成分とする組織に変化する。このとき、酸化による熱を受けてジルコン粉末はジルコニアとシリカに乖離し、上記実施形態1と同様に、耐スポーリング性と耐食性を向上させることになる。   When the unfired brick of the second embodiment is used in an actual furnace, the contained carbon is oxidized. The structure after oxidation changes to a structure mainly composed of magnesia-zirconia-alumina. At this time, the zircon powder is dissociated into zirconia and silica upon receiving heat due to oxidation, and the spalling resistance and corrosion resistance are improved as in the first embodiment.

ここで用いられるカーボンは、鱗状黒鉛、ピッチ、土状黒鉛、カーボンブラックなどの一般的なカーボンを使用することができるが、鱗状黒鉛が最も望ましい。   As the carbon used here, general carbon such as scaly graphite, pitch, earthy graphite, and carbon black can be used, but scaly graphite is most desirable.

なお、一般的なマグネシア‐カーボンれんがでは、カーボンの酸化防止剤として金属アルミニウムや金属シリコンが添加されることがある。第二実施形態の不焼成れんがでは、カーボンを積極的に酸化させ、れんがの組織を別の組織に変化させることで性能の向上が図られるので、添加することを妨げるものではないが、添加する必要はない。   In general magnesia-carbon bricks, metal aluminum or metal silicon may be added as a carbon antioxidant. In the non-fired brick of the second embodiment, the performance is improved by positively oxidizing the carbon and changing the brick structure to another structure. There is no need.

次に本発明に係る不焼成れんがについて、実施例および比較例を挙げてより詳細に説明する。以下の実施例および比較例は、各構成原料の添加量がれんがの特性に及ぼす影響を示すものである。   Next, the non-fired brick according to the present invention will be described in more detail with reference to examples and comparative examples. The following examples and comparative examples show the influence of the amount of each constituent material added on the brick properties.

以下の各表に示す配合割合で原料を調合し、ヘキサミンを0.5wt%添加し、ノボラック型フェノール樹脂を約2.5wt%添加し、小型フレットミルで15分間混練し、150トンのフリクションプレスで並形形状(230×115×65mm)に加圧成形した。成形体を約1日間自然放置し、その後180℃で24日間乾燥させた。乾燥体を所定の大きさに切断し、実施例と比較例とについて以下を評価項目とする試験を行い、特性を調査した。   The raw materials were prepared in the proportions shown in the following tables, 0.5 wt% of hexamine was added, about 2.5 wt% of novolac type phenol resin was added, kneaded for 15 minutes in a small fret mill, and a 150 ton friction press. And pressure-molded into a parallel shape (230 × 115 × 65 mm). The molded body was left to stand for about 1 day and then dried at 180 ° C. for 24 days. The dried body was cut into a predetermined size, a test with the following items as evaluation items was performed on the examples and comparative examples, and the characteristics were investigated.

