JPH0952169A - Refractory for tuyere of molten steel container - Google Patents

Refractory for tuyere of molten steel container

Info

Publication number
JPH0952169A
JPH0952169A JP7227299A JP22729995A JPH0952169A JP H0952169 A JPH0952169 A JP H0952169A JP 7227299 A JP7227299 A JP 7227299A JP 22729995 A JP22729995 A JP 22729995A JP H0952169 A JPH0952169 A JP H0952169A
Authority
JP
Japan
Prior art keywords
refractory
alumina
less
tuyere
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7227299A
Other languages
Japanese (ja)
Inventor
Toshihiro Isobe
利弘 礒部
Atsuhiko Tono
敦彦 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP7227299A priority Critical patent/JPH0952169A/en
Publication of JPH0952169A publication Critical patent/JPH0952169A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00551Refractory coatings, e.g. for tamping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00887Ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • C04B2111/1037Cement free compositions, e.g. hydraulically hardening mixtures based on waste materials, not containing cement as such
    • C04B2111/1043Calciumaluminate-free refractories

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refractory for a tuyere containing carbon to prevent wear due to oxygen cleaning. SOLUTION: A refractory 3 for a tuyere of a molten steel container is obtained by the flowed-in forming of the mixture having the composition consisting of, by weight, 100% refractory aggregate which is mainly composed of 80-90% alumina of <10mm in grain size and 3-20% magnesia of <=75μm in grain size, 1-10% hydraulic alumina, 0.05-5% amorphous silica supper-fine powder, and 1-7% metallic fiber, which are applied to 100% the refractory aggregate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼容器における羽口
用耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory for tuyere in a molten steel container.

【0002】[0002]

【従来の技術】溶鋼容器の底部には、溶鋼を注出する鋳
造ノズルあるいは溶鋼撹拌のためのポーラスプラグが設
けられている。これらのノズルまたはプラグは使用によ
って地金が付着するために再使用の際、この地金を酸素
洗浄で除去することが行われている。鋳造ノズルではノ
ズル孔の開孔、ポーラスプラグではガス透過機能の回復
のためである。
2. Description of the Related Art A casting nozzle for pouring molten steel or a porous plug for stirring molten steel is provided at the bottom of a molten steel container. When these nozzles or plugs are reused, they are removed by oxygen cleaning when they are reused. This is because the casting nozzle is used to open the nozzle hole, and the porous plug is used to restore the gas permeation function.

【0003】図1は、ポーラスプラグの場合を例に挙
げ、酸素洗浄の状況を示したものである。(1)は底部
の内張り耐火物、(2)はポーラスプラグ、(3)はそ
の周囲に位置する羽口用耐火物、(4)は付着した地
金、(5)は酸素ノズルである。地金は保熱時に酸素を
吹付けることで発熱し、溶解除去される。図には示して
いないが、鋳造ノズルの酸素洗浄の場合でも同様の操作
が行われている。
FIG. 1 shows the situation of oxygen cleaning, taking the case of a porous plug as an example. (1) is a refractory lining at the bottom, (2) is a porous plug, (3) is a refractory for tuyere located around it, (4) is a bare metal, and (5) is an oxygen nozzle. The metal is heated by blowing oxygen during heat retention and is dissolved and removed. Although not shown in the figure, the same operation is performed in the case of oxygen cleaning of the casting nozzle.

【0004】[0004]

【発明が解決しようとする課題】羽口用耐火物は酸素洗
浄の際、溶解した地金による溶損および熱衝撃によって
著しく損耗される。また、この酸素洗浄で耐火物組織が
脆弱化する結果、鋳造ノズルでは使用時に受ける高速の
溶鋼流、ポーラスプラグでは撹拌ガスによる溶鋼の乱流
により、溶損が促進される。
The refractory material for tuyere is significantly worn out by erosion due to molten metal and thermal shock during oxygen cleaning. Further, as a result of the oxygen cleaning weakening the refractory structure, the melt loss is accelerated by the high-speed molten steel flow received at the time of use in the casting nozzle and the turbulent flow of molten steel by the stirring gas in the porous plug.

【0005】従来、この羽口用耐火物の材質として、特
開平5-8020号には不焼成のマグネシア-炭素質耐火物が
提案されている。この材質は溶鋼に対する耐食性および
耐スポーリング性に優れているが、酸素洗浄の際に受け
る炭素成分の酸化で耐火組織が脆弱化し、十分な耐用性
が得られない。
Conventionally, as a material for this refractory material for tuyere, Japanese Unexamined Patent Publication (Kokai) No. 5-8020 proposes an unfired magnesia-carbonaceous refractory material. This material is excellent in corrosion resistance and spalling resistance against molten steel, but the refractory structure becomes fragile due to the oxidation of carbon components received during oxygen cleaning, and sufficient durability cannot be obtained.

