JP5907312B2 - Method for manufacturing lining structure of molten metal container - Google Patents

Method for manufacturing lining structure of molten metal container Download PDF

Info

Publication number
JP5907312B2
JP5907312B2 JP2015517516A JP2015517516A JP5907312B2 JP 5907312 B2 JP5907312 B2 JP 5907312B2 JP 2015517516 A JP2015517516 A JP 2015517516A JP 2015517516 A JP2015517516 A JP 2015517516A JP 5907312 B2 JP5907312 B2 JP 5907312B2
Authority
JP
Japan
Prior art keywords
refractory
lining
molten metal
metal container
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015517516A
Other languages
Japanese (ja)
Other versions
JPWO2015111394A1 (en
Inventor
井上 明彦
明彦 井上
清田 禎公
禎公 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP5907312B2 publication Critical patent/JP5907312B2/en
Publication of JPWO2015111394A1 publication Critical patent/JPWO2015111394A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings
    • C21C5/441Equipment used for making or repairing linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/321Dolomites, i.e. mixed calcium magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、溶融金属容器のライニング構造体(lining structure)の製造方法及び溶融金属容器のライニング構造体に関する。   The present invention relates to a method for manufacturing a lining structure of a molten metal container and a lining structure of a molten metal container.

混銑車(torpedo car)、高炉(blast furnace)、転炉(steelmaking converter)、溶鋼鍋(molten steel ladle)といった各種の溶融金属容器のライニング構造体は、溶融金属容器の最も外側に鉄皮(outer steel shell)が設けられており、溶融金属容器の内側に向かって順に、永久張り耐火物、内張り耐火物で構成されている。最も内側に位置する内張り耐火物の稼動面(working face (of refractory))が、溶融金属と接している。溶融金属容器における内張り耐火物の特性としては、溶融金属や共存する溶融酸化物であるスラグ(slag)に対する耐食性(corrosion resistance)と、温度変化に伴う割れ(spalling)への耐性が求められる。   The lining structure of various molten metal containers such as torpedo car, blast furnace, steelmaking converter, molten steel ladle is the outermost outer shell of the molten metal container. steel shell) is provided, which is composed of a permanent refractory and a lining refractory in order toward the inside of the molten metal container. The working face (of refractory) of the innermost lined refractory is in contact with the molten metal. As the characteristics of the lining refractory in the molten metal container, corrosion resistance against slag, which is a molten metal or a coexisting molten oxide, and resistance to spalling due to temperature change are required.

一般的に、アルミナ(alumina)とマグネシア(magnesia)を含む内張り耐火物は、施工後に焼結させることでスピネル化(spinelization)が進行する。スピネル化が進行する際の体積膨張で、耐火物の体積が膨張するとともに、耐火物内に存在する空隙が減少する。これにより、耐火物を緻密化させて気孔率を低減させ、耐火物へのスラグの浸入を防止することができるので、耐火物の損耗速度を低減させることができる。   In general, a refractory lining containing alumina and magnesia undergoes spinelization by sintering after construction. The volume of the refractory expands as the spinelization progresses, and the voids present in the refractory decrease. Accordingly, the refractory can be densified to reduce the porosity, and the slag can be prevented from entering the refractory, so that the wear rate of the refractory can be reduced.

溶融金属容器の使用過程では、内張り耐火物の稼動面近傍において、急激な温度の上昇や降下が生じる。そのため、上記のように、内張り耐火物の施工後にアルミナとマグネシアをスピネル化させる方法を溶融金属容器に適用した場合には以下のような問題が起こる。すなわち、内張り耐火物の稼動面近傍のスピネル化が十分進んでいないと、使用過程における溶融金属からの受熱により温度上昇が生じて内張り耐火物の熱膨張が起こるが、この熱膨張と、スピネル化に伴う構造的な膨張により、内張り耐火物に亀裂が生じるという問題がある。   In the process of using the molten metal container, a sudden rise or fall in temperature occurs near the working surface of the lining refractory. Therefore, as described above, when the method of spineling alumina and magnesia after applying the lining refractory is applied to a molten metal container, the following problems occur. In other words, if spinelization near the working surface of the lining refractory is not sufficiently advanced, the temperature rises due to heat received from the molten metal in the process of use, causing thermal expansion of the lining refractory, but this thermal expansion and spinelization There is a problem that cracks occur in the lining refractory material due to the structural expansion associated therewith.

