JP2001302364A - Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining - Google Patents

Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining

Info

Publication number
JP2001302364A
JP2001302364A JP2000118938A JP2000118938A JP2001302364A JP 2001302364 A JP2001302364 A JP 2001302364A JP 2000118938 A JP2000118938 A JP 2000118938A JP 2000118938 A JP2000118938 A JP 2000118938A JP 2001302364 A JP2001302364 A JP 2001302364A
Authority
JP
Japan
Prior art keywords
alumina
magnesia
mass
powder
zirconium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000118938A
Other languages
Japanese (ja)
Inventor
Tokuo Taki
徳雄 多喜
Kiyoshi Goto
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000118938A priority Critical patent/JP2001302364A/en
Publication of JP2001302364A publication Critical patent/JP2001302364A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof

Abstract

PROBLEM TO BE SOLVED: To provide an alumina-magnesia-based castable refractory excellent in corrosion resistance and slag resistance in comparison with the conventional castable refractories. SOLUTION: The alumina-magnesia-based castable refractory containing zirconium oxide is obtained from a mixture containing 68 to 95 mass % alumina-based raw material having an average particle size of <=5 mm, 1 to 30 mass % magnesia-based raw material and 0.1 to 5 mass %, in total, of a zircon powder and/or a zirconia powder, each having an average particle size of <=100 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属精錬に用いら
れる溶融金属容器等の内張形成用アルミナ−マグネシア
質キャスタブル耐火物、及びそれを使用した溶融金属容
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-magnesia castable refractory for forming a lining such as a molten metal container used for metal refining, and a molten metal container using the same.

【0002】[0002]

【従来の技術】従来から、溶融金属容器等の内張の流し
込み成形に使用されるキャスタブル耐火物として耐食
性、耐構造スポーリング性に優れているアルミナ−マグ
ネシア質キャスタブルが広く用いられてきた。ところ
で、アルミナ−マグネシア質キャスタブルは、使用中に
スピネル生成反応が急激に進み膨張する。この膨張によ
るせり割れを防ぐために、シリカ超微粉の添加によって
高温変形能を付与する事が一般的に行われている。ま
た、アルミナ−マグネシア質キャスタブルは混錬時にマ
グネシアが水和して消化してしまうが、その防止策とし
てもシリカ超微粉の添加が効果的であり、広く行われて
いる。
2. Description of the Related Art Conventionally, alumina-magnesia castables having excellent corrosion resistance and structural spalling resistance have been widely used as castable refractories used for cast molding of linings of molten metal containers and the like. By the way, in the case of alumina-magnesia castables, the spinel formation reaction rapidly proceeds and expands during use. In order to prevent a crack due to this expansion, it is common practice to add high-temperature deformability by adding ultrafine silica powder. In addition, magnesia is hydrated and digested during kneading in the alumina-magnesia castable, and addition of ultrafine silica powder is effective and widely used as a preventive measure.

【0003】[0003]

【発明が解決しようとする課題】アルミナ−マグネシア
質キャスタブルにシリカを添加すると、このシリカ成分
と、主成分であるアルミナ、及びセメント中に含まれる
カルシア成分から低融物が生成し、高温時に液相を生成
するため耐食性や耐スラグ浸潤性が低下する。またマト
リックスの焼結収縮を促進するため、耐スポーリング性
も低下してしまう。
When silica is added to an alumina-magnesia castable, a low melt is formed from the silica component, the main component alumina, and the calcia component contained in the cement, and the liquid is melted at a high temperature. The formation of a phase reduces the corrosion resistance and slag infiltration resistance. Further, since the sintering shrinkage of the matrix is promoted, the spalling resistance is also reduced.

【0004】これらの問題に対して、アルミナ−マグネ
シア質キャスタブルに対しジルコンサンド(粒径0.1〜0.
5mm)の添加によってき裂や剥離を防止する方法が特開平
8−165172号公報に記載されている。これは粒度
が粗目のジルコンを添加するため、高温でのスピネル生
成が抑制される反面、焼結収縮は促進されるため、冷却
時の収縮によってき裂が発生しやすいと考えられる。
[0004] In order to solve these problems, zircon sand (particle size: 0.1 to 0.1) is used for alumina-magnesia castable.
JP-A-8-165172 describes a method for preventing cracks and peeling by adding 5 mm). This is thought to be due to the fact that the addition of coarse-grained zircon suppresses spinel formation at high temperatures, but promotes sintering shrinkage, and thus cracks are likely to occur due to shrinkage during cooling.