【0006】鋳造ノズルは溶鋼を注出するまでの間、ノ
ズル孔内で溶鋼が固化するのを防ぐために詰物を充填す
ることが行われている。炭素含有の羽口用耐火物は熱伝
導率が高いためにこの詰物が焼き付けを起こしやすく、
溶鋼注出を開始する際に詰物が流落し難くなる問題もあ
る。
The casting nozzle is filled with a filling material in order to prevent the molten steel from solidifying in the nozzle hole until the molten steel is poured out. Carbon-containing tuyere refractory has a high thermal conductivity, so this filling tends to cause burning,
There is also a problem that it becomes difficult for the filling material to flow off when the molten steel pouring is started.

【0007】しかも、羽口用耐火物は大型の異形耐火物
であることから、プレス成形法による製造では、製造設
備費が高いこと、製造工数が増えるなどの問題がある。
そこで、炭素を含有しない不定形耐火物をもって流し込
み成形した羽口用耐火物の使用が試みられている。しか
し、酸素洗浄時の耐損耗性などについては依然十分なも
のではない。本発明は上記従来の欠点を解決した羽口用
耐火物を提供することを目的とする。
In addition, since the tuyere refractory is a large-sized deformed refractory, the press molding method has problems such as high manufacturing equipment cost and increased manufacturing man-hours.
Therefore, it has been attempted to use a refractory for a tuyere that is cast by casting an amorphous refractory that does not contain carbon. However, the wear resistance during oxygen cleaning is still insufficient. It is an object of the present invention to provide a refractory material for tuyere that solves the above-mentioned conventional drawbacks.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下のとおりである。 1.粒径が10mm未満のアルミナ80〜97wt%、
粒径が75μm以下のマグネシア3〜20wt%を主材
とした耐火骨材100wt%と、外掛けで水硬性アルミ
ナ1〜10wt%、非晶質シリカ超微粉0.05〜5w
t%および金属ファイバー1〜7wt%を含む配合物を
流し込み成形して得られた溶鋼容器羽口用耐火物。
The gist of the present invention is as follows. 1. 80-97 wt% alumina having a particle size of less than 10 mm,
100 wt% of refractory aggregate mainly composed of 3 to 20 wt% of magnesia having a particle size of 75 μm or less, hydraulic alumina of 1 to 10 wt% by external coating, amorphous silica ultrafine powder of 0.05 to 5 w
A refractory for a molten steel container tuyere obtained by casting a mixture containing t% and 1 to 7 wt% of metal fibers.

【0009】2.粒径が10mm未満のアルミナ80〜
97wt%、粒径が75μm以下のマグネシア3〜20
wt%、粒径が75μmを超え10mm未満のマグネシ
ア10wt%以下を主材とし、かつ75μm以下のマグ
ネシアと75μmを超え10mm未満のマグネシアの合
量が3〜20wt%である耐火骨材100wt%と、外
掛けで水硬性アルミナ1〜10wt%、非晶質シリカ超
微粉0.05〜5wt%および金属ファイバー1〜7w
t%を含む配合物を流し込み成形して得られた溶鋼容器
羽口用耐火物。
[0009] 2. Alumina with a particle size of less than 10 mm 80 ~
97 wt%, magnesia 3 to 20 with a particle size of 75 μm or less
100% by weight of a refractory aggregate whose main content is 10% by weight or less of magnesia having a particle diameter of more than 75 μm and less than 10 mm, and 3 to 20% by weight of magnesia of 75 μm or less and magnesia of more than 75 μm and less than 10 mm. , Hydraulic alumina 1-10 wt% on the outside, amorphous silica ultrafine powder 0.05-5 wt% and metal fiber 1-7w
A refractory for a molten steel container tuyere obtained by casting a compound containing t%.

【0010】3.前記の溶鋼容器羽口用耐火物におい
て、耐火骨材100wt%に対する割合で、さらにアル
ミナセメント3wt%以下を含み、かつ水硬性アルミナ
とアルミナセメントの合量が1〜10wt%とした。
3. In the refractory for the tuyere of the molten steel container, the content of the alumina cement was 3 wt% or less with respect to 100 wt% of the refractory aggregate, and the total amount of hydraulic alumina and alumina cement was 1 to 10 wt%.