これに対し、特許文献1には、内張り用の耐火物として、スピネル化していないアルミナとマグネシアを主材として用い、内張り用の耐火物の施工後に、1300℃以上の高温で4時間以上焼成を行うことで、溶融金属容器の使用前に、内張り用耐火物をスピネル化させることが開示されている。   On the other hand, in Patent Document 1, alumina and magnesia that are not spineled are used as main materials as the refractory for the lining, and after the refractory for the lining is applied, firing is performed at a high temperature of 1300 ° C. or more for 4 hours or more. By doing so, it is disclosed to spinel the refractory for lining before using the molten metal container.

特許文献2には、融点を低下させるシリカ(silica)を微量添加し、スピネル化を迅速に進めることが提案されている。   Patent Document 2 proposes that a small amount of silica (silica) that lowers the melting point is added to rapidly advance spinelization.

特開平10−167846号公報Japanese Patent Laid-Open No. 10-167846 特許4220131号公報Japanese Patent No. 4220131

しかしながら、特許文献1に開示された方法では、溶融金属容器の使用前に、バーナーを用いて内張り耐火物の稼動面を1300℃以上、かつ4時間以上加熱することで、内張り耐火物のスピネル化を進めることが提案されているが、内張り耐火物の稼動面を1300℃以上で加熱するためには、強力なバーナー設備が必要となる。また、内張り耐火物の内部では、稼動面から永久張り耐火物の方向、すなわち耐火物の背面の方向に向かって温度が降下するため、4時間以上にわたって加熱を行い、内張り耐火物の内部を十分にスピネル化させるためには、膨大なエネルギーが必要となる。そのため、引用文献1に開示された方法を適用することは経済的でない。   However, in the method disclosed in Patent Document 1, before using the molten metal container, the working surface of the lining refractory is heated to 1300 ° C. or more for 4 hours or more using a burner, so that the refractory lining is made spinel. However, in order to heat the working surface of the lining refractory at 1300 ° C. or higher, a powerful burner facility is required. Also, inside the refractory lining, the temperature drops from the working surface toward the permanent refractory, that is, toward the back of the refractory. In order to make it spinel, enormous energy is required. Therefore, it is not economical to apply the method disclosed in the cited document 1.

特許文献2では、融点を降下させるシリカを微量添加し、部分的に液相を発生させることで、通常の固相拡散に対し、迅速なスピネル化となるとしている。しかし、シリカ添加による耐火性能の低下は、耐火物を緻密化させてスラグの浸入を防止するというスピネル化の利点を損なうものであり、シリカを添加せずに十分な時間を掛けて予熱した場合に比べ、耐火性能が劣るという問題がある。   In Patent Document 2, a small amount of silica that lowers the melting point is added, and a liquid phase is partially generated, whereby rapid spinelization is achieved with respect to normal solid phase diffusion. However, the decrease in fire resistance due to the addition of silica impairs the advantage of spinelization that densifies the refractory and prevents the intrusion of slag. When preheated for a long time without adding silica There is a problem that fire resistance is inferior compared to.

本発明は、このような問題点に対してなされたものであり、従来のような強力なバーナー設備を必要とせずに、十分な耐火性能を有する溶融金属容器のライニング構造体の製造方法及び溶融金属容器のライニング構造体を提供することを目的とする。   The present invention has been made for such a problem, and does not require a strong burner facility as in the prior art, and a method for producing a molten metal container lining structure having sufficient fire resistance and melting An object of the present invention is to provide a lining structure for a metal container.

