JPH09183674A - Monolithic refractory for flowing-in working - Google Patents

Monolithic refractory for flowing-in working

Info

Publication number
JPH09183674A
JPH09183674A JP7352927A JP35292795A JPH09183674A JP H09183674 A JPH09183674 A JP H09183674A JP 7352927 A JP7352927 A JP 7352927A JP 35292795 A JP35292795 A JP 35292795A JP H09183674 A JPH09183674 A JP H09183674A
Authority
JP
Japan
Prior art keywords
refractory
composition
barium
water
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7352927A
Other languages
Japanese (ja)
Inventor
Kiyohiro Hosokawa
清弘 細川
Tomio Mizuno
富生 水野
Masayuki Sugimoto
政幸 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP7352927A priority Critical patent/JPH09183674A/en
Publication of JPH09183674A publication Critical patent/JPH09183674A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a monolithic refractory for flowing-in working capable of attaining excellent durability as the lining of steelmaking furnace such as a vacuum degassing furnace, a ladle or a tundish, as a heat resistant protection member of a molten steel treating lance or the like and capable of attaining excellent durability in the use for a vigorous molten steel flow part. SOLUTION: This monolithic refractory is produced by externally adding 0.5-5wt.% Ba composition such as water-inactive barium titanate, barium aluminate, barium zirconate, barium sulfate and 0.5-5wt.% lightly burnt magnesia to 100wt.% refractory aggregate containing 5-60wt.% fine powdery alumina having <=0.15mm particle diameter. The water-inactive Ba composition does not react with water content for working, is prevented from lowering the strength of a worked body and is allowed to react with the fine powdery alumina to form barium aluminate to strengthen the combined structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空脱ガス炉、取
鍋、タンディッシュなどの製鋼炉の内張り、あるいは溶
鋼処理ランスなどの耐熱保護部材として使用される流し
込み施工用不定形耐火物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cast refractory for use as a lining of a steelmaking furnace such as a vacuum degassing furnace, a ladle, and a tundish, or as a heat-resistant protective member for a molten steel treatment lance. Is.

【0002】[0002]

【従来の技術】溶鋼取鍋などを内張りする耐火物とし
て、現在、アルミナセメントを結合材としたアルミナ−
スピネル質またはアルミナ−マグネシア質の流し込み材
が使用されている。
2. Description of the Related Art At present, as a refractory for lining a molten steel ladle, alumina-based alumina cement is used as a binder.
Spinel or alumina-magnesia castings have been used.

【0003】これらの材質の改善として、軽焼マグネシ
アを添加することが提案されている。例えば特開昭63
−218586号公報および特開昭64−87577号
公報では、結合部に軽焼マグネシアを添加し、施工水分
との反応による水和で生じた結合を利用し、耐食性およ
び耐スラグ浸潤性の向上を図っている。また、特開平3
−23275号においては、軽焼マグネシアが結合時に
施工水分との反応で水酸化マグネシウムが生成し、耐火
物使用時の加熱を受けてそれが微細なマグネシアに変化
した後、骨材のアルミナとすみやかに反応し、Al23
・MgO系スピネルを生成することで耐食性および耐ス
ラグ浸潤性の効果を発揮するとある。
To improve these materials, it has been proposed to add light burned magnesia. For example, JP-A-63
In JP-A-218586 and JP-A-64-87577, light burned magnesia is added to the joint portion, and the bond generated by hydration due to reaction with working water is utilized to improve corrosion resistance and slag infiltration resistance. I am trying. In addition, Japanese Unexamined Patent Publication No.
In No. -23275, magnesium hydroxide is produced by the reaction of light-burning magnesia with the working water at the time of binding, and after it is heated when the refractory is used, it changes to fine magnesia, and then it is quickly mixed with alumina of the aggregate. Al 2 O 3
-It is said that the effects of corrosion resistance and slag infiltration resistance are exhibited by producing MgO-based spinel.