【0011】4.前記の溶鋼容器羽口用耐火物におい
て、耐火骨材100wt%に対し、粒径10mm以上の
耐火性粗大粒子を外掛けで40wt%以下を含ませた。
本発明で結合剤として使用している水硬性アルミナは、
ρ−アルミナを主成分とするもので、結晶構造が水酸化
アルミニウムとα−アルミナとの中間的なアルミナであ
る。実際には製造工程上、必然的に他のγ−アルミナ、
χ−アルミナなどの他のアルミナを50wt%未満含ん
だものである。
4. In the refractory for a tuyere of a molten steel container, 40 wt% or less of a refractory coarse particle having a particle diameter of 10 mm or more was externally added to 100 wt% of a refractory aggregate.
The hydraulic alumina used as the binder in the present invention is
It is mainly composed of ρ-alumina and has an intermediate crystal structure between aluminum hydroxide and α-alumina. Actually, in the manufacturing process, other γ-alumina is inevitably used.
It contains less than 50 wt% of other alumina such as χ-alumina.

【0012】本発明で使用する水硬性アルミナは、流し
込み成形の際に添加される水と再水和を起こし耐火物組
織の結合強度を発現する。しかも、流し込み成形で一般
に使用されるアルミナセメントと異なり、CaOを含ま
ないため耐FeO性に優れている。
The hydraulic alumina used in the present invention causes rehydration with water added at the time of casting to develop the bond strength of the refractory structure. Moreover, unlike alumina cement that is generally used in casting, it does not contain CaO and thus has excellent resistance to FeO.

【0013】アルミナ−スピネル質あるいはアルミナ−
マグネシア質の流し込み材は、CaOを含むと、酸素洗
浄時にFeOとの反応によって、4CaO・Al23
Fe23(融点1415℃)を生成する。4CaO・A
23・Fe23は、耐火物成分のMgO・Al23
の間に共融点をもち、融点が1320℃まで低下し、液
相生成量が多くなって、溶損が促進される。
Alumina-spinel or alumina-
When the magnesia casting material contains CaO, it reacts with FeO during the cleaning with oxygen, so that 4CaO · Al 2 O 3 ·.
This produces Fe 2 O 3 (melting point 1415 ° C.). 4CaO ・ A
l 2 O 3 · Fe 2 O 3 has a eutectic point with MgO · Al 2 O 3 which is a refractory component, and the melting point decreases to 1320 ° C., the amount of liquid phase generated increases, and melting loss occurs. Be promoted.

【0014】本発明ではCaOを含まない水硬性アルミ
ナの使用により、CaO系の低融点物質が生成せず、F
eOはMgO・Al23中に固溶するため大幅な融点の
低下は起こらない。これにより、本発明による羽口用耐
火物は、酸素洗浄時の耐火物組織の脆弱化が防止され
る。
In the present invention, the use of CaO-free hydraulic alumina does not produce CaO-based low-melting-point substances.
Since eO forms a solid solution in MgO.Al 2 O 3 , the melting point is not significantly lowered. As a result, the refractory for tuyere according to the present invention prevents the refractory structure from becoming weak during oxygen cleaning.

【0015】本発明において水硬性アルミナは、微粉の
マグネシアとの反応でスピネルを生成しやすく、耐火物
組織を強固なスピネル結合組織にすることも、酸素洗浄
時の耐火物組織の脆弱化の防止に大きく作用する。これ
は、水硬性アルミナの主成分であるρ−アルミナの結晶
構造が通常のアルミナの結晶構造であるα−アルミナに
比べて不安定であり、スピネル反応しやすいためと考え
られる。
In the present invention, hydraulic alumina easily forms spinel by reaction with fine powder of magnesia, makes the refractory structure a strong spinel bond structure, and prevents weakening of the refractory structure during oxygen cleaning. Greatly affects. It is considered that this is because the crystal structure of ρ-alumina, which is the main component of hydraulic alumina, is more unstable than that of α-alumina, which is a normal alumina crystal structure, and the spinel reaction is likely to occur.

【0016】以下、本発明で使用する配合物について詳
述する。アルミナは耐食性と容積安定性とを兼ね備えた
材質であり、本発明において主骨材としての役割をも
つ。焼結品、電融品のいずれでも使用できる。Al23
純度は90wt%以上が好ましい。TiO2を5以下w
t%含有したものでも使用できる。また、ばん土けつ
岩、シリマナイト、ムライトなどの低純度品を使用して
もよいが、微粉部には高純度品を使用するのが好まし
い。
The compound used in the present invention will be described in detail below. Alumina is a material having both corrosion resistance and volume stability, and has a role as a main aggregate in the present invention. Either a sintered product or an electromelted product can be used. Al 2 O 3
The purity is preferably 90 wt% or more. TiO 2 less than 5 w
Those containing t% can also be used. In addition, low-purity products such as sand shale, sillimanite, and mullite may be used, but it is preferable to use high-purity products in the fine powder portion.