【0005】また、他のアルミナ系キャスタブルでは、
アルミナ−スピネル質キャスタブルに対しジルコニア微
粉あるいはジルコン微粉を添加することによって耐剥離
性及び耐スラグ浸潤性を向上させる方法が特開平4−1
04965号公報に、ハイアルミナ質キャスタブルにジ
ルコン超微粉とシリカ超微粉を同時添加してスケール及
びスラグ成分の浸潤を抑制する方法が特開平9−870
44号公報に記載されている。これらのキャスタブル
は、アルミナ−マグネシア質キャスタブルに比べて耐食
性や耐スラグ浸潤性に劣る。高耐用のアルミナ−マグネ
シア質キャスタブルに関して、ジルコン粉末やジルコニ
ア粉末の添加によって、さらに耐食性や耐スラグ浸潤性
を向上させることは、これまで検討されていない。
In other alumina castables,
A method for improving the peeling resistance and slag infiltration resistance by adding zirconia fine powder or zircon fine powder to an alumina-spinel castable is disclosed in Japanese Patent Laid-Open No. 4-1.
Japanese Patent Application Laid-Open No. 04-965 discloses a method of simultaneously adding zircon ultrafine powder and silica ultrafine powder to a high alumina castable to suppress infiltration of scale and slag components.
No. 44 is described. These castables are inferior in corrosion resistance and slag infiltration resistance as compared to alumina-magnesia castables. Regarding alumina-magnesia castables with high durability, it has not been studied to further improve corrosion resistance and slag infiltration resistance by adding zircon powder or zirconia powder.

【0006】アルミナ−マグネシア質キャスタブルでは
使用中に材料中のアルミナとマグシアが反応してスピネ
ルを生成するため、気孔率が上昇し体積が膨張する。そ
のため、シリカ超微粉を微量添加して高温変形能を付与
して膨張を吸収させることが一般的に行われている。し
かし、このシリカ成分と、主成分であるアルミナ、及び
セメント中に含まれるカルシア成分から低融物が生成
し、耐食性及び耐スラグ浸潤性を低下させていると考え
られている。
In an alumina-magnesia castable, alumina and magnesia in the material react with each other to generate spinel during use, so that the porosity increases and the volume expands. Therefore, it is common practice to add a very small amount of ultrafine silica powder to impart high-temperature deformability and absorb expansion. However, it is considered that a low melt is generated from the silica component, the alumina as a main component, and the calcia component contained in the cement, thereby lowering corrosion resistance and slag infiltration resistance.

【0007】本発明の目的は、耐食性及び耐スラグ浸潤
性を向上させた、耐用性に優れたアルミナ−マグネシア
質キャスタブル耐火物、及び金属精錬用溶融金属容器を
提供する事である。
An object of the present invention is to provide an alumina-magnesia castable refractory having improved corrosion resistance and slag infiltration resistance and excellent durability, and a molten metal container for metal refining.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、(1) 平均粒径5mm以下のアルミナ質原料68〜95質
量%と、マグネシア質原料1〜30質量%と、平均粒径100
μm以下のジルコン粉末及び/又は平均粒径100μm以下
のジルコニア粉末を合計で0.1〜5質量%配合させた、ジ
ルコニウム酸化物含有アルミナ−マグネシア質キャスタ
ブル耐火物、(2)前記(1)に記載したジルコニウム
酸化物含有アルミナ−マグネシア質キャスタブル耐火物
を内張に使用した、金属精錬用溶融金属容器である。
The gist of the present invention is as follows: (1) 68 to 95% by mass of an alumina material having an average particle size of 5 mm or less, 1 to 30% by mass of a magnesia material, and 100
Alumina-magnesia castable refractories containing zirconium oxide containing 0.1 to 5% by mass in total of zircon powder having a particle size of not more than 0.1 μm and / or zirconia powder having an average particle size of not more than 100 μm, (2) described in (1) above. It is a molten metal container for metal refining using a zirconium oxide-containing alumina-magnesia castable refractory for lining.