評価項目として、
(1)JIS規格に基づいて、乾燥後の試験片と1400℃で24時間酸化後の試験片とについて見掛比重、見掛気孔率および嵩比重を測定した。
(2)試験片を50×50×50mmに切断して、アムスラー圧縮試験機で圧縮強度を測定した。
(3)耐スポーリング試験は、1200℃の温度に保持した電気炉に、40×80×20mmの大きさの試験片を素早く入れ、15分間加熱した後、取り出して水中で冷却した。この操作を1サイクルとして、10サイクル繰り返して行い、何サイクルで試験片に亀裂が発生するか、また、何サイクルで試験片に剥離が生じるかという点で評価を行った。この試験も、乾燥後の試験片と24時間酸化後の試験片について行った。
(4)耐食性は、回転侵食試験機を用いて評価した。鋼:スラグ(塩基度3.0)=6:4の侵食材を投入し、これを30分ごとに入れ替える操作を合計10回行い、合計侵食時間を5時間とした。結果は、カーボンを13wt%含むマグネシア‐カーボンれんがの溶損量を100として、指数(溶損指数)で表示した。この試験では、溶損指数が小さいほど溶損量が少ない、つまり、耐食性が優れていることを意味する。この試験も、乾燥後の試験片と24時間酸化後の試験片について行った。
As an evaluation item,
(1) Based on the JIS standard, the apparent specific gravity, the apparent porosity, and the bulk specific gravity of the test piece after drying and the test piece after oxidation for 24 hours at 1400 ° C. were measured.
(2) The test piece was cut into 50 × 50 × 50 mm, and the compression strength was measured with an Amsler compression tester.
(3) In the spalling resistance test, a test piece having a size of 40 × 80 × 20 mm was quickly put in an electric furnace maintained at a temperature of 1200 ° C., heated for 15 minutes, then taken out and cooled in water. This operation was performed as one cycle and repeated 10 cycles, and the evaluation was performed in terms of how many cycles the cracks occurred in the test piece and how many cycles the peeling occurred in the test piece. This test was also performed on the test piece after drying and the test piece after oxidation for 24 hours.
(4) Corrosion resistance was evaluated using a rotary erosion tester. The erosion material of steel: slag (basicity 3.0) = 6: 4 was thrown in and this was replaced every 30 minutes for a total of 10 times, and the total erosion time was 5 hours. The results are expressed as an index (melting index), where the melting amount of magnesia-carbon brick containing 13 wt% carbon is taken as 100. In this test, the smaller the erosion index, the smaller the amount of erosion, that is, the better the corrosion resistance. This test was also performed on the test piece after drying and the test piece after oxidation for 24 hours.

表1は、チタニア粉末の添加量がれんがの特性に及ぼす影響を示すものである。なお、表中のMC13は、カーボン(鱗状黒鉛)を13wt%含むマグネシア‐カーボンれんがを意味するものであり、各表の溶損指数はMC13の溶損量を100としたものである。表2以降ではMC13については、耐スポーリング性と耐食性に関する項目のみを表示することにする。   Table 1 shows the influence of the amount of titania powder added on the brick properties. Note that MC13 in the table means magnesia-carbon brick containing 13 wt% of carbon (scale-like graphite), and the melting index in each table is based on the amount of MC13 as 100. In Table 2 and later, only items relating to spalling resistance and corrosion resistance are displayed for MC13.

チタニアの添加量の少ない比較例1、添加量の多い比較例2は耐スポーリング性においてMC13を上回っているが、溶損指数の点で大きな差が見られない。これに対し、実施例1〜3は耐スポーリング性および耐食性においてMC13だけでなく、比較例1および2よりも優れている。   Comparative Example 1 with a small addition amount of titania and Comparative Example 2 with a large addition amount exceed MC13 in spalling resistance, but there is no significant difference in terms of the melting index. On the other hand, Examples 1-3 are superior not only to MC13 but also Comparative Examples 1 and 2 in spalling resistance and corrosion resistance.

また、れんが製造において1mm以上を疎粒、1mm以下を中粒、74μm以下を微粒とした場合、一般的にこれらの添加割合はそれぞれ約40%、約30%、約30%となり、電融マグネシア5mm以下では、74μm以下の微粒は約13wt%含まれていることになる。比較例1では、微粉の添加量が少ないため充填性が悪く、気孔率が高くなっている。一方、比較例2では、微粉が多くなるため、小さな気孔が増える。また成形亀裂が入りやすくなるため低圧で成形が必要となり、気効率が高くなっている。   In addition, when the brick is 1 mm or more in the form of sparse grains, 1 mm or less in the middle grains, and 74 μm or less in fine grains, these addition ratios are generally about 40%, about 30%, and about 30%, respectively. When the thickness is 5 mm or less, about 13 wt% of the fine particles of 74 μm or less are included. In Comparative Example 1, since the addition amount of the fine powder is small, the filling property is poor and the porosity is high. On the other hand, in Comparative Example 2, since fine powder increases, small pores increase. Further, since molding cracks are likely to occur, molding is required at a low pressure, resulting in high efficiency.