【0004】[0004]

【発明が解決しようとする課題】しかし、軽焼マグネシ
ア結合による流し込み用耐火物は以上の優れた特性にも
かかわらず、使用部位によっては十分な効果が発揮でき
ない。例えば、溶鋼流が特に激しい部位での使用では、
その損傷が大きい。この原因としては、熱間強度が低い
ために溶鋼流による摩耗に耐えられないことが考えられ
る。
However, the refractory for casting by light-burning magnesia bonding cannot exhibit a sufficient effect depending on the part to be used, despite the above excellent characteristics. For example, when used in areas where molten steel flow is particularly strong,
The damage is great. It is considered that this is because the hot strength is low and the wear due to the molten steel flow cannot be endured.

【0005】そして、この熱間強度が低い理由として
は、従来材質では耐火物組織があまりに高純度であるこ
とから、使用中の高温域で耐火物粒子の境界に液相がほ
とんどなく、あったとしてもNa2O主体の少量の極低
融点液相の存在だけである。このため、高耐火性である
にもかかわらず、使用時には粒子の凝集力だけで結合し
ている状態にあり、粒界は小さい応力によっても破壊
し、溶鋼流に曝された際、耐火粒子が容易に離脱すこと
で摩耗が促進されると考えられる。
The reason why the hot strength is low is that the refractory structure of the conventional material is so high in purity that there is almost no liquid phase at the boundaries of the refractory particles in the high temperature range during use. However, there is only a small amount of extremely low melting point liquid phase mainly composed of Na 2 O. Therefore, even though it has high fire resistance, it is in a state of being bonded only by the cohesive force of the particles at the time of use, and the grain boundary is broken by a small stress, and when exposed to the molten steel flow, the refractory particles are It is considered that abrasion is promoted by easy separation.

【0006】軽焼マグネシア結合による流し込み用耐火
物がもつこの結合の弱さは1500℃付近の高温域だけ
でなく、1000℃付近での中温域でも同様である。そ
の解決策として、特開平5−306178号公報にはS
iO2やガラスを添加することが提案されている。しか
し、これらの添加物は中温域での強度は上昇しても、1
500℃付近の高温域では添加物による低粘性ガラスの
生成で熱間強度の改善はなされなかった。
The weakness of this refractory casting refractory due to the light-burning magnesia bond is the same not only in the high temperature region around 1500 ° C. but also in the intermediate temperature region around 1000 ° C. As a solution to this problem, Japanese Unexamined Patent Publication No. 5-306178 discloses S.
It has been proposed to add iO 2 and glass. However, even if the strength of these additives increases in the middle temperature range,
In the high temperature region around 500 ° C., the addition of additives did not improve the hot strength due to the formation of low-viscosity glass.

【0007】また、特開平6−277253号公報に見
られるように、軽焼マグネシアとアルミナセメントを併
用する方法も検討されている。しかし、軽焼マグネシア
とアルミナセメントの水和速度の違いから、結合材のい
ずれか一方が硬化した後、もう一方の硬化作用が生じる
ため、乾燥中にスレーキング亀裂を発生し、良好な施工
体が得られない。
Further, as seen in JP-A-6-277253, a method of using light burned magnesia and alumina cement in combination is being studied. However, due to the difference in the hydration rate between light burned magnesia and alumina cement, one of the binders hardens and the other hardens, so a slaking crack occurs during drying, and a good construction product is obtained. I can't get it.

【0008】[0008]

【課題を解決するための手段】本発明は、軽焼マグネシ
アを結合材とした流し込み施工用耐火物において、以上
のような問題を解決したものであり、粒径0.15mm
以下の微粉アルミナを5〜60wt%含む耐火骨材10
0wt%に、外掛けで、水に不活性のBa組成物0.5
〜5wt%と軽焼マグネシア0.5〜5wt%とを添加
した不定形耐火物である。また、また、粒径10μm以
下の微粉アルミナを5〜40wt%含む耐火骨材100
wt%に、外掛けで、水に不活性のBa組成0.5〜5
wt%と軽焼マグネシア0.5〜5wt%とを添加した
不定形耐火物である。
The present invention solves the above problems in a refractory for pouring construction using light burned magnesia as a binder, and has a particle size of 0.15 mm.
Refractory aggregate 10 containing 5 to 60 wt% of the following fine alumina powder
0 wt%, externally applied, water-inactive Ba composition 0.5
It is an amorphous refractory to which -5 wt% and light burned magnesia of 0.5-5 wt% are added. Further, a refractory aggregate 100 containing 5 to 40 wt% of fine alumina powder having a particle size of 10 μm or less.
Ba composition of 0.5 to 5 which is inert to water by wt% to the outside.
It is an amorphous refractory to which wt% and light burned magnesia of 0.5 to 5 wt% are added.