【0017】アルミナの粒径は、後述する耐火性超粗大
粒子と区分けするために、10mm未満とするが、好ま
しくは7mm以下である。密充填組織が得られるよう
に、この範囲内で粗粒、中粒、微粒に粒度を調整して使
用する。微粉には仮焼品を使用してもよい。
The particle size of alumina is less than 10 mm in order to distinguish it from the refractory ultra-coarse particles described later, but it is preferably 7 mm or less. In order to obtain a close-packed structure, the grain size is adjusted to coarse grains, medium grains, and fine grains within this range before use. A calcined product may be used as the fine powder.

【0018】マグネシアは、焼結品、電融品のいずれで
もよい。マグネシアはそれ自身が耐スラグ侵食性に優れ
ていることに加え、アルミナとの反応でMgO・Al2
3系のスピネルを生成し、このスピネルがスラグ中の
FeO,MnOなどの成分を固溶することで耐火物組織
内へのスラグ浸透を防止する効果をもつ。
The magnesia may be either a sintered product or an electromelted product. Magnesia itself has excellent resistance to slag erosion and, in addition to MgO.Al 2
O 3 -based spinel is generated, and this spinel forms a solid solution with components such as FeO and MnO in the slag, and thus has the effect of preventing slag penetration into the refractory structure.

【0019】マグネシアは、粒径が75μmの微粉を3
〜20wt%とする。3wt%未満ではスピネル生成が
不十分なため、スラグ浸透防止効果が発揮されない。2
0wt%を超えるとスピネルの生成量が過多となって、
スピネル生成に伴う体積膨張で耐火物組織が劣化する。
Magnesia is composed of 3 fine powders having a particle size of 75 μm.
˜20 wt%. If it is less than 3 wt%, the spinel formation is insufficient, so that the slag penetration preventing effect is not exhibited. Two
If it exceeds 0 wt%, the amount of spinel produced becomes excessive,
The refractory structure deteriorates due to volume expansion associated with spinel formation.

【0020】粒度構成上、必要によっては前記微粉のマ
グネシアに加え、粒径が75μmを超え10mm未満の
マグネシアを配合してもよい。しかし、その割合は粒度
構成上、10wt%以下とする。また、この粒径が75
μmを超え10mm未満のマグネシアと、前記の微粉マ
グネシアとの合量は3〜20wt%とする。
In view of particle size constitution, if necessary, magnesia having a particle size of more than 75 μm and less than 10 mm may be added in addition to the fine powder of magnesia. However, the ratio is set to 10 wt% or less due to the particle size configuration. The particle size is 75
The total amount of magnesia having a diameter of more than 10 μm and less than 10 mm and the above-mentioned fine powder magnesia is 3 to 20 wt%.

【0021】結合剤として使用する水硬性アルミナは、
結晶構造が水酸化アルミニウムとα−アルミナとの中間
的なアルミナである。ρ−アルミナを主成分とするが、
他にもγ−アルミナ、χ−アルミナなどを含む混合物で
ある。平均粒径は1〜20μm、Al2O3:99%以上のもの
が好ましい。この水硬性アルミナは、市販品からも得ら
れる。その割合は、耐火骨材100wt%に対する外掛
けで1wt%未満では施工体強度に劣り、10wt%を
超えると流し込み成形時の流動性に劣るなどの作業性低
下の問題がある。
The hydraulic alumina used as the binder is
It has an intermediate crystal structure between aluminum hydroxide and α-alumina. ρ-alumina is the main component,
In addition, it is a mixture containing γ-alumina, χ-alumina and the like. It is preferable that the average particle diameter is 1 to 20 μm and Al 2 O 3 : 99% or more. This hydraulic alumina can be obtained from a commercially available product. If the ratio is less than 1 wt% when applied to 100 wt% of refractory aggregate, the strength of the work body is poor, and if it exceeds 10 wt%, there is a problem of deterioration in workability such as poor flowability during casting.

【0022】水硬性アルミナは、冬場など養生温度が低
い場合に、硬化が遅くなる可能性がある。そのため、硬
化促進剤としてアルミナセメントを使用しても良い。た
だし、アルミナセメントの割合が3wt%を超えると、
アルミナセメント中のCaOにより耐FeO性が低下し
て、本発明の効果が得られない。
The hydraulic alumina may have a slower hardening when the curing temperature is low such as in winter. Therefore, alumina cement may be used as a curing accelerator. However, if the proportion of alumina cement exceeds 3 wt%,
The CaO in the alumina cement lowers the FeO resistance, and the effect of the present invention cannot be obtained.