比較例1の溶損指数が芳しくないのは、チタニア粉末の添加量が少ないため、スラグ中の石灰との反応量が少ないからと考えられる。すなわち、れんがの稼働面付近における緻密さが低くなり、その結果、他のスラグ成分がれんが中へ侵入し、アルミナ‐シリカ‐マグネシア系の低融点物が生成されたことにより、溶損指数が大きくなったと考えられる。比較例2の溶損指数が芳しくないのは、低圧成形による気孔率の増大によるものである。   The reason why the melting index of Comparative Example 1 is not good is thought to be that the amount of titania powder added is small and the amount of reaction with lime in the slag is small. In other words, the density of the brick near the working surface is reduced, and as a result, other slag components penetrated into the brick and a low melting point material of alumina-silica-magnesia system was generated, resulting in a large melting index. It is thought that it became. The reason why the melting index of Comparative Example 2 is not good is that the porosity is increased by low pressure molding.

比較例2は、耐スポーリング性において低下傾向にある。これはチタニア粉末が過剰に存在すると、マグネシアとの反応でチタン酸マグネシウムが生成されるが、チタン酸マグネシウムが本質的に耐スポーリング性に劣るため、その影響を受けたものである。   In Comparative Example 2, the spalling resistance tends to decrease. This is because when titania powder is present in excess, magnesium titanate is produced by reaction with magnesia, but magnesium titanate is inherently inferior in spalling resistance and is affected by this.

なお、実施例1〜3の溶損指数が小さくなっている、すなわち、耐食性に優れているのは、チタニア等の化学成分以外に強度が高くなっていることも起因している。強度が高くなれば、溶融金属中への溶出が起こりにくくなるので、耐食性が向上することになるからである。   In addition, the melt | fever loss index | exponent of Examples 1-3 is small, ie, it is attributed also to the intensity | strength being high besides chemical components, such as titania, that it is excellent in corrosion resistance. This is because when the strength is increased, the elution into the molten metal is less likely to occur, so that the corrosion resistance is improved.

以上のことから、チタニアの添加量は3〜8wt%が好ましいことがわかる。   From the above, it can be seen that the addition amount of titania is preferably 3 to 8 wt%.

表2は、アルミナ粉末の添加量がれんがの特性に及ぼす影響を示すものである。なお、比較例4は、微粉が多いため低圧成形としている。   Table 2 shows the effect of the addition amount of alumina powder on the brick properties. In Comparative Example 4, since there are many fine powders, low pressure molding is used.

これによれば、アルミナの添加量が少ない比較例3は、MC13に比べて耐スポーリング性は良いが大きく改善されているとはいえない。また、アルミナの添加量が多い比較例4は、アルミナが多い分、熱膨張率が下がって耐スポーリング性の効果はあるものの、耐食性に大きな改善が見られない。加熱酸化後を見ると、比較例3では、添加したアルミナとマグネシアとの反応でスピネルが生成され、この微亀裂により耐スポーリング性の改善に若干の効果はあるが、大きな改善には至っていない。   According to this, although the comparative example 3 with a small amount of alumina added has better spalling resistance than MC13, it cannot be said that it is greatly improved. In Comparative Example 4 where the amount of alumina added is large, although the amount of alumina is large, the coefficient of thermal expansion is lowered and there is an effect of spalling resistance, but no significant improvement is observed in corrosion resistance. Looking at the heat oxidation, in Comparative Example 3, spinel is generated by the reaction between the added alumina and magnesia, and this microcrack has a slight effect in improving the spalling resistance, but has not yet been greatly improved. .

なお、加熱により揮発分が飛散し、かつ、スピネル生成による膨張で気孔率が高くなって、耐食性が全体的に悪くなる傾向にある。特に比較例4の耐食性はMC13よりも低下している。   In addition, the volatile matter is scattered by heating, and the porosity is increased due to the expansion due to the generation of spinel, and the corrosion resistance tends to be deteriorated as a whole. In particular, the corrosion resistance of Comparative Example 4 is lower than that of MC13.