【0009】なお、ここで使用される、水に不活性のB
a組成物の具体例としては、バリウムチタネート、バリ
ウムアルミネート、バリウムジルコネート、硫酸バリウ
ムなどが好適である。水に不活性のBa組成物(以下、
不活性Ba組成物と称する)は、少量の添加によって熱
間強度を格段に向上させる。その結果、軽焼マグネシア
結合がもつ耐食性および耐スラグ浸透性とも相まって、
溶鋼流の激しい場所での使用においても、優れた耐用性
が得られる。
The water-inactive B used here is used.
Specific examples of the composition a include barium titanate, barium aluminate, barium zirconate, and barium sulfate. A water-inert Ba composition (hereinafter,
The inert Ba composition) significantly improves the hot strength by adding a small amount. As a result, combined with the corrosion resistance and slag penetration resistance of the light-burning magnesia bond,
Excellent durability is obtained even when used in places where the flow of molten steel is intense.

【0010】その理由は、つぎのことが考えられる。す
なわち、不活性Ba組成物は施工水分との反応がなく、
施工体強度を低下させない。また、使用中の高温域では
微粉アルミナと反応してバリウムアルミネートを生成
し、結合組織をより一層強固なものにする。
The reason may be as follows. That is, the inert Ba composition has no reaction with the applied water,
Does not reduce the strength of the construction body. Further, in the high temperature range during use, it reacts with finely divided alumina to form barium aluminate, and further strengthens the connective structure.

【0011】図1は、後述した実施例1を基本配合と
し、バリウム・チタネートの添加割合いのみを変化さ
せ、熱間強度の推移を熱間曲げ強さで測定した結果を、
グラフ化したものである。バリウムチタネートの割合が
0.5〜5wt%の範囲で熱間強度に優れることが確認
される。
FIG. 1 shows a result obtained by measuring the transition of hot strength by hot bending strength by changing only the addition ratio of barium titanate with the basic composition of Example 1 described later.
It is a graph. It is confirmed that the hot strength is excellent when the ratio of barium titanate is in the range of 0.5 to 5 wt%.

【0012】図2は、後述した実施例2を基本配合と
し、バリウムチタネートの添加割合いのみを変化させ、
溶損寸法(耐食性)とスラグ浸透寸法(耐スラグ浸透
性)を測定し、グラフ化したものである。なお、スラグ
浸透寸法は、便宜上、溶損寸法との合計寸法で示した。
バリウムチタネートの割合が0.5wt%以上の範囲で
耐食性および耐スラグ浸透性に優れることが確認され
る。
FIG. 2 shows a basic composition of Example 2 described below, in which only the addition ratio of barium titanate is changed,
It is a graph obtained by measuring the erosion dimension (corrosion resistance) and the slag penetration dimension (slag penetration resistance). Note that the slag permeation size is shown as the total size together with the melt loss size for convenience.
It is confirmed that the corrosion resistance and the slag penetration resistance are excellent when the proportion of barium titanate is in the range of 0.5 wt% or more.

【0013】[0013]

【発明の実施の形態】本発明において使用する耐火骨材
は、粒径0.15mm以下の微粉アルミナを5〜60w
t%含むことが必要である。微粉アルミナの例として
は、焼結品、電融品、仮焼品を問わない。
BEST MODE FOR CARRYING OUT THE INVENTION The refractory aggregate used in the present invention is 5 to 60 w of fine alumina powder having a particle size of 0.15 mm or less.
It is necessary to include t%. The fine alumina powder may be a sintered product, an electromelted product, or a calcined product.