【0023】非晶質シリカ超微粉としては、例えばシリ
コンまたは珪素合金の製造の際の副産物として得られ
る、シルカフラワーあるいはマイクロシリカなどの商品
名で市販されている揮発シリカが使用できる。比表面積
が15〜50m2/g程度の超微粒子である。
As the amorphous silica ultrafine powder, for example, volatile silica commercially available under the trade name such as silka flour or micro silica, which is obtained as a by-product in the production of silicon or a silicon alloy, can be used. The ultrafine particles have a specific surface area of about 15 to 50 m 2 / g.

【0024】マグネシアの使用は、その水和反応による
容積膨張で乾燥亀裂を発生させる問題がある。非晶質シ
リカ超微粉は、マグネシアと反応しその表面をマグネシ
アの含水けい酸塩で覆うことにより、マグネシアの水和
を防止する効果をもつ。
The use of magnesia has a problem that it causes dry cracks due to volume expansion due to its hydration reaction. The ultrafine amorphous silica powder has the effect of preventing hydration of magnesia by reacting with magnesia and covering the surface with hydrous silicate of magnesia.

【0025】非晶質シリカ超微粉の割合は、0.05w
t%未満では水和防止の効果がなく、5wt%を超える
と低融点物質である2MgO・2Al23・5SiO
2(融点1460℃)を生成して耐食性が低下する。
The ratio of amorphous silica ultrafine powder is 0.05 w
If it is less than t%, there is no effect of preventing hydration, and if it exceeds 5% by weight, it is a low-melting substance such as 2MgO.2Al 2 O 3 .5SiO.
2 (melting point 1460 ° C.) is formed and corrosion resistance is lowered.

【0026】金属ファイバーは耐スポーリング性の効果
を持つ。その具体的な材質は、耐熱性の面でステンレス
鋼が好ましいが、他にも鉄、炭素鋼、Ni-Cr鋼、A
l、Al合金などでもよい。形状は、ストレート、曲線
のいずれでもよい。また、その寸法は、直径が0.1〜2m
m、長さが直径の5〜50倍(例えば5〜40mm)程度が好まし
い。添加割合は耐火骨材100wt%に対する外掛けで1
wt%未満では耐スポーリング性の効果がなく、7wt
%を超えると混練が容易でないなどの作業性の低下を招
く。
The metal fiber has an effect of spalling resistance. The specific material is preferably stainless steel in terms of heat resistance, but iron, carbon steel, Ni-Cr steel, A
1, Al alloy, etc. may be used. The shape may be straight or curved. In addition, the diameter is 0.1-2m.
It is preferable that the length m is about 5 to 50 times the diameter (for example, 5 to 40 mm). The ratio of addition is 1 out of 100 wt% of refractory aggregate.
If it is less than wt%, there is no effect of spalling resistance, and it is 7 wt.
When it exceeds%, the workability is deteriorated such that the kneading is not easy.

【0027】耐火性超粗大粒子は、例えばアルミナ質お
よびスピネル質が使用できる。アルミナ質超粗大粒子
は、マグネシア超微粉との組合せ使用により、耐スポー
リング性の効果を持つ。粒径が10mm未満では、耐ス
ポーリング性の効果が劣る。粒径が50mm超えるかあ
るいはその割合が外掛け40wt%を超えると、粒度構
成のバランスの悪さから施工体の強度が低下し、耐食性
の低下を招く。
As the refractory ultra-coarse particles, for example, alumina and spinel can be used. Alumina super coarse particles have an effect of spalling resistance when used in combination with ultra fine magnesia powder. If the particle size is less than 10 mm, the effect of spalling resistance is poor. If the particle size exceeds 50 mm or if the ratio exceeds 40 wt% on the outside, the strength of the construction body is deteriorated due to the imbalance of the particle size composition, and the corrosion resistance is deteriorated.

【0028】アルミナ質超粗大粒子の具体的な材質は、
電融品、焼結品のいずれでもよい。アルミナを主成分と
するレンガ屑でもよい。また、MgO・Al23系スピ
ネルは、耐食性においてアルミナよりも優れており、耐
食性を重視した条件での使用ではアルミナ質超粗大粒子
の一部または全部にMgO・Al23系スピネル超粗大
粒子を使用した方が好ましい。
The specific material of the ultra-coarse particles of alumina is
Either an electro-melted product or a sintered product may be used. Brick scrap containing alumina as a main component may be used. In addition, MgO.Al 2 O 3 spinel is superior to alumina in corrosion resistance, and when used under conditions where importance is attached to corrosion resistance, some or all of the alumina-based coarse particles have a MgO / Al 2 O 3 spinel content higher than that of alumina. It is preferable to use coarse particles.