よって、アルミナの添加量は5〜15wt%が好ましいことがわかる。   Therefore, it can be seen that the addition amount of alumina is preferably 5 to 15 wt%.

表3は、チタン酸バリウムの添加量がれんがの特性に及ぼす影響を示すものである。   Table 3 shows the influence of the amount of barium titanate added on the brick properties.

チタン酸バリウムの添加によって、加熱酸化後に変化が見られる。すなわち、チタン酸バリウムの添加量が多くなるにつれて強度が向上することがわかる。亀裂の発生回数は、弾性率、熱膨張率、熱伝導率の数値が略同じであれば強度に比例するので、酸化後の耐スポーリング性は向上していることがわかる。また、溶融金属中への粒子の溶出は強度が高いほど少なくなるので、耐食性も向上しているといえる。ただし、比較例5に示すように、0.5wt%に満たない添加量では、あまり効果が得られない。また、添加量が多すぎると微粉の占める割合が多くなり、比較例6のように7wt%以上の添加量になると低圧成形が必要になるので好ましくない。   With the addition of barium titanate, a change is seen after heat oxidation. That is, it turns out that intensity | strength improves as the addition amount of barium titanate increases. The number of occurrences of cracks is proportional to strength if the values of elastic modulus, thermal expansion coefficient, and thermal conductivity are substantially the same, indicating that the spalling resistance after oxidation is improved. Moreover, since the elution of particles into the molten metal decreases as the strength increases, it can be said that the corrosion resistance is also improved. However, as shown in Comparative Example 5, if the amount is less than 0.5 wt%, the effect is not obtained so much. Moreover, when the addition amount is too large, the proportion of fine powder increases, and when the addition amount is 7 wt% or more as in Comparative Example 6, low pressure molding is required, which is not preferable.

これらの点を勘案すると、チタン酸バリウムの添加量は、0.5〜5wt%とするのが好ましい。   Considering these points, the addition amount of barium titanate is preferably 0.5 to 5 wt%.

表4は、ジルコニア粉末の添加量がれんがの特性に及ぼす影響を示すものである。   Table 4 shows the influence of the amount of zirconia powder added on the brick properties.

実施例11〜13では、ジルコニアの添加により、耐食性が向上している。これはジルコニアの融点が約2950℃と高いためである。また、加熱酸化後ではジルコニアの相転移によるマイクロクラックの生成で、耐スポーリング性向上の効果も見られる。   In Examples 11 to 13, the corrosion resistance is improved by the addition of zirconia. This is because zirconia has a high melting point of about 2950 ° C. Moreover, after heat oxidation, the effect of improving the spalling resistance is also seen by the generation of microcracks due to the phase transition of zirconia.

比較例7および比較例8でも、MC13に比べれば耐スポーリング性・耐食性に若干の効果は得られるものの、その効果は少ない。   Even in Comparative Example 7 and Comparative Example 8, although some effects are obtained in spalling resistance and corrosion resistance as compared with MC13, the effects are small.

ジルコニアの原料が高価であることも考慮すれば、ジルコニアの添加量は3〜8wt%とするのが好ましいと言える。   Considering that the raw material of zirconia is expensive, it can be said that the amount of zirconia added is preferably 3 to 8 wt%.

表5は、ジルコン粉末の添加量がれんがの特性に及ぼす影響を示すものである。   Table 5 shows the effect of the amount of zircon powder added on the brick properties.

この表の実施例14〜16は耐スポーリング性および耐食性に優れた効果を発揮している。一方、表4で示したようにジルコニア粉末を添加する場合に比べて、ジルコン粉末を添加した比較例9および比較例10においては、耐スポーリング性は向上するが、耐食性の点で劣っている。特に加熱酸化後ではそれが顕著に表れている。これは、ジルコン粉末に含まれるシリカが低融点物を生成するからである。   Examples 14 to 16 in this table exhibit effects excellent in spalling resistance and corrosion resistance. On the other hand, as shown in Table 4, compared to the case of adding zirconia powder, in Comparative Examples 9 and 10 to which zircon powder was added, the spalling resistance was improved, but the corrosion resistance was inferior. . This is particularly noticeable after heat oxidation. This is because the silica contained in the zircon powder produces a low melting point product.