【0014】微粉アルミナは、不活性Ba組成物との反
応性をより高めるために、粒径10μm以下の超微粉を
5〜40wt含むことがさらに好ましい。また、仮焼ア
ルミナは、約1000〜1400℃の比較的低温で焼成
されるために反応性が高く、しかも粉砕しなくても平均
粒子径10μm以下の超微粉として得られることから、
微粉アルミナの中でも特に好ましい。
It is further preferable that the finely divided alumina contains 5 to 40 wt% of ultrafine powder having a particle size of 10 μm or less in order to further enhance the reactivity with the inert Ba composition. Further, calcined alumina has high reactivity because it is fired at a relatively low temperature of about 1000 to 1400 ° C., and is obtained as ultrafine powder having an average particle size of 10 μm or less without pulverization,
Of the finely divided alumina, it is particularly preferable.

【0015】耐火骨材に含まれる粒径0.15mm以下
の微粉アルミナの割合が、5wt%未満では熱間強度向
上の効果が不十分となる。60wt%を超えると骨材全
体の粒度構成のバランスがくずれて、耐スポーリング性
および耐食性に劣る。粒径10μm以下の超微粉に換算
した場合は、40wt%を超えると耐スポーリング性お
よび耐食性に劣る。
If the proportion of the fine alumina powder having a particle size of 0.15 mm or less contained in the refractory aggregate is less than 5 wt%, the effect of improving the hot strength becomes insufficient. If it exceeds 60 wt%, the balance of the grain size composition of the aggregate as a whole is disturbed, resulting in poor spalling resistance and corrosion resistance. When converted into ultrafine powder having a particle size of 10 μm or less, if it exceeds 40 wt%, the spalling resistance and the corrosion resistance are poor.

【0016】微粉アルミナ以外の耐火骨材の種類は特に
限定されるものではないが、耐食性の点から、アルミ
ナ、マグネシア、マグネシア−カルシア、Al23・M
gO系スピネル(以下、単にスピネルと称する)などを
主材とすることが好ましい。また、これらは電融品、焼
結品のいずれでもよい。
The type of refractory aggregate other than finely divided alumina is not particularly limited, but from the viewpoint of corrosion resistance, alumina, magnesia, magnesia-calcia, Al 2 O 3 .M
It is preferable to use gO-based spinel (hereinafter simply referred to as spinel) as a main material. Further, these may be electro-melted products or sintered products.

【0017】アルミナの具体例は、電融アルミナ、焼結
アルミナ、ばん土頁岩、ボ−キサイトなどである。耐食
性の点から、高純度品の使用が好ましい。低純度品を使
用する場合は、高純度品と組合せ、アルミナ全体の平均
純度を90wt%以上にすることが望ましい。
Specific examples of alumina include fused alumina, sintered alumina, shale shale, and bauxite. From the viewpoint of corrosion resistance, it is preferable to use a high-purity product. When a low-purity product is used, it is desirable to combine it with a high-purity product so that the average purity of the whole alumina is 90 wt% or more.

【0018】マグネシアあるいはマグネシア−カルシア
は、耐スラグに優れるが、施工水分と水和しやすいた
め、比表面積が大きい微粒を多量に使用することは好ま
しくない。微粒として多量に使用する場合には、表面を
リン酸処理または炭酸化処理などによって耐スレーキン
グ性を改善したものを使用する。
[0018] Magnesia or magnesia-calcia is excellent in slag resistance, but it is easily hydrated with working water, and therefore it is not preferable to use a large amount of fine particles having a large specific surface area. When a large amount of fine particles are used, those whose surface has improved slaking resistance by phosphoric acid treatment or carbonation treatment are used.

【0019】スピネルは、耐スラグ浸透性に優れてい
る。水和し難いために、微粒として使用してもよい。M
gOとAl23の総量は95wt%以上が好ましい。M
gOとAl23の比は、理論組成のものに限らず、例え
ばMgOの割合いが少ないAl23リッチのものでもよ
い。
Spinel is excellent in slag penetration resistance. Since it is difficult to hydrate, it may be used as fine particles. M
The total amount of gO and Al 2 O 3 is preferably 95 wt% or more. M
The ratio of gO to Al 2 O 3 is not limited to the theoretical composition, and may be, for example, an Al 2 O 3 rich one in which the proportion of MgO is small.