【0029】流し込み成形時の作業性、可使時間などを
調整するために、通常は解こう剤、硬化調整剤などをそ
れぞれ0.01〜0.5wt%程度添加する。解こう剤
の具体例としては、例えばトリポリリン酸ソーダ、ヘキ
サメタリン酸ソーダ、ウルトラポリリン酸ソーダ、酸性
ヘキサメタリン酸ソーダ、ホウ酸ソーダ、炭酸ソーダな
どの無機塩、クエン酸ソーダ、酒石酸ソーダ、ポリアク
リル酸ソーダ、スルホン酸ソーダなどがある。硬化調整
剤としては、例えばホウ酸、ホウ酸アンモニウム、ウル
トラポリリン酸ソーダ、炭酸リチウムなどである。
In order to adjust workability, pot life and the like at the time of casting, a peptizer, a curing modifier and the like are usually added in an amount of about 0.01 to 0.5 wt%. Specific examples of the deflocculating agent include, for example, sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, acidic sodium hexametaphosphate, sodium borate, inorganic salts such as sodium carbonate, sodium citrate, sodium tartrate, sodium polyacrylate. , Sodium sulfonate, etc. Examples of the curing modifier are boric acid, ammonium borate, ultrapolyphosphate sodium carbonate, lithium carbonate and the like.

【0030】また、必要によっては本発明の効果を阻害
しない範囲において、金属粉(例えばアルミニウム粉、
アルミニウム合金粉など)、ガラス粉、炭素粉、ピッチ
粉、ジルコン、ジルコニア、有機ファイバー、セラミッ
クファイバー、発泡剤などを添加してもよい。
If necessary, metal powder (for example, aluminum powder,
Aluminum alloy powder, etc.), glass powder, carbon powder, pitch powder, zircon, zirconia, organic fiber, ceramic fiber, foaming agent and the like may be added.

【0031】流し込み成形は常法どおり、以上の配合組
成に外掛けで4〜8重量%程度の水を添加・混合し、型
枠に流し込む。その際には充填性を向上させるため、型
枠にバイブレーターを取付けるか、あるいは耐火物中に
棒状バイブレーターを挿入するのが好ましい。
As for the casting, as in a conventional method, about 4 to 8% by weight of water is added and mixed by externally adding to the above-mentioned composition, and the mixture is poured into a mold. In that case, in order to improve the filling property, it is preferable to attach a vibrator to the mold or insert a rod-shaped vibrator into the refractory.

【0032】[0032]

【実施例】以下に、本発明実施例とその比較例を示す。
表1は、各例の羽口用耐火物の配合組成とその試験結果
を示す。
EXAMPLES Examples of the present invention and comparative examples will be shown below.
Table 1 shows the composition of the refractories for tuyere of each example and the test results thereof.

【0033】[0033]

【表1】 [Table 1]

【0034】各例は表1に示した配合物に外掛けで施工
水5wt%および分散剤(ポリアクリル酸ソーダ)0.1
wt%を添加し、混練後、振動を付与した型枠に流し込
み、養生後、形枠を外して110℃×24時間乾燥し
た。試験方法は以下の通りである。
In each of the examples, the formulation shown in Table 1 was externally applied to 5% by weight of construction water and 0.1% of a dispersant (sodium polyacrylate).
After adding wt% and kneading, the mixture was poured into a mold to which vibration was applied, and after curing, the frame was removed and dried at 110 ° C. for 24 hours. The test method is as follows.

【0035】曲げ強さ;110℃乾燥後と1500℃加
熱後のそれぞれについて測定した。 耐食性;重量比で鋼片:転炉スラグ=1:1を侵食剤と
し、1650℃×4時間の回転侵食試験を行い、溶損寸
法およびスラグ浸透寸法を測定した。
Bending strength: measured after drying at 110 ° C. and after heating at 1500 ° C. Corrosion resistance: A weight ratio of steel slab: converter slag = 1: 1 was used as an erosion agent, and a rotary erosion test was performed at 1650 ° C. for 4 hours to measure a melt loss size and a slag infiltration size.

【0036】耐酸素洗浄性;回転侵食炉で加熱した試料
に、酸洗棒を用いて溶鋼−酸素を吹き付け、試験後の溶
損寸法およびスラグ浸透寸法を測定した。 本発明実施例は、耐食性、耐スラグ浸透性および耐酸素
洗浄性いずれの試験においても良好な結果が得られた。
Oxygen cleaning resistance: Molten steel-oxygen was sprayed onto a sample heated in a rotary erosion furnace using a pickling rod, and the melt loss size and slag permeation size after the test were measured. In the examples of the present invention, good results were obtained in any of the tests of corrosion resistance, slag penetration resistance and oxygen cleaning resistance.