【0009】[0009]

【発明の実施の形態】本発明は、ジルコニウム酸化物の
粉末をアルミナ質原料やマグネシア質原料などとともに
配合させたキャスタブル耐火物である。前述の低融物に
ジルコニウム酸化物が加わると、その粘性が高まるた
め、耐食性及び耐スラグ浸潤性が向上する。ここで、ア
ルミナ質骨材としては均質な施工体を得るために平均粒
径が5mm以下のものを用い、さらに良好な充填密度が得
られるように粗粒(1〜5mm)、中粒(0.075〜1mm)、微粉
(0.075mm以下)にそれぞれ分けて調整したものを用いる
事が好ましい。また、マグネシア質原料としては平均粒
径が0.075mm以下の微粉を用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a castable refractory in which zirconium oxide powder is blended with an alumina raw material, a magnesia raw material and the like. When zirconium oxide is added to the low melt, the viscosity increases, so that the corrosion resistance and the slag infiltration resistance are improved. Here, as the alumina aggregate, those having an average particle size of 5 mm or less are used to obtain a homogeneous construction body, and coarse particles (1 to 5 mm) and medium particles (0.075 ~ 1mm), fine powder
(0.075 mm or less) is preferably used. It is preferable to use fine powder having an average particle size of 0.075 mm or less as the magnesia raw material.

【0010】これらに加え、き裂や剥離の防止のために
アルミナの大粗粒(10mm以上)を添加することもできる。
In addition, large coarse alumina particles (10 mm or more) can be added to prevent cracks and peeling.

【0011】本発明において用いるジルコニウム酸化物
の粉末は少なくとも粒径100μm以下とするが、粒径45μ
m以下のものが好ましい。なお、本発明で用いるジルコ
ニウム酸化物はジルコンとジルコニアである。ジルコン
はジルコニウムとシリコンの複合酸化物であり、その化
学式はZrSiO4あるいはZrO2・SiO2である。また、ジルコ
ニアはジルコニウムの酸化物であり、その化学式はZrO2
である。
The zirconium oxide powder used in the present invention has a particle size of at least 100 μm or less.
m or less is preferred. The zirconium oxide used in the present invention is zircon and zirconia. Zircon is a composite oxide of zirconium and silicon, and its chemical formula is ZrSiO 4 or ZrO 2 · SiO 2 . Zirconia is an oxide of zirconium, and its chemical formula is ZrO 2
It is.

【0012】本発明においては、アルミナ質原料やマグ
ネシア質原料などとともにジルコン粉末及び/又はジル
コニア粉末を合計で0.1〜5質量%添加する。これは、添
加粉末が0.1質量%未満ではき裂やスラグ浸潤の抑制効果
に乏しく、また、5質量%超では耐食性や高温強度が低
下してしまうからである。
In the present invention, a zircon powder and / or a zirconia powder are added in a total amount of 0.1 to 5% by mass together with an alumina raw material and a magnesia raw material. This is because if the added powder is less than 0.1% by mass, the effect of suppressing cracks and slag infiltration is poor, and if it exceeds 5% by mass, corrosion resistance and high-temperature strength are reduced.

【0013】本発明において使用されるアルミナ質原料
とマグネシア質原料は、通常耐火物用に使用されている
もので差し支えない。すなわちアルミナ質原料としては
焼結アルミナ、電融アルミナ、仮焼アルミナ、ボーキサ
イト、電融ボーキサイト、ばん土頁岩などが使用でき
る。アルミナ質原料の含有量が68質量%未満では耐食性
の低下が大きく、95質量%超では耐スラグ浸潤性の低下
が大きくなるため、68〜95質量%に限定する。
The alumina raw material and magnesia raw material used in the present invention may be those usually used for refractories. That is, as the alumina raw material, sintered alumina, fused alumina, calcined alumina, bauxite, fused bauxite, sand shale and the like can be used. When the content of the alumina raw material is less than 68% by mass, the corrosion resistance is greatly reduced, and when the content is more than 95% by mass, the slag infiltration resistance is greatly reduced. Therefore, the content is limited to 68 to 95% by mass.