【0020】また、耐火骨材は、以上の材質にムライ
ト、クロム鉱、ジルコン、ジルコニア、炭素、炭化物、
ほう化物、窒化物などを組合せてもよい。耐火骨材の粒
度は従来材質と特に変わりなく、不定形耐火物が施工に
よって密充填されるよう、粗粒、中粒、微粒の配合を適
宜調整される。最大粒子径は10mm以下が通常である
が、耐火物の使用部位によっては、耐スポーリング性向
上のために、最大粒子径が10mm以上の粗大粒子を組
み合わせてもよい。本発明は、以上の耐火骨材100w
t%に不活性Ba組成物と軽焼マグネシアとを併用添加
する。
Further, the refractory aggregate is made of the above materials such as mullite, chrome ore, zircon, zirconia, carbon, carbide,
Borides and nitrides may be combined. The particle size of the refractory aggregate is not particularly different from that of conventional materials, and the composition of coarse particles, medium particles, and fine particles is appropriately adjusted so that the irregular-shaped refractory material is densely packed by the construction. The maximum particle diameter is usually 10 mm or less, but coarse particles having a maximum particle diameter of 10 mm or more may be combined in order to improve the spalling resistance depending on the part where the refractory is used. The present invention is the above refractory aggregate 100w
An inert Ba composition and light burned magnesia are added together at t%.

【0021】不活性Ba組成物の具体例としてはバリウ
ムチタネート、バリウムチタネート、バリウムジルコネ
ート、硫酸バリウムなどである。その添加量は、耐火骨
材100wt%に対し、外掛け0.5wt%以下では本
発明の熱間強度向上の効果が得られない。5wt%を超
えると低融物の生成量が過度になるためか、耐食性に劣
る。その粒度は、アルミナとのすみやかな反応を促し、
結合組織の強度をより向上させるため、微粉であること
が好ましい。
Specific examples of the inert Ba composition are barium titanate, barium titanate, barium zirconate, barium sulfate and the like. If the addition amount is 0.5 wt% or less with respect to 100 wt% of the refractory aggregate, the effect of improving the hot strength of the present invention cannot be obtained. If it exceeds 5% by weight, the amount of low-melting substance is excessively produced, and the corrosion resistance is poor. Its particle size promotes a prompt reaction with alumina,
In order to further improve the strength of the connective tissue, fine powder is preferable.

【0022】軽焼マグネシアは、水酸化マグネシウムを
約800〜1300℃程度で焼成して得られる微細結晶
が凝集した状態の微粉である。焼結マグネシアの焼成温
度1800℃以上に比べ、低温で焼成される。ヨード吸
着量1〜120ヨードmg/gの活性度を有したものが
好ましい。耐火骨材100wt%に対する割合は、0.
5wt%未満では結合剤としての役割に劣り、5wt%
を超えると施工水分が多くなり、気孔率が高くなって耐
食性が低下する。
Light burned magnesia is a fine powder in a state in which fine crystals obtained by firing magnesium hydroxide at about 800 to 1300 ° C. are agglomerated. Sintered magnesia is fired at a temperature lower than 1800 ° C or higher. It is preferable that the amount of iodine adsorbed is 1-120 mg / g iodine. The ratio of the refractory aggregate to 100 wt% is 0.
If it is less than 5 wt%, the role as a binder is inferior, and it is 5 wt%.
If it exceeds, the construction water content increases, the porosity increases, and the corrosion resistance decreases.

【0023】本発明の耐火物は、以上の配合物からなる
ものであるが、この他にも、流し込み施工用不定形耐火
物の作業性調整剤、強度発現剤、乾燥爆裂防止剤などを
適当量添加してもよい。作業性調整剤としては、施工時
の流動性付与のための分散剤、ヒュームシリカ、ジルコ
ン極微粉、粘土などである。強度発現剤としては、ガラ
ス粉、金属ファイバー、セラミックファイバーなどであ
る。また、乾燥耐爆裂防止剤としては、有機ファイバ
ー、金属粉、発泡剤などである。従来材質と同様、流動
性付与のために分散剤の添加は特に好ましい。その具体
例は、ヘキサメタリン酸ソーダ、トリポリリン酸ソー
ダ、ポリアクリル酸ソーダなどである。添加割合いは、
耐火骨材100wt%に対する外掛けで0.01〜3w
t%程度とする。
The refractory material of the present invention is composed of the above-mentioned compound, but in addition to this, a workability adjusting agent, a strength-developing agent, a dry explosion-proofing agent, etc. of an amorphous refractory material for pouring construction are suitable. You may add quantity. Examples of the workability adjusting agent include a dispersant for imparting fluidity during construction, fume silica, ultrafine zircon powder, and clay. Examples of the strength enhancer include glass powder, metal fiber, ceramic fiber and the like. Further, examples of the dry explosion-proof agent include organic fiber, metal powder, and foaming agent. As with conventional materials, it is particularly preferable to add a dispersant for imparting fluidity. Specific examples thereof include sodium hexametaphosphate, sodium tripolyphosphate, sodium polyacrylate, and the like. The ratio of addition is
0.01 to 3w with external coating on 100 wt% of refractory aggregate
It is about t%.