本発明は、上記のような問題点に対してなされたものであり、以下のような特徴を有している。
[1] 外側に鉄皮、内側に内張り耐火物を有し、さらに鉄皮と内張り耐火物の間に永久張り耐火物とを有する溶融金属容器のライニング構造体の製造方法であって、
前記鉄皮と前記永久張り耐火物の間に、熱伝達係数が100W/mK以下の断熱材を設け、
前記内張り耐火物として、アルミナ60質量%以上、及びマグネシア4質量%以上を含有し、かつ、1500℃で3時間熱処理した前後で室温での線変化率が0.8%以上である不焼成耐火物(unfired refractory)および/または不定形耐火物(unshaped refractory)を施工し、
前記溶融金属容器の使用前に、前記内張り耐火物の稼動面を予熱する、溶融金属容器のライニング構造体の製造方法。
[2] 施工前の前記内張り耐火物は、前記マグネシアの50質量%以上をペリクレース(periclase)または焼成ドロマイト(calcined dolomite)として含み、
前記溶融金属容器の使用前の予熱では、施工前の前記内張り耐火物において、ペリクレースまたは焼成ドロマイトであったマグネシアの一部が、アルミナとスピネル化するまで予熱する[1]に記載の溶融金属容器のライニング構造体の製造方法。
[3] [1]または[2]に記載の溶融金属容器のライニング構造体の製造方法によって製造された溶融金属容器のライニング構造体。
The present invention has been made with respect to the above problems, and has the following characteristics.
[1] A method for manufacturing a lining structure of a molten metal container having a steel skin on the outside, a refractory lining on the inside, and a permanent refractory between the iron skin and the lining refractory,
Between the iron skin and the permanent refractory, a heat insulating material having a heat transfer coefficient of 100 W / m 2 K or less is provided.
Non-fired refractory containing 60% by mass or more of alumina and 4% by mass or more of magnesia as the lining refractory and having a linear change rate at room temperature of 0.8% or more before and after heat treatment at 1500 ° C. for 3 hours. Constructing unfired refractory and / or unshaped refractory,
The manufacturing method of the lining structure of a molten metal container which preheats the working surface of the said lining refractory before using the said molten metal container.
[2] The lining refractory before construction contains 50% by mass or more of the magnesia as periclase or calcined dolomite,
In the preheating before use of the molten metal container, the molten metal container according to [1], wherein in the lining refractory before construction, a part of magnesia that is periclase or calcined dolomite is preheated until it is spineled with alumina. Method for manufacturing the lining structure of the present invention.
[3] A molten metal container lining structure manufactured by the method for manufacturing a molten metal container lining structure according to [1] or [2].

本発明によれば、従来のような強力なバーナー設備を必要とせずに、十分な耐火性能を有する溶融金属容器のライニング構造体の製造方法及び溶融金属容器のライニング構造体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the lining structure of the molten metal container which has sufficient fireproof performance, and the lining structure of a molten metal container which do not require the strong burner installation like the past can be provided. .

図1は、本発明の実施の形態に係る溶融金属容器のライニング構造体を示す図である。FIG. 1 is a view showing a lining structure of a molten metal container according to an embodiment of the present invention. 図2は、本発明例1(断熱材あり)と比較例3(断熱材なし)に係る内張り耐火物の稼動面からの距離とマグネシアのスピネル化比率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the distance from the working surface of the lining refractory according to Invention Example 1 (with heat insulation) and Comparative Example 3 (without heat insulation) and the spinelization ratio of magnesia.

以下、添付した図面を参照して、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

はじめに、本発明の概要について説明する。本発明は、溶融金属容器のライニング構造体の製造において、内張り耐火物施工後に、アルミナとマグネシアをスピネル化できる材料を内張り耐火物として用いつつ、鉄皮と永久張り耐火物の間に断熱層を介装することにより、設備費やエネルギーコストを悪化させずに耐火物コストを大幅に低減できることを知見し、完成するに至った。   First, the outline of the present invention will be described. In the production of the lining structure of the molten metal container, the present invention uses a material that can spinel alumina and magnesia as the lining refractory after the lining refractory construction, while providing a heat insulating layer between the iron skin and the permanent refractory. It was discovered that by installing it, the refractory cost could be greatly reduced without deteriorating the equipment cost and energy cost, and it was completed.