【0037】これに対し、従来のアルミナセメントのみ
を使用した比較例1、2およびアルミナセメントの多い
比較例3は、耐酸素洗浄性に劣る。水硬性アルミナの添
加量が少ない比較例4は、十分な乾燥後強度が得られな
い。水硬性アルミナの添加量が多い比較例5は、流動性
が悪く、作業性に劣る。マグネシアの添加量が多い比較
例6は、スピネル反応に伴う体積膨張により耐火物組織
が劣化し、耐酸素洗浄性に劣る。非晶質シリカ超微粉の
添加量が多い比較例7は、低融点物質の生成により、耐
食性、耐酸素洗浄性に劣る。
On the other hand, Comparative Examples 1 and 2 using only conventional alumina cement and Comparative Example 3 containing a large amount of alumina cement are inferior in oxygen cleaning resistance. In Comparative Example 4 in which the amount of hydraulic alumina added is small, sufficient strength cannot be obtained after drying. Comparative Example 5 containing a large amount of hydraulic alumina has poor fluidity and poor workability. In Comparative Example 6 in which the amount of magnesia added was large, the refractory structure was deteriorated due to the volume expansion accompanying the spinel reaction, and the oxygen cleaning resistance was poor. Comparative Example 7 containing a large amount of the amorphous silica ultrafine powder is inferior in corrosion resistance and oxygen cleaning resistance due to the formation of the low melting point substance.

【0038】[0038]

【発明の効果】このように本発明は、アルミナ−マグネ
シア質の羽口用耐火物において、アルミナセメントの代
わりに水硬性アルミナを使用することで、アルミナ−マ
グネシア質が本来有している耐食性に加えて耐FeO性
を付与することができ、耐酸素洗浄性の高い羽口用耐火
物を提供することが可能となる。
As described above, according to the present invention, in the alumina-magnesia refractory material for tuyere, by using hydraulic alumina instead of alumina cement, the corrosion resistance originally possessed by the alumina-magnesia material can be obtained. In addition, FeO resistance can be imparted, and it becomes possible to provide a tuyere refractory having a high oxygen cleaning resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸素洗浄の状況を示したものである。FIG. 1 shows a situation of oxygen cleaning.

【符号の説明】[Explanation of symbols]

1 底部の内張り耐火物 2 ポーラスプラグ 3 羽口用耐火物 4 地金 5 酸素ノズル 1 Bottom lined refractory 2 Porous plug 3 Tuyere refractory 4 Bare metal 5 Oxygen nozzle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】粒径が10mm未満のアルミナ80〜97
wt%、粒径が75μm以下のマグネシア3〜20wt
%を主材とした耐火骨材100wt%と、外掛けで水硬
性アルミナ1〜10wt%、非晶質シリカ超微粉0.0
5〜5wt%および金属ファイバー1〜7wt%を含む
配合物を流し込み成形して得られた溶鋼容器羽口用耐火
物。
1. Alumina 80-97 having a particle size of less than 10 mm.
3% to 20% by weight of magnesia with a particle size of 75 μm or less
% As the main material, 100 wt% of refractory aggregate, 1-10 wt% of hydraulic alumina by external coating, ultrafine amorphous silica powder 0.0
A refractory for a molten steel container tuyere obtained by casting a mixture containing 5 to 5 wt% and metal fibers of 1 to 7 wt%.
【請求項2】粒径が10mm未満のアルミナ80〜97
wt%、粒径が75μm以下のマグネシア3〜20wt
%、粒径が75μmを超え10mm未満のマグネシア1
0wt%以下を主材とし、かつ75μm以下のマグネシ
アと75μmを超え10mm未満のマグネシアの合量が
3〜20wt%である耐火骨材100wt%と、外掛け
で水硬性アルミナ1〜10wt%、非晶質シリカ超微粉
0.05〜5wt%および金属ファイバー1〜7wt%
を含む配合物を流し込み成形して得られた溶鋼容器羽口
用耐火物。
2. Alumina 80-97 having a particle size of less than 10 mm.
3% to 20% by weight of magnesia with a particle size of 75 μm or less
%, Magnesia with a particle size of more than 75 μm and less than 10 mm 1
The main material is 0 wt% or less, and the total amount of the magnesia of 75 μm or less and the magnesia of more than 75 μm and less than 10 mm is 3 to 20 wt%, and 100 wt% of the refractory aggregate, and 1 to 10 wt% of the hydraulic alumina is externally applied. Amorphous silica ultrafine powder 0.05-5 wt% and metal fiber 1-7 wt%
A refractory for a molten steel container tuyere obtained by casting a mixture containing
【請求項3】耐火骨材100wt%に対する割合で、さ
らにアルミナセメント3wt%以下を含み、かつ水硬性
アルミナとアルミナセメントの合量が1〜10wt%で
ある請求項1記載の溶鋼容器羽口用耐火物。
3. The tuyere of the molten steel container according to claim 1, wherein the content of the alumina cement is 3 wt% or less with respect to 100 wt% of the refractory aggregate, and the total amount of hydraulic alumina and alumina cement is 1 to 10 wt%. Refractory.
【請求項4】耐火骨材100wt%に対し、粒径10m
m以上の耐火性粗大粒子を外掛けで40wt%以下を含
む請求項1または2記載の溶鋼容器羽口用耐火物。
4. A particle size of 10 m with respect to 100 wt% of refractory aggregate.
The refractory material for a tuyere of a molten steel container according to claim 1 or 2, which contains 40 wt% or less of coarse refractory coarse particles of m or more.
JP7227299A 1995-08-12 1995-08-12 Refractory for tuyere of molten steel container Pending JPH0952169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227299A JPH0952169A (en) 1995-08-12 1995-08-12 Refractory for tuyere of molten steel container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227299A JPH0952169A (en) 1995-08-12 1995-08-12 Refractory for tuyere of molten steel container