【0024】施工は常法通り、不定形耐火物の配合物全
体に対する外掛けで、4〜10wt%程度の水分を添加
し、混練後、型枠を用いて流し込み施工される。溶鋼容
器あるいはそれに付随した耐熱機器に対しては、直接流
し込んで施工してもよいし、予め鋳込み施工したプレキ
ャスト品をもって内張りしてもよい。また、施工の際に
は、充填性を向上させるため、バイブレータをもって振
動を付与するのが好ましい。
The work is carried out in the usual manner by adding 4 to 10 wt% of water to the whole composition of the irregular refractory, kneading, and then pouring using a form. The molten steel container or the heat-resistant equipment associated therewith may be cast directly, or may be lined with a precast product that has been cast beforehand. In addition, at the time of construction, it is preferable to apply vibration with a vibrator in order to improve the filling property.

【0025】[0025]

【実施例】表1は、各例で使用した微粉アルミナ、結合
剤および不活性Ba組成物の化学成分値である。表2は
本発明実施例、表3は比較例である。また、表2、表3
には試験結果を併せて示す。
EXAMPLES Table 1 shows the chemical composition values of the finely divided alumina, binder and inert Ba composition used in each example. Table 2 is an example of the present invention, and Table 3 is a comparative example. Also, Tables 2 and 3
The test results are also shown in.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】各例は、その材質に合わせて最適の流動性
が得られるよう施工水分量を調整し、混練後、型枠内に
流し込んで成形した。さらにこれを200℃×24Hr
で乾燥後、以下の要領で試験を行った。
In each of the examples, the amount of working water was adjusted so that the optimum fluidity was obtained in accordance with the material, and after kneading, it was poured into a mold and molded. Furthermore, this is 200 ℃ × 24Hr
After drying in, the test was conducted in the following manner.

【0030】熱間強度=JIS−R2553に準じて1
500℃加熱化での熱間曲げ強さを測定した。 耐食性=鋼片と溶鋼取鍋スラグとをその重量比で1:1
に組み合わせた溶剤をもって、1600℃×3hrの回
転侵食試験を行い、溶損寸法を測定した。
Hot strength = 1 according to JIS-R2553
The hot bending strength at 500 ° C. heating was measured. Corrosion resistance = 1: 1 by weight ratio of billet and ladle slag
A rotary erosion test was performed at 1600 ° C. for 3 hours with the solvent combined with the above, and the erosion size was measured.

【0031】耐スラグ浸透性=前記の回転侵食試験にお
いて、スラグ浸透寸法を測定した。 実機試験=RH式真空脱ガス炉の浸漬管内周に使用し、
溶損速度を測定した。
Slag penetration resistance = The slag penetration dimension was measured in the above rotary erosion test. Actual machine test = Used for the inner circumference of the immersion pipe of RH type vacuum degassing furnace,
The rate of erosion was measured.

【0032】表2の試験値から、不活性Ba組成物を添
加した本発明実施例は、いずれも熱間強度に優れ、同時
に耐食性および耐スラグ浸透性を兼ね備えている。その
結果、実機試験において、実施例2および実施例3は、
従来材質に相当する比較例1に比べて耐用性が格段に向
上し、本発明の効果が実証された。
From the test values shown in Table 2, all of the examples of the present invention to which the inert Ba composition is added have excellent hot strength and simultaneously have corrosion resistance and slag penetration resistance. As a result, in the actual machine test, Example 2 and Example 3 were
The durability was remarkably improved as compared with Comparative Example 1 corresponding to the conventional material, and the effect of the present invention was verified.