すなわち、マグネシアの半量以上をペリクレース(periclase)または焼成ドロマイト(calcined dolomite)として配合し、スピネル化による耐火物の緻密化を図りつつ、内張り耐火物の使用開始後の急激な温度上昇時の熱膨張とスピネル化の進行に伴う膨張との合成膨張による割れを低減するために、内張り耐火物よりも鉄皮側に断熱層を設ける。これにより、内張り耐火物の内部の温度勾配を緩やかに、かつ、内張り耐火物の背面、及び背面までの部位の温度を高くする。この結果、施工後の予熱時にスピネル化する比率を高くし、さらに、スピネル化を十分深い部分まで進行させて、実際の使用開始後つまり内張り耐火物の稼動開始後のスピネル化の進行に伴う膨張を相対的に低減して割れを抑制することを可能とする。これにより、設備費やエネルギーコストを悪化させずに耐火物コストを大幅に低減できるものである。なお、内張り耐火物の背面とは、稼動面、つまり溶融金属に接触する面に対して反対側の面のことを指す。   In other words, more than half the amount of magnesia is blended as periclase or calcined dolomite, and the refractory is densified by spinelization. In order to reduce the cracks caused by the combined expansion with the expansion accompanying the progress of spinelization, a heat insulating layer is provided on the iron skin side of the lining refractory. Thereby, the temperature gradient inside the lining refractory is moderately increased, and the temperature of the back surface of the lining refractory and the temperature up to the back surface is increased. As a result, the ratio of spinel formation during preheating after construction is increased, and spinelization is further advanced to a sufficiently deep portion, so that the expansion associated with the progress of spinelization after the start of actual use, that is, after the operation of the lining refractory starts It is possible to reduce cracks and suppress cracks. Thereby, the refractory cost can be greatly reduced without deteriorating the equipment cost and the energy cost. In addition, the back surface of the lining refractory refers to a surface opposite to the working surface, that is, the surface in contact with the molten metal.

図1は、本発明の実施の形態に係る溶融金属容器のライニング構造体の一例を示す図である。溶融金属容器の最も外側には、鉄皮1が設けられている。ライニング構造体は、内側、すなわち紙面右側において溶融金属(図示していない)に接する。このライニング構造体は、鉄皮1から内側へ、すなわち溶融金属が入る方向(ライニング方向)に向かって順に、断熱材2、永久張り耐火物3、内張り耐火物4を備えている。   FIG. 1 is a view showing an example of a lining structure of a molten metal container according to an embodiment of the present invention. An iron skin 1 is provided on the outermost side of the molten metal container. The lining structure is in contact with molten metal (not shown) on the inner side, that is, on the right side of the drawing. The lining structure includes a heat insulating material 2, a permanent refractory material 3, and a lining refractory material 4 in order from the iron skin 1 to the inside, that is, in the direction in which molten metal enters (lining direction).

永久張り耐火物3と鉄皮1の間に断熱材2が設けられている上記のライニング構造体において、断熱材2は、100W/mK以下の熱伝達係数を有する。一般に、永久張り耐火物3の熱伝達係数は、100W/mK程度である。ここで、熱伝達係数とは、内張り耐火物4、永久張り耐火物3、断熱材2等の各耐火物層について、各熱伝導率を各層の厚さで除した値である。In the above lining structure in which the heat insulating material 2 is provided between the permanent refractory 3 and the iron skin 1, the heat insulating material 2 has a heat transfer coefficient of 100 W / m 2 K or less. Generally, the heat transfer coefficient of the permanent refractory 3 is about 100 W / m 2 K. Here, the heat transfer coefficient is a value obtained by dividing the thermal conductivity of each refractory layer such as the lining refractory 4, the permanent refractory 3, and the heat insulating material 2 by the thickness of each layer.