【0014】マグネシア質原料は焼結又は電融品、炭酸
マグネシウム(マグネサイト)が使用できる。マグネシア
質原料の含有量が1質量%未満ではスピネル生成による
耐スラグ浸潤性の向上や膨張性付与の効果が得られず、
30質量%超だと混練時のマグネシアの消化が顕著となる
ため、1〜30質量%に限定する。マグネシア質原料の平
均粒径が0.075mm超ではスピネル生成が生じにくく、耐
スラグ浸潤性の向上や膨張性付与の効果が小さいため、
0.075mm以下とすることが望ましい。
As the magnesia raw material, a sintered or electrofused product or magnesium carbonate (magnesite) can be used. If the content of the magnesia raw material is less than 1% by mass, the effect of improving slag infiltration resistance and imparting expandability by spinel formation cannot be obtained,
If it exceeds 30% by mass, magnesia digestion during kneading becomes remarkable, so it is limited to 1 to 30% by mass. If the average particle size of the magnesia-based raw material exceeds 0.075 mm, spinel formation is unlikely to occur, and the effect of improving slag infiltration resistance and imparting expandability is small.
It is desirable to set it to 0.075 mm or less.

【0015】硬化材はアルミナセメントが最も好ましい
が、これに限らず、例えばケイ酸ソーダ、シリカゾル、
アルミナゾル、リン酸アルミニウム、乳酸アルミニウム
などから選ばれる1種又は2種以上が使用できる。
The hardening agent is most preferably alumina cement, but is not limited thereto. For example, sodium silicate, silica sol,
One or more selected from alumina sol, aluminum phosphate, aluminum lactate and the like can be used.

【0016】均質な成形体を得るために、必要に応じて
分散剤を添加することができるが、例えばトリポリリン
酸ソーダ、ヘキサメタリン酸ソーダ、酸性ヘキサメタリ
ン酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソー
ダ、ナフタレンスルホン酸ソーダ、リグニンスルホン酸
ソーダ、ウルトラポリリン酸ソーダ、炭酸ソーダ、ホウ
酸ソーダ、クエン酸ソーダ、酒石酸塩などから選ばれる
1種又は2種以上を使用する。
In order to obtain a homogeneous molded product, a dispersing agent can be added as required. Selected from sodium sulfonate, sodium lignin sulfonate, sodium ultrapolyphosphate, sodium carbonate, sodium borate, sodium citrate, tartrate, etc.
Use one or more of them.

【0017】適当な可使時間を得るために、必要に応じ
て硬化調整剤を添加することができるが、これには例え
ばホウ酸、シュウ酸、クエン酸、グルコン酸、ホウ酸ア
ンモニウム、ウルトラポリリン酸ソーダ、炭酸リチウム
などから選ばれる1種又は2種以上を使用することができ
る。
In order to obtain an appropriate pot life, a curing modifier can be added, if necessary, for example, boric acid, oxalic acid, citric acid, gluconic acid, ammonium borate, ultrapolyline One or more selected from acid soda, lithium carbonate and the like can be used.

【0018】本発明品には必要に応じてシリカ粉末を添
加することができる。この場合のシリカ粉末には一般的
な蒸発シリカ(平均粒径45μm以下)の使用が好ましい。
The product of the present invention may optionally contain silica powder. In this case, it is preferable to use general evaporated silica (average particle size of 45 μm or less) as the silica powder.

【0019】また、以上に示した配合物以外にも、本発
明の効果を損なわない範囲において、他の耐火材(たと
えば珪石、ろう石、粘土、シャモット、ムライト、シリ
マナイト族鉱物、クロム鉱、電融マグクロ、ドロマイ
ト、電融マグドロ、スピネル、黒鉛、炭化けい素、ガラ
スなど)、耐火粗大粒子、繊維類、金属粉末、金属線、
酸化防止剤、結合剤、硬化調整剤などを添加しても良
い。
In addition to the above-mentioned compounds, other refractory materials (for example, quartzite, pyroxene, clay, chamotte, mullite, sillimanite mineral, chromium ore, etc.) as long as the effects of the present invention are not impaired. (Fused maguro, dolomite, electrofused magdro, spinel, graphite, silicon carbide, glass, etc.), refractory coarse particles, fibers, metal powder, metal wire,
An antioxidant, a binder, a curing modifier and the like may be added.