Publications (1)

Publication Number Publication Date
JPH0952169A true JPH0952169A (en) 1997-02-25

Family

ID=16858645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227299A Pending JPH0952169A (en) 1995-08-12 1995-08-12 Refractory for tuyere of molten steel container

Country Status (1)

Country Link
JP (1) JPH0952169A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839775A1 (en) * 1996-10-29 1998-05-06 North American Refractories Company Hydraulically-bonded monolithic refractories containing a calcium oxide free binder comprised of a hydratable alumina source and magnesium oxide
JP2000143355A (en) * 1998-11-02 2000-05-23 Nisshin Steel Co Ltd Prepared unshaped refractory
KR100473111B1 (en) * 1997-05-30 2005-07-05 하리마 세라믹 가부시키가이샤 Amorphous refractory materials for casting and molten steel containers
JP2009249212A (en) * 2008-04-03 2009-10-29 Jgc Catalysts & Chemicals Ltd Binder for ceramics and ceramic molding
KR20150073455A (en) 2013-12-23 2015-07-01 주식회사 포스코 Bottom Blowing Equipment and Method of Manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839775A1 (en) * 1996-10-29 1998-05-06 North American Refractories Company Hydraulically-bonded monolithic refractories containing a calcium oxide free binder comprised of a hydratable alumina source and magnesium oxide
KR100473111B1 (en) * 1997-05-30 2005-07-05 하리마 세라믹 가부시키가이샤 Amorphous refractory materials for casting and molten steel containers
JP2000143355A (en) * 1998-11-02 2000-05-23 Nisshin Steel Co Ltd Prepared unshaped refractory
JP2009249212A (en) * 2008-04-03 2009-10-29 Jgc Catalysts & Chemicals Ltd Binder for ceramics and ceramic molding
KR20150073455A (en) 2013-12-23 2015-07-01 주식회사 포스코 Bottom Blowing Equipment and Method of Manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0737344B2 (en) Irregular refractory with basic properties
JP4234330B2 (en) Amorphous refractory composition
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
CA1193291A (en) Molten metal handling vessels
CZ20003060A3 (en) Basic, free flowing casting material and shaped parts produced from such material
JP2874831B2 (en) Refractory for pouring
JP2001302364A (en) Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JPH0952169A (en) Refractory for tuyere of molten steel container
JP2604310B2 (en) Pouring refractories
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP2000203953A (en) Castable refractory for trough of blast furnace
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP3212856B2 (en) Irregular cast refractories and their moldings
JP2005008496A (en) Monolithic refractory
JPH0633179B2 (en) Irregular refractory for pouring
JPH08157267A (en) Castable refractory for flow-in execution
JP6358736B2 (en) Dry coat material
JP4373081B2 (en) Refractory
JP4034858B2 (en) Indeterminate refractories for casting construction
CN115093206B (en) Special castable for ladle lining
JPH09183674A (en) Monolithic refractory for flowing-in working
JPS5915115B2 (en) Alumina-chromium vibration molding material
JP2003171183A (en) Alumina-magnesia castable refractory having low elastic modulus, precast block, and vessel for molten metal
JPH11100280A (en) Monolitihic refractory for tundish lining
JP2004307293A (en) Monolithic refractory composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

A521 Written amendment

Effective date: 20050721

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Effective date: 20050721

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20050818

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Effective date: 20080729

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A131 Notification of reasons for refusal

Effective date: 20090609

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090901

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090902

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20130911

LAPS Cancellation because of no payment of annual fees