断熱材2を、永久張り耐火物3よりも低い100W/mK以下の熱伝達係数を有する断熱材として構成することで、内張り耐火物4の内部の温度勾配を緩やかに、かつ、背面、及び背面までの温度を高くすることができ、使用前の予熱によって内張り耐火物4のスピネル化を、十分進行させることができる。断熱材2は、一般に、多孔質であり耐火性能が低いので、断熱材2の温度を低く保つために、鉄皮1と永久張り耐火物3との間に設ける。By configuring the heat insulating material 2 as a heat insulating material having a heat transfer coefficient of 100 W / m 2 K or less, which is lower than that of the permanent refractory 3, the temperature gradient inside the lining refractory 4 is gradually reduced, In addition, the temperature up to the back surface can be increased, and spinelization of the lining refractory 4 can be sufficiently advanced by preheating before use. Since the heat insulating material 2 is generally porous and has low fire resistance, the heat insulating material 2 is provided between the iron shell 1 and the permanent refractory 3 in order to keep the temperature of the heat insulating material 2 low.

ここで、安価な断熱材の熱伝導率は、約0.3W/mKである。このような断熱材を断熱材2として適用し、施工厚みを3mmとしたとすると、熱伝達係数は100W/mKとなる。例えば、施工厚みを2倍の6mmとして、熱伝達係数を50W/mKに下げたり、やや高価であるが熱伝導率は約0.03W/mKのナノポーラス系の断熱材を用いることで、熱伝達係数を10W/mKまで下げることができれば、本発明の効果はさらに大きくなる。Here, the thermal conductivity of an inexpensive heat insulating material is about 0.3 W / mK. If such a heat insulating material is applied as the heat insulating material 2 and the construction thickness is 3 mm, the heat transfer coefficient is 100 W / m 2 K. For example, the construction thickness is doubled to 6 mm, the heat transfer coefficient is lowered to 50 W / m 2 K, or the heat conductivity is about 0.03 W / mK, although it is somewhat expensive, If the heat transfer coefficient can be lowered to 10 W / m 2 K, the effect of the present invention is further increased.

永久張り耐火物3は、普通はアルミナ質などのれんがからなり、目地をモルタルなどで埋めている。永久張り耐火物3の熱伝達係数は、100W/mK程度である。図1では1層のように図示しているが、永久張り耐火物3は、2層設けられていても構わない。The permanent refractory 3 is usually made of brick such as alumina and has a joint filled with mortar. The heat transfer coefficient of the permanent refractory 3 is about 100 W / m 2 K. Although illustrated as one layer in FIG. 1, two layers of the permanent refractory 3 may be provided.

内張り耐火物4は、アルミナとマグネシアを含み、耐火物の施工後に焼結することで、アルミナとマグネシアがスピネル化する不焼成耐火物および/または不定形耐火物である。なお、「不焼成耐火物」とは、成形後、施工前に予め焼成されない耐火物を指し、「不定形耐火物」とは、施工前に予め成形されない耐火物を指す。内張り耐火物4は、アルミナ60質量%以上、マグネシア4質量%以上を含有する不焼成耐火物及び不定形耐火物のうちのどちらか片方もしくは両方により構成することが好ましい。より好ましくは、特殊な用途のために黒鉛などを配合する場合を除き、内張り耐火物4は、アルミナを80質量%以上、マグネシアを5質量%以上含むことが望ましい。   The lining refractory 4 is an unfired refractory and / or an amorphous refractory in which alumina and magnesia are spineled by sintering after application of the refractory, including alumina and magnesia. The “non-fired refractory” refers to a refractory that is not fired in advance after molding and before construction, and the “indefinite refractory” refers to a refractory that is not previously molded before construction. The lining refractory 4 is preferably composed of one or both of an unfired refractory and an amorphous refractory containing 60% by mass or more of alumina and 4% by mass or more of magnesia. More preferably, it is preferable that the lining refractory 4 contains 80% by mass or more of alumina and 5% by mass or more of magnesia except when graphite or the like is blended for a special application.