このことからみて、ジルコン粉末の添加量は、3〜8wt%とするのが好ましいことがわかる。   From this, it can be seen that the amount of zircon powder added is preferably 3 to 8 wt%.

表6は、チタニア粉末と、ジルコニア粉末又はジルコン粉末とを組み合わせた場合の添加量がれんがの特性に及ぼす影響を示すものである。   Table 6 shows the influence of the added amount on the characteristics of the brick when the titania powder is combined with the zirconia powder or the zircon powder.

この配合構成では必然的に微粉の量が多くなるため、低圧成形になり、全体的に耐スポーリング性および耐食性が低下してしまう傾向にある。それでもそれぞれ3〜8wt%の添加量であれば、MC13に比べて優れた効果が得られている。これらを組み合わせる場合は、微粉量が25〜30%程度になるよう調整すれば、さらに良い結果が得られるといえる。   In this blending configuration, the amount of fine powder inevitably increases, so low-pressure molding results, and the overall spalling resistance and corrosion resistance tend to decrease. Nevertheless, if the added amount is 3 to 8 wt%, an excellent effect is obtained as compared with MC13. When combining these, it can be said that even better results can be obtained if the fine powder amount is adjusted to about 25 to 30%.

よって、チタニア粉末と、ジルコニア粉末又はジルコン粉末とを組み合わせる場合でも、各構成を3〜8wt%とするのが望ましい。   Therefore, even when the titania powder is combined with the zirconia powder or the zircon powder, it is desirable that each component is 3 to 8 wt%.

表7からは、上記第二実施形態で説明した低カーボン質の不焼成れんがの実施例である。   Table 7 shows examples of the low-carbon non-fired brick described in the second embodiment.

表7は、カーボン添加量がれんがの特性に及ぼす影響を示すものである。   Table 7 shows the effect of the amount of carbon added on the brick properties.

カーボンが増えるにつれ、見掛気孔率が減少し、圧縮強さが低下している。また、カーボンが増えるにつれて耐スポーリング性は向上するが、耐食性はカーボン量に比例して向上した後、一定のカーボン量を超えると逆に低下する。これは、カーボン量が少ない範囲ではカーボンは溶融金属に濡れにくいため耐食性は向上するが、カーボンが多くなると溶融金属中の液相酸化および気相酸化の影響で気孔率が高くなるためである。   As carbon increases, the apparent porosity decreases and the compressive strength decreases. Further, the spalling resistance is improved as the carbon increases, but the corrosion resistance is improved in proportion to the amount of carbon, and then decreases when the amount exceeds a certain amount. This is because, in a range where the amount of carbon is small, the corrosion resistance is improved because carbon does not easily wet the molten metal, but when the amount of carbon increases, the porosity increases due to the effects of liquid phase oxidation and gas phase oxidation in the molten metal.

比較例13および比較例14は、MC13に比べて耐スポーリング性は向上しているが、耐食性を含めると、実施例21〜24のような大幅な改善が見られない。特に加熱酸化後の耐食性は低下している。   In Comparative Example 13 and Comparative Example 14, the spalling resistance is improved as compared with MC13. However, when corrosion resistance is included, no significant improvement as in Examples 21 to 24 is observed. In particular, the corrosion resistance after heat oxidation is reduced.

よって、カーボンの含有量は、1〜8wt%とするのが好ましい。   Therefore, the carbon content is preferably 1 to 8 wt%.

表8は、アルミナ粉末の添加量がれんがの特性に及ぼす影響を示すものである。なお、比較例16は微粉が多いため低圧成形としている。   Table 8 shows the influence of the amount of alumina powder added on the brick properties. Note that Comparative Example 16 is low-pressure molded because there are many fine powders.