【0020】施工は常法どおり、以上の配合組成に外掛
けで4〜8質量%程度の水分を添加し、流し込み施工す
る。施工の際には充填性を向上させるため、一般には型
枠にバイブレータを取り付けるか、あるいは耐火物中に
棒状バイブレータを挿入して加振する。
The work is carried out in a usual manner by adding about 4 to 8% by weight of water to the above composition and then pouring. In order to improve the filling property during construction, a vibrator is generally attached to the formwork, or a rod-shaped vibrator is inserted into the refractory and vibrated.

【0021】[0021]

【実施例】実施例として、本発明例と比較例の比較結果
を表1に示す。各例はいずれも配合組成に外掛けで4〜8
質量%の水分を添加し型枠内に振動鋳込み成形し、常温
で24h養生した後に脱型し、110℃×24hで乾燥させた試
料について試験したものである。アルミナ質原料として
は焼結アルミナと仮焼アルミナ、マグネシア質原料とし
ては焼結マグネシアの高純度品(純度98質量%)を使用し
た。本発明品A,B,D,E,G,J,K及び比較例L,Mは配合組成に
外掛けで30質量%のアルミナ大粗粒(粒径10mm以上)を添
加した。見掛気孔率及び室温曲げ強さは1200℃×6hの
焼成後の試料について測定したものである。弾性率は音
速法により、110℃×24h乾燥後と1600℃×24h焼成後の
試料について測定した。残存線変化率は乾燥後の長さを
基準に、1600℃×24h焼成に伴う長さの変化から算出し
た。溶損指数は誘導炉内張法による侵食試験(温度1600
℃、スラグCaO/SiO2=3.8(重量)、Al2O3=29質量%、FeO=4
質量%、MgO=5質量%、MnO=3質量%)による溶損深さを、比
較例の試料Lの場合を100として指数化した。値が少な
いほど耐食性が高いことを示す。
EXAMPLES Table 1 shows the results of comparison between the present invention and comparative examples. In each case, the composition is 4-8
The test was conducted on a sample which was molded by vibration casting in a mold frame after adding water of mass%, cured at room temperature for 24 hours, demolded, and dried at 110 ° C. × 24 hours. Sintered alumina and calcined alumina were used as the alumina raw material, and high-purity sintered magnesia (purity: 98% by mass) was used as the magnesia raw material. Products A, B, D, E, G, J and K of the present invention and Comparative Examples L and M were prepared by adding 30% by mass of large alumina coarse particles (particle diameter of 10 mm or more) to the composition. The apparent porosity and the room temperature bending strength are measured on a sample after firing at 1200 ° C. for 6 hours. The elastic modulus was measured by a sound velocity method for the sample after drying at 110 ° C. × 24 hours and after firing at 1600 ° C. × 24 hours. The residual line change rate was calculated from the change in length associated with firing at 1600 ° C. for 24 hours based on the length after drying. The erosion index was determined by the erosion test using the induction furnace lining method (temperature 1600
° C, slag CaO / SiO 2 = 3.8 (weight), Al 2 O 3 = 29% by mass, FeO = 4
(% By mass, MgO = 5% by mass, MnO = 3% by mass), and the depth of erosion was indexed with 100 for the sample L of the comparative example. The smaller the value, the higher the corrosion resistance.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明例A〜Kには、いずれも試料作成中に
マグネシアの水和に起因する亀裂の発生などは無かっ
た。
In Examples A to K of the present invention, no cracks were generated due to hydration of magnesia during the preparation of the samples.