また、アルミナとマグネシアをスピネル化させる前の内張り耐火物4において、マグネシアの50質量%以上は、ペリクレースまたは焼成ドロマイトとして耐火物に含ませる。これにより、施工後にスピネル化する比率を高くすることができるので、内張り耐火物4を緻密化して耐食性を向上する効果が得られる。ここで、原料価格の市況によるが、望ましくはマグネシアの90質量%以上がペリクレースとして供給されることがより好適である。
内張り耐火物4を構成する不焼成耐火物および/または不定形耐火物は、1500℃で3時間の熱処理の前と後での室温での線変化率(以下、1500℃の熱処理後の線変化率とも称する)を0.8%以上とするように調整する。1500℃の熱処理後の線変化率を0.8%以上とすることにより、前述した断熱材2を含むライニング構造体とした場合に、耐火物施工後の予熱時及び溶融金属容器として使用後(稼動後)に、アルミナとマグネシアのスピネル化によって内張り耐火物4を緻密化して耐食性を向上する効果が得られる。ここで、熱処理温度を1500℃、熱処理時間を3時間としたのは、溶融金属容器として使用後(稼動後)の内張り耐火物4の稼動面側の温度履歴を考慮して、スピネル化による内張り耐火物4の緻密化の指標とするためである。
また、1500℃の熱処理後の室温での線変化率が、0.8%未満では、断熱材2を含むライニング構造体とした場合においても、内張り耐火物4を緻密化して耐食性を向上する効果が十分に得られない。一方、断熱材2の層を含まないライニング構造体においては、1500℃の熱処理後の室温での線変化率を0.8%以上とすると、施工後の予熱時に低温でスピネル化する比率が低いために、内張り耐火物4の使用(稼動)初期にスピネル化による膨張が急激に進行するので、内張り耐火物4の使用開始後の急激な温度上昇時の熱膨張とスピネル化による膨張との合成膨張によって割れが生じて、スピネル化による耐火物の緻密化で耐食性が向上して耐火物寿命を延長する効果が十分に享受できなくなるおそれがある。
さらに、1500℃の熱処理後の室温での線変化率は1.5%以上とすることが、内張り耐火物4を緻密化して耐食性を向上するためにより望ましい。ここで、1500℃熱処理後の線変化率は、正値が膨張、負値が収縮にそれぞれ対応し、ペリクレースまたは焼成ドロマイトとして耐火物に含有させる耐火物のマグネシアの含有量を増加させる等の方法によって増加が可能であり、また、不純物等として耐火物中に含有されるチタニア、酸化鉄、シリカの含有量を増加させる等の方法によって減少するように調整できる。
Moreover, in the lining refractory 4 before spinelizing alumina and magnesia, 50 mass% or more of magnesia is included in the refractory as periclase or baked dolomite. Thereby, since the ratio which turns into a spinel after construction can be made high, the effect which densifies the lining refractory 4 and improves corrosion resistance is acquired. Here, depending on the market conditions of the raw material price, it is more preferable that 90% by mass or more of magnesia is supplied as periclase.
The unfired refractory and / or the amorphous refractory constituting the lining refractory 4 has a linear change rate at room temperature before and after heat treatment at 1500 ° C. for 3 hours (hereinafter, line change after heat treatment at 1500 ° C. The rate is also adjusted to 0.8% or more. By setting the linear change rate after heat treatment at 1500 ° C. to 0.8% or more, in the case of the lining structure including the heat insulating material 2 described above, after use as a molten metal container during preheating after refractory construction ( After operation), the effect of improving the corrosion resistance by densifying the lining refractory 4 by spineling of alumina and magnesia is obtained. Here, the heat treatment temperature is set to 1500 ° C. and the heat treatment time is set to 3 hours, considering the temperature history on the working surface side of the lining refractory 4 after use (after operation) as a molten metal container, and a lining by spinel formation. This is because it is used as an index of densification of the refractory 4.
In addition, when the linear change rate at room temperature after heat treatment at 1500 ° C. is less than 0.8%, the effect of improving the corrosion resistance by densifying the lining refractory 4 even when the lining structure including the heat insulating material 2 is used. Is not enough. On the other hand, in the lining structure that does not include the layer of the heat insulating material 2, if the linear change rate at room temperature after heat treatment at 1500 ° C. is 0.8% or more, the ratio of spineling at low temperature during preheating after construction is low. Therefore, since the expansion due to the spinel progresses rapidly in the initial stage of use (operation) of the lining refractory 4, the synthesis of the thermal expansion at the time of a rapid temperature rise after the use of the lining refractory 4 and the expansion due to the spinel Cracking occurs due to expansion, and there is a possibility that the effect of extending the life of the refractory can not be fully enjoyed by improving the corrosion resistance by densifying the refractory by spinel formation.
Furthermore, it is more desirable that the linear change rate at room temperature after heat treatment at 1500 ° C. is 1.5% or more in order to improve the corrosion resistance by densifying the lining refractory 4. Here, the linear change rate after heat treatment at 1500 ° C. is a method in which the positive value corresponds to expansion and the negative value corresponds to contraction, respectively, and the content of magnesia in the refractory to be contained in the refractory as periclase or baked dolomite is increased. And can be adjusted to decrease by a method such as increasing the content of titania, iron oxide, and silica contained in the refractory as impurities.