アルミナ粉末が増えるにつれて全体的な熱膨張率が低くなるので、耐スポーリング性は向上するが、スラグ中の石灰とアルミナが反応し、低融点物が生成するので耐食性は低下する。加熱酸化後では、アルミナとマグネシアが反応し、スピネルが生成による膨張で微亀裂が発生するので耐スポーリング性は向上する。バインダーの揮発により見掛気孔率が高くなる一方、強度が低くなるので、耐食性は低下する。   Since the overall coefficient of thermal expansion decreases as the alumina powder increases, the spalling resistance is improved. However, the lime in the slag reacts with alumina to form a low melting point product, so the corrosion resistance decreases. After the thermal oxidation, alumina and magnesia react, and micro-cracks are generated due to the expansion of the spinel, so that the spalling resistance is improved. The apparent porosity is increased due to the volatilization of the binder, while the strength is decreased, so that the corrosion resistance is decreased.

耐スポーリング性と耐食性とのバランスを考慮すれば、アルミナ粉末の添加量は5〜15wt%が好ましいといえる。   Considering the balance between spalling resistance and corrosion resistance, it can be said that the addition amount of alumina powder is preferably 5 to 15 wt%.

表9は、チタン酸バリウムの添加量がれんがの特性に及ぼす影響を示すものである。   Table 9 shows the influence of the addition amount of barium titanate on the brick properties.

チタン酸バリウムの添加によって、加熱酸化後の強度が向上している。比較例16では、れんがを構成する微粉量が30%以上と多量になり、成形後の亀裂発生を防止するため、低圧成形が必要となり、強度の低下がみられた。チタン酸バリウムの添加量が少なくても、ある程度の強度の向上は得られるが、実施例28〜30と比べると見劣りする。   By adding barium titanate, the strength after heat oxidation is improved. In Comparative Example 16, the amount of fine powder constituting the brick was as large as 30% or more, and low-pressure molding was required to prevent cracking after molding, and a decrease in strength was observed. Even if the addition amount of barium titanate is small, a certain degree of strength improvement can be obtained, but it is inferior to Examples 28-30.

よって、望ましいチタン酸バリウムの添加量は、0.5〜5wt%である。   Therefore, the preferable addition amount of barium titanate is 0.5 to 5 wt%.

表10は、ジルコニア粉末の添加量がれんがの特性に及ぼす影響を示すものである。   Table 10 shows the influence of the amount of zirconia powder added on the brick properties.

ジルコニアの融点が約2950℃と高いので、実施例31〜33では、ジルコニアの添加量が増えるにつれ、耐食性が向上している。加熱酸化後ではジルコニアの相転移によりマイクロクラックが生成し、耐スポーリング性も向上する。比較例18は、微粉量が多く、低圧成形が必要であり、気孔率が高くなって強度は低下した。添加量の影響度合いも考慮すれば、ジルコニアの添加量は3〜8wt%とするのが好ましい。   Since the melting point of zirconia is as high as about 2950 ° C., in Examples 31 to 33, the corrosion resistance is improved as the amount of zirconia added is increased. After thermal oxidation, microcracks are generated due to the phase transition of zirconia, and the spalling resistance is also improved. In Comparative Example 18, the amount of fine powder was large and low pressure molding was required, the porosity increased and the strength decreased. Considering the degree of influence of the addition amount, the addition amount of zirconia is preferably 3 to 8 wt%.

表11は、ジルコン粉末の添加量がれんがの特性に及ぼす影響を示すものである。   Table 11 shows the influence of the amount of zircon powder added on the brick properties.

乾燥後のれんがは、実施例34〜36も比較例19および20も耐スポーリング性が向上している。これはジルコンに含まれるシリカの影響で熱膨張率が小さくなっているためである。加熱酸化後では耐スポーリング性は向上しているが、シリカの影響でジルコン量が増えるにつれ耐食性が低下している。特に比較例20は、微粉量が多く、低圧成形のため気孔率が高くなり強度が低下している。   As for the brick after drying, both Examples 34 to 36 and Comparative Examples 19 and 20 have improved spalling resistance. This is because the coefficient of thermal expansion is small due to the influence of silica contained in zircon. Although spalling resistance is improved after heat oxidation, the corrosion resistance decreases as the amount of zircon increases due to the influence of silica. In particular, Comparative Example 20 has a large amount of fine powder, and has low porosity due to low pressure molding, resulting in a decrease in strength.