【0033】これに対し、不活性Ba組成物を添加しな
い比較例1は、熱間強度に劣る。比較例2は、不活性B
a組成物を添加しているが、結合材がアルミナセメント
であり、耐食性、耐スラグ浸透性に劣る。比較例3は、
不活性Ba組成物の添加量が本発明の限定範囲内より多
く、耐食性に劣る。比較例4は、軽焼マグネシアの添加
量が本発明の限定範囲内より多く、耐食性に劣る。比較
例5は、粒径0.15mm以下の微粉アルミナの量が本
発明の限定範囲より少なく、熱間強度が低下し、実機試
験でも耐用性に劣る。比較例6は結合材としてアルミナ
セメントを使用したものであり、耐食性に劣る。
On the other hand, Comparative Example 1 in which the inert Ba composition is not added is inferior in hot strength. Comparative Example 2 is inactive B
Although the composition a is added, the binder is alumina cement, which is inferior in corrosion resistance and slag penetration resistance. Comparative Example 3
The amount of the inert Ba composition added is larger than the range of the limit of the present invention, and the corrosion resistance is poor. In Comparative Example 4, the amount of light-burned magnesia added was more than the range of the limit of the present invention, and the corrosion resistance was poor. In Comparative Example 5, the amount of finely divided alumina having a particle size of 0.15 mm or less is less than the limit range of the present invention, the hot strength is lowered, and the durability is poor even in the actual machine test. Comparative Example 6 uses alumina cement as a binder and is inferior in corrosion resistance.

【0034】なお、本発明は上記実施例に限られるもの
ではなく、種々の応用が可能であることはいうまでもな
い。
Needless to say, the present invention is not limited to the above-mentioned embodiment, and various applications are possible.

【0035】[0035]

【発明の効果】本発明の流し込み施工用不定形耐火物
は、軽焼マグネシアを結合材とした材質がもつ耐食性お
よび耐スラグ浸透性を備え、かつ、不活性のBa組成物
の併用で熱間強度の向上を図った結果、特に溶鋼流の激
しい部位での使用において、優れた耐用性が得られる。
従って、最近の高級鋼指向による操業条件の苛酷化、あ
るいは耐火物原単位の低減指向において、本発明の工業
的価値は高い。
INDUSTRIAL APPLICABILITY The amorphous refractory for casting according to the present invention has the corrosion resistance and the slag permeation resistance of the material using light-burning magnesia as a binder, and is hot when used in combination with an inert Ba composition. As a result of improving the strength, excellent durability can be obtained especially when used in a portion where the molten steel flow is intense.
Therefore, the industrial value of the present invention is high in the recent trend toward severer operating conditions due to high-grade steel orientation or reduction of the refractory unit consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱間強度の推移を熱間曲げ強さで測定した結果
をグラフ化したものである。
FIG. 1 is a graph showing the results of measuring changes in hot strength by hot bending strength.

【図2】溶損寸法(耐食性)とスラグ浸透寸法(耐スラ
グ浸透性)を測定し、グラフ化したものである。
FIG. 2 is a graph obtained by measuring a melt loss dimension (corrosion resistance) and a slag permeation dimension (slag permeation resistance).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21C 7/10 C21C 7/10 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C21C 7/10 C21C 7/10 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.15mm以下の微粉アルミナを
5〜60wt%含む耐火骨材100wt%に、外掛け
で、水に不活性のBa組成物0.5〜5wt%と軽焼マ
グネシア0.5〜5wt%とを添加した不定形耐火物。
1. A 100 wt% refractory aggregate containing 5 to 60 wt% of finely divided alumina having a particle size of 0.15 mm or less is externally applied to 0.5 to 5 wt% of a water-inert Ba composition and 0 to lightly burned magnesia. An amorphous refractory containing 0.5 to 5 wt%.
【請求項2】 粒径10μm以下の微粉アルミナを5〜
40wt%含む耐火骨材100wt%に、外掛けで、水
に不活性のBa組成物0.5〜5wt%と軽焼マグネシ
ア0.5〜5wt%とを添加した不定形耐火物。
2. Finely divided alumina having a particle size of 10 μm or less
An amorphous refractory obtained by adding 0.5 to 5 wt% of a water-inactive Ba composition and 0.5 to 5 wt% of light-burned magnesia to 100 wt% of a refractory aggregate containing 40 wt%.
【請求項3】水に不活性のBa組成物がバリウムチタネ
ート、バリウムアルミネート、バリウムジルコネート、
硫酸バリウムなどである請求項1または2記載の流し込
み施工用不定形耐火物。
3. A water inactive Ba composition comprising barium titanate, barium aluminate, barium zirconate,
The castable refractory according to claim 1 or 2, which is barium sulfate or the like.
JP7352927A 1995-12-28 1995-12-28 Monolithic refractory for flowing-in working Pending JPH09183674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352927A JPH09183674A (en) 1995-12-28 1995-12-28 Monolithic refractory for flowing-in working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352927A JPH09183674A (en) 1995-12-28 1995-12-28 Monolithic refractory for flowing-in working