【0024】本発明例のうちアルミナ大粗粒を添加した
本発明例A,B,D,E,G,J,Kは同じく大粗粒を添加した比較
例L、Nに比べていずれも優れた耐食性及び耐スラグ浸潤
性を示し、同様にアルミナ大粗粒を添加していない本発
明例C,F,Hも大粗粒を添加していない比較例Mに比べて高
耐食、高耐スラグ浸潤性を示した。本発明例の中ではジ
ルコニア粉末とシリカ粉末を0.5質量%ずつ添加した本発
明例Gがもっとも高耐食性を示し、ジルコン粉末とジル
コニア粉末を0.5質量%ずつ添加した本発明例K、ジルコ
ニア粉末のみ1質量%添加した本発明例E、ジルコン粉末
とシリカ粉末を0.5質量%ずつ添加した本発明例B、ジル
コニア粉末0.2質量%とシリカ粉末0.7質量%を添加した本
発明例Jがこれに続いた。また、耐スラグ浸潤性はジル
コニア粉末とシリカ粉末を等量ずつ同時添加した本発明
例Gが最も優れた耐スラグ浸潤性を示し、ジルコン粉末
とシリカ粉末を0.5質量%ずつ添加した本発明例B、ジル
コン粉末とジルコニア粉末を0.5質量%ずつ添加した本発
明例K、ジルコン粉末0.2質量%とシリカ粉末0.7質量%を
添加した本発明例Dとジルコニア粉末0.2質量%とシリカ
粉末0.7質量%を添加した本発明例Jがこれに続いた。
Among the inventive examples, inventive examples A, B, D, E, G, J and K to which alumina large coarse particles were added were all superior to Comparative Examples L and N to which large coarse particles were also added. Inventive Examples C, F, and H, which also showed no corrosion and slag infiltration resistance, and also did not contain large alumina coarse particles, exhibited higher corrosion and slag resistance than Comparative Example M, which did not contain large coarse particles. Showed infiltration. Among the examples of the present invention, Example G of the present invention in which zirconia powder and silica powder were added in an amount of 0.5% by mass each showed the highest corrosion resistance, Inventive Example K in which zircon powder and zirconia powder were added in an amount of 0.5% by mass, only zirconia powder 1 This was followed by Example E of the present invention in which 0.5% by mass of zircon powder and silica powder were added, and Example J of the present invention in which 0.2% by mass of zirconia powder and 0.7% by mass of silica powder were added. In addition, the slag infiltration resistance of Invention Example G, in which equal amounts of zirconia powder and silica powder were simultaneously added, showed the most excellent slag infiltration resistance, and Invention Example B in which zircon powder and silica powder were added by 0.5% by mass. Example K of the present invention in which 0.5% by mass of zircon powder and zirconia powder were added, 0.2% by mass of zircon powder and 0.7% by mass of silica powder, Example D of the present invention in which 0.2% by mass of zirconia powder and 0.7% by mass of silica powder were added This was followed by Inventive Example J.

【0025】[0025]

【発明の効果】本発明により耐消化性及び高温変形能に
優れたアルミナ−マグネシア質キャスタブル耐火物が得
られ、金属精錬窯炉の寿命を延長することができ、金属
製品の安定的な製造とその製造コスト引き下げに貢献で
きる。
According to the present invention, an alumina-magnesia castable refractory excellent in digestion resistance and high-temperature deformability can be obtained, the life of a metal refining furnace can be extended, and stable production of metal products can be achieved. This can contribute to a reduction in manufacturing costs.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径5mm以下のアルミナ質原料68〜9
5質量%と、マグネシア質原料1〜30質量%と、平均粒径1
00μm以下のジルコン粉末及び/又は平均粒径100μm以
下のジルコニア粉末を合計で0.1〜5質量%配合させた、
ジルコニウム酸化物含有アルミナ−マグネシア質キャス
タブル耐火物。
An alumina raw material having an average particle size of 5 mm or less.
5% by mass, magnesia raw material 1 to 30% by mass, average particle size 1
A total of 0.1 to 5% by mass of zirconia powder having a particle size of 100 μm or less and / or zirconia powder having an average particle size of 100 μm or less,
Alumina-magnesia castable refractories containing zirconium oxide.
【請求項2】 請求項1に記載したジルコニウム酸化物
含有アルミナ−マグネシア質キャスタブル耐火物を内張
に使用した、金属精錬用溶融金属容器。
2. A molten metal container for metal refining, wherein the zirconium oxide-containing alumina-magnesia castable refractory according to claim 1 is used for lining.
JP2000118938A 2000-04-20 2000-04-20 Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining Withdrawn JP2001302364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118938A JP2001302364A (en) 2000-04-20 2000-04-20 Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118938A JP2001302364A (en) 2000-04-20 2000-04-20 Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining

Publications (1)

Publication Number Publication Date
JP2001302364A true JP2001302364A (en) 2001-10-31

Family

ID=18629995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118938A Withdrawn JP2001302364A (en) 2000-04-20 2000-04-20 Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining

Country Status (1)