耐食性と耐スポーリング性のバランスを考えると、ジルコン粉末の添加量は3〜8wt%が好ましいといえる。   Considering the balance between corrosion resistance and spalling resistance, it can be said that the addition amount of zircon powder is preferably 3 to 8 wt%.

以上、本発明に係る不焼成れんがについて、各実施の形態および実施例に基づいて説明したが、本発明はこれに限定されるものではなく、本発明の目的を達成でき、かつ発明の要旨を逸脱しない範囲内で種々設計変更が可能であり、それらも全て本発明の範囲内に包含されるものである。   As described above, the non-fired brick according to the present invention has been described based on each embodiment and examples. However, the present invention is not limited to this, and the object of the present invention can be achieved and the gist of the invention can be achieved. Various design changes can be made without departing from the scope, and they are all included in the scope of the present invention.

例えば、各実施形態の不焼成れんがに、上記した構成の他に、成形後の保形性を維持するための粘土を2〜4wt%添加してもよい。   For example, in addition to the above-described configuration, 2-4 wt% of clay for maintaining shape retention after molding may be added to the unfired brick of each embodiment.

本発明に係る不焼成れんがは、製鋼用転炉および取鍋、焼却されて発生した焼却灰を溶融処理する灰溶融炉、ガス化溶融炉、廃液焼却炉、アルミニウム精錬炉、亜鉛精錬炉、銅精錬炉などの非鉄産業炉等に使用する内張り用耐火物として利用することができる。   Non-fired bricks according to the present invention include steelmaking converters and ladles, ash melting furnaces for melting incinerated ash generated by incineration, gasification melting furnaces, waste liquid incinerators, aluminum smelting furnaces, zinc smelting furnaces, copper It can be used as a refractory for lining used in non-ferrous industrial furnaces such as refining furnaces.

Claims (4)

アルミナ粉末5〜15wt%、チタニア粉末3〜8wt%、チタン酸バリウム0.5〜5wt%、および、残部をマグネシアとした配合組成100wt%に硬化剤を添加し、混練・成形した後、乾燥させてなることを特徴とする不焼成れんが。   Add hardener to 100 wt% of compounding composition with alumina powder 5-15 wt%, titania powder 3-8 wt%, barium titanate 0.5-5 wt% and the balance magnesia, knead and mold, then dry Non-fired bricks characterized by 前記不焼成れんがにおいて、さらに、ジルコニア粉末またはジルコン粉末を3〜8wt%添加することを特徴とする請求項1記載の不焼成れんが。   The unfired brick according to claim 1, wherein 3-8 wt% of zirconia powder or zircon powder is further added to the unfired brick. アルミナ粉末5〜15wt%、ジルコニア粉末3〜8wt%またはジルコン粉末3〜8wt%、チタン酸バリウム0.5〜5wt%、および、残部をマグネシアとした配合組成100wt%に硬化剤を添加し、混練・成形した後、乾燥させてなることを特徴とする不焼成れんが。   Addition of a curing agent to 5 to 15 wt% of alumina powder, 3 to 8 wt% of zirconia powder or 3 to 8 wt% of zircon powder, 0.5 to 5 wt% of barium titanate, and 100 wt% of magnesia as the balance, and kneading -Non-fired bricks characterized by being dried after being molded. カーボン1〜8wt%、アルミナ粉末5〜15wt%、チタン酸バリウム0.5〜5wt%、ジルコニア粉末3〜8wt%又はジルコン粉末3〜8wt%、および、残部をマグネシアとした配合組成100wt%に硬化剤を添加し、混練・成形した後、乾燥させてなることを特徴とする不焼成れんが。   Carbon 1-8 wt%, alumina powder 5-15 wt%, barium titanate 0.5-5 wt%, zirconia powder 3-8 wt% or zircon powder 3-8 wt%, and the composition is cured to 100 wt% with magnesia as the balance A non-fired brick, which is prepared by adding an agent, kneading and forming, and then drying.
JP2012126684A 2012-06-04 2012-06-04 Unburned brick Pending JP2013249241A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012126684A JP2013249241A (en) 2012-06-04 2012-06-04 Unburned brick
PCT/JP2012/004305 WO2013183091A1 (en) 2012-06-04 2012-07-03 Unburned brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012126684A JP2013249241A (en) 2012-06-04 2012-06-04 Unburned brick