Publications (1)

Publication Number Publication Date
JPH09183674A true JPH09183674A (en) 1997-07-15

Family

ID=18427411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352927A Pending JPH09183674A (en) 1995-12-28 1995-12-28 Monolithic refractory for flowing-in working

Country Status (1)

Country Link
JP (1) JPH09183674A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143312B1 (en) * 2011-11-02 2012-05-09 정덕수 Heat shielding materials with excellent heat resistance and manufacturing method of the same
WO2013147354A1 (en) * 2012-03-30 2013-10-03 한국과학기술연구원 Cementless high strength amorphous refractory material
WO2013183091A1 (en) * 2012-06-04 2013-12-12 ロザイ工業株式会社 Unburned brick
CN113999027A (en) * 2021-11-12 2022-02-01 湖南立达高新材料有限公司 Corundum-mullite castable for zinc oxide rotary kiln and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143312B1 (en) * 2011-11-02 2012-05-09 정덕수 Heat shielding materials with excellent heat resistance and manufacturing method of the same
WO2013147354A1 (en) * 2012-03-30 2013-10-03 한국과학기술연구원 Cementless high strength amorphous refractory material
KR101321944B1 (en) * 2012-03-30 2013-11-04 한국과학기술연구원 Cement-free High Strength Unshaped Refractories
US8815759B2 (en) 2012-03-30 2014-08-26 Korea Institute Of Science And Technology Cement-free high strength unshaped refractory
WO2013183091A1 (en) * 2012-06-04 2013-12-12 ロザイ工業株式会社 Unburned brick
CN113999027A (en) * 2021-11-12 2022-02-01 湖南立达高新材料有限公司 Corundum-mullite castable for zinc oxide rotary kiln and preparation method thereof

Similar Documents

Publication Publication Date Title
US4039344A (en) Alumina-chrome refractory composition
JPH0737344B2 (en) Irregular refractory with basic properties
JP4234330B2 (en) Amorphous refractory composition
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
US5506181A (en) Refractory for use in casting operations
JP2001114571A (en) Castable refractory for trough of blast furnace
JP2874831B2 (en) Refractory for pouring
JPH09183674A (en) Monolithic refractory for flowing-in working
JPH10291868A (en) Castable refractory material having specific matrix and its wet spray executing method
CA2216528A1 (en) Use of a water-containing fire-resistant ceramic casting material
JP2604310B2 (en) Pouring refractories
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JPH06256064A (en) Dense castable refractory low in water content and capable of being cast
JPH0952169A (en) Refractory for tuyere of molten steel container
JP3212856B2 (en) Irregular cast refractories and their moldings
JPH0725668A (en) Refractory for casting work
JPH09157041A (en) Castable refractory for casting
JPH0967170A (en) Refractory for casting
JPH11278918A (en) Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same
JP3683306B2 (en) Refractory for casting construction
JPH11100280A (en) Monolitihic refractory for tundish lining
JP3014545B2 (en) Irregular refractories for casting
JP2599870B2 (en) Amorphous refractory composition
JPS61158874A (en) Semizircon flow-in monolithic refractories for pouring ladle
JP3426024B2 (en) Construction method of refractory construction body