Country Link
JP (1) JP2001302364A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805183A (en) * 2010-03-02 2010-08-18 中国科学院上海硅酸盐研究所 A low-temperature sintered Pb (Ni1/3Nb2/3) O3-Pb (Zr, ti) O3ceramic powder and its prepn
CN101805181A (en) * 2010-03-16 2010-08-18 同济大学 Preparation method of sodium bismuth titanate-based ferroelectric film
CN101941840A (en) * 2010-10-09 2011-01-12 天津大学 B-site oxide precursor method for preparing lead niobate nickelate-zirconate titanate piezoelectric ceramic
CN102050621A (en) * 2010-11-04 2011-05-11 柏玉新 Stepped equilibrium-atmosphere sintering process for soft-magnetic ferrite nitrogen kiln
JP2015512855A (en) * 2012-03-07 2015-04-30 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Self-leveling concrete
JP5907312B2 (en) * 2014-01-23 2016-04-26 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
CN113200753A (en) * 2021-04-14 2021-08-03 山西昊业新材料开发有限公司 Pouring material for tundish cover and method for preparing tundish cover by using pouring material
CN113912393A (en) * 2021-10-20 2022-01-11 三祥新材股份有限公司 Stable zirconium ramming mass and preparation method thereof
CN114292094A (en) * 2021-12-28 2022-04-08 郑州荣盛窑炉耐火材料有限公司 Acid-corrosion-resistant long-life refractory brick for Osmant furnace and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805183A (en) * 2010-03-02 2010-08-18 中国科学院上海硅酸盐研究所 A low-temperature sintered Pb (Ni1/3Nb2/3) O3-Pb (Zr, ti) O3ceramic powder and its prepn
CN101805181A (en) * 2010-03-16 2010-08-18 同济大学 Preparation method of sodium bismuth titanate-based ferroelectric film
CN101941840A (en) * 2010-10-09 2011-01-12 天津大学 B-site oxide precursor method for preparing lead niobate nickelate-zirconate titanate piezoelectric ceramic
CN102050621A (en) * 2010-11-04 2011-05-11 柏玉新 Stepped equilibrium-atmosphere sintering process for soft-magnetic ferrite nitrogen kiln
JP2015512855A (en) * 2012-03-07 2015-04-30 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Self-leveling concrete
JP5907312B2 (en) * 2014-01-23 2016-04-26 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
JPWO2015111394A1 (en) * 2014-01-23 2017-03-23 Jfeスチール株式会社 Method for manufacturing lining structure of molten metal container
CN113200753A (en) * 2021-04-14 2021-08-03 山西昊业新材料开发有限公司 Pouring material for tundish cover and method for preparing tundish cover by using pouring material
CN113912393A (en) * 2021-10-20 2022-01-11 三祥新材股份有限公司 Stable zirconium ramming mass and preparation method thereof
CN113912393B (en) * 2021-10-20 2022-12-13 三祥新材股份有限公司 Stable zirconium ramming mass and preparation method thereof
CN114292094A (en) * 2021-12-28 2022-04-08 郑州荣盛窑炉耐火材料有限公司 Acid-corrosion-resistant long-life refractory brick for Osmant furnace and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101497729B1 (en) AZS refractory composition
JPH0737344B2 (en) Irregular refractory with basic properties
JP5361795B2 (en) Lined casting material
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP2001302364A (en) Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JP2002241182A (en) Monolithic refractory composition
CZ20003060A3 (en) Basic, free flowing casting material and shaped parts produced from such material
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
JP2012072051A (en) Powder composition for fireproof castable, and fireproof castable using the same
JP2874831B2 (en) Refractory for pouring
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP7302543B2 (en) monolithic refractories
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JPH0952169A (en) Refractory for tuyere of molten steel container
JP2004142957A (en) Low elastic modulus alumina-magnesia castable refractory, pre-cast block, and molten metal vessel
JP3212856B2 (en) Irregular cast refractories and their moldings
JP4373081B2 (en) Refractory
JPH0633179B2 (en) Irregular refractory for pouring
JPH08175877A (en) Castable refractory
JP2816585B2 (en) Method for producing refractory material containing magnesia
JPH06199575A (en) Alumina-spinel castable refractory
JP3157310B2 (en) Refractory
JP2003171183A (en) Alumina-magnesia castable refractory having low elastic modulus, precast block, and vessel for molten metal
JP2002029858A (en) Castable for lining tundish

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703