Publications (1)

Publication Number Publication Date
JP2013249241A true JP2013249241A (en) 2013-12-12

Family

ID=49711514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012126684A Pending JP2013249241A (en) 2012-06-04 2012-06-04 Unburned brick

Country Status (2)

Country Link
JP (1) JP2013249241A (en)
WO (1) WO2013183091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123635A (en) * 2018-01-15 2019-07-25 黒崎播磨株式会社 Magnesia alumina carbon brick

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979349B (en) * 2021-03-24 2022-10-25 江西金唯冠建材有限公司 Wear-resistant antifouling ceramic starlight glazed brick and preparation method thereof
CN115403362B (en) * 2022-09-02 2023-08-22 河南瑞泰耐火材料科技有限公司 High-strength explosion-proof castable for secondary lead converter mouth and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524678B2 (en) * 1993-05-10 1996-08-14 レメツト・コーポレーシヨン Fireproof molding
JPH09183674A (en) * 1995-12-28 1997-07-15 Harima Ceramic Co Ltd Monolithic refractory for flowing-in working
EP2072482A1 (en) * 2007-12-17 2009-06-24 Evonik Degussa GmbH Mixture and fire-resistant moulds made from the mixture or masses with high hydration resistance
JP2011148643A (en) * 2010-01-19 2011-08-04 Rozai Kogyo Kaisha Ltd Magnesia-based refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123635A (en) * 2018-01-15 2019-07-25 黒崎播磨株式会社 Magnesia alumina carbon brick
JP7041523B2 (en) 2018-01-15 2022-03-24 黒崎播磨株式会社 Magnesia Alumina Carbon Brick

Also Published As

Publication number Publication date
WO2013183091A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
WO2013005253A1 (en) Magnesia-based refractory material
CN105693259A (en) Preparation technique of corundum spinel solid solution refractory material
EA029189B1 (en) Batch composition for producing an unshaped refractory ceramic product, method for producing a fired refractory ceramic product, fired refractory ceramic product, and use of an unshaped refractory ceramic product
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
CN103011867B (en) Preparation method of unfired Al-Al2O3 carbon-free composite sliding plate
CN102775171B (en) Resin-bonded aluminum-magnesium refractory material
WO2011125536A1 (en) Refractory containing thick flake graphite
JP2013249241A (en) Unburned brick
CN103214256B (en) Al23O27N5-combined corundum composite slide plate and preparation method thereof
JP2011148643A (en) Magnesia-based refractory
CN109592969B (en) Low-chromium electric melting semi-recombination composite spinel brick
CN103145432B (en) Preparation method of unfired ferrosilicon nitride-brown corundum composite refractory material
CN103145433B (en) Unfired ferrosilicon nitride-spinel-corundum composite refractory material and preparation method thereof
CN104193363B (en) A kind of method improving MgO-C brick intensity
JP6194257B2 (en) Magnesia carbon brick
CN105218129A (en) A kind of ferro-magnesium-aluminum spinelle kilneye mould material
JP2003238250A (en) Yttria refractory
CN103304245B (en) Unfired ferro silicon nitride-alumina composite carbon-free sliding plate and preparation method thereof
JP2015193509A (en) Magnesia-spinel-zirconia brick
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2014024689A (en) Magnesia monolithic refractory
JP2003171170A (en) Magnesia-carbon brick
JP2012192430A (en) Alumina carbon-based slide gate plate
ITMI950206A1 (en) REFRACTORY CERAMIC MASS AND ITS USE