なお、溶融金属容器の内張り耐火物4に供される耐火物として、アルミナを60質量%、マグネシアを4質量%以上含む材質とすることで、スピネル化による耐食性向上の効果を十分に発揮させることができる。   In addition, as a refractory to be used for the refractory 4 of the molten metal lining, a material containing 60% by mass of alumina and 4% by mass or more of magnesia can sufficiently exhibit the effect of improving corrosion resistance by spinelization. Can do.

以上述べたようなライニング構造体のなかで、断熱材2を、鉄皮1と永久張り耐火物3との間に介装した場合、内張り耐火物4のスピネル化を促進する効果は、溶融金属容器の使用前の内張り耐火物4の乾燥・予熱工程において発現する。   In the lining structure as described above, when the heat insulating material 2 is interposed between the iron skin 1 and the permanent refractory 3, the effect of promoting the spinelization of the lining refractory 4 is a molten metal. Appears in the drying / preheating process of the lining refractory 4 before use of the container.

従来では、内張り耐火物4の乾燥・予熱時には、内張り耐火物4の稼動面の温度を、1300℃以上、かつ4時間以上保持しなければ、内張り耐火物4のスピネル化が進まないとされていた。これに対し、本発明では、内張り耐火物4の背面側に、熱伝達係数が100W/mK以下の断熱材2を設けることにより、内張り耐火物4の稼動面の温度を800℃まで上げれば、稼動面近傍の内張り耐火物4のスピネル化を十分に進行させることができる。なお、乾燥・予熱時間の短縮の点からは、乾燥・予熱工程末期での内張り耐火物の表面(稼動面)温度は900〜1200℃がより望ましい。Conventionally, when the lining refractory 4 is dried and preheated, if the temperature of the working surface of the lining refractory 4 is not maintained at 1300 ° C. or more and for four hours or more, the refractory 4 of the lining refractory 4 will not be spineled. It was. In contrast, in the present invention, the temperature of the working surface of the lining refractory 4 can be raised to 800 ° C. by providing the heat insulating material 2 having a heat transfer coefficient of 100 W / m 2 K or less on the back side of the lining refractory 4. In this case, spinelization of the lining refractory 4 in the vicinity of the working surface can be sufficiently advanced. From the viewpoint of shortening the drying / preheating time, the surface (working surface) temperature of the lining refractory at the end of the drying / preheating process is more preferably 900 to 1200 ° C.

したがって、溶融金属容器の使用開始後の溶融金属からの受熱による急激な温度上昇に起因する割れを、より有効に抑制することができる。加えて、これにより、設備費やエネルギーコストを悪化させずに、耐火物コストを大幅に低減することができる。また、従来のようにシリカを添加する必要がないため、耐火性能が維持される。   Therefore, the crack resulting from the rapid temperature rise by the heat receiving from the molten metal after the start of use of a molten metal container can be suppressed more effectively. In addition, this makes it possible to significantly reduce the refractory cost without deteriorating the equipment cost and energy cost. In addition, since it is not necessary to add silica as in the prior art, fire resistance is maintained.

次に、本発明の実施例について説明する。図1に示すライニング構造体を用いて、本発明の効果を調査した。なお、調査した従来例、比較例1乃至5、本発明例1を、表1に示す。本発明例1では、ペリクレース以外のマグネシアを含むすべての成分が、不焼成耐火物および/または不定形耐火物である。   Next, examples of the present invention will be described. The effect of the present invention was investigated using the lining structure shown in FIG. Table 1 shows the conventional examples, Comparative Examples 1 to 5 and Invention Example 1 that were investigated. In Inventive Example 1, all the components including magnesia other than periclase are unfired refractories and / or amorphous refractories.

Figure 0005907312
Figure 0005907312

(従来例)ライニング構造体において、内張り耐火物4として、91質量%アルミナ−6質量%マグネシアで、マグネシアのうち6分の5(質量基準)が予めアルミナ−マグネシアスピネルとして配合された、1500℃の熱処理後の室温での線変化率が0.1%の材質の流し込み不定形耐火物を用いた。従来例では、断熱シート2は施工しなかった。永久張り耐火物3の熱伝達係数は100W/mKである。寿命は、225ヒートであった。(Conventional example) In a lining structure, the inner refractory 4 is 91 mass% alumina-6 mass% magnesia, and 5/6 of magnesia (mass basis) is preliminarily blended as alumina-magnesia spinel at 1500 ° C. A cast amorphous refractory material having a linear change rate of 0.1% at room temperature after the heat treatment was used. In the conventional example, the heat insulating sheet 2 was not constructed. The heat transfer coefficient of the permanent refractory 3 is 100 W / m 2 K. The lifetime was 225 heat.

(比較例1)図1に示すライニング構造体において、内張り耐火物4として、従来例と同じ91質量%アルミナ−6質量%マグネシアで、マグネシアのうち6分の5(質量基準)が予めアルミナ−マグネシアスピネルとして配合された、1500℃の熱処理後の室温での線変化率が0.1%の材質の流し込み不定形耐火物を用いた。鉄皮1と永久張り耐火物3の間に、熱伝導率0.2W/mKで厚さ3mmの断熱シート2を施工した。断熱シート2と永久張り耐火物3の合計の熱伝達係数は40W/mKである。この結果、従来例に比べて寿命が2割悪化した。(Comparative Example 1) In the lining structure shown in FIG. 1, as the lining refractory 4, 91 mass% alumina-6 mass% magnesia same as the conventional example, and 5/6 of magnesia (mass basis) is alumina- A cast amorphous refractory material blended as magnesia spinel and having a linear change rate of 0.1% at room temperature after heat treatment at 1500 ° C. was used. A heat insulating sheet 2 having a thermal conductivity of 0.2 W / mK and a thickness of 3 mm was applied between the iron skin 1 and the permanent refractory 3. The total heat transfer coefficient of the heat insulating sheet 2 and the permanent refractory 3 is 40 W / m 2 K. As a result, the life was 20% worse than the conventional example.

使用後の耐火物を回収して調査したところ、スラグ成分である酸化カルシウムやシリカの耐火物中への浸潤深さが通常の30mmに対して40mmと深くなっており、その境界部での亀裂も認められた。一般に、耐火物の背面側で断熱を実施すると耐火物の温度が上るため耐用が悪化すると言われており、アルミナ−マグネシア系の材質でも同様の結果となった。   After collecting and investigating the refractory after use, the infiltration depth of calcium oxide or silica, which is a slag component, into the refractory is as deep as 40 mm compared to the usual 30 mm, and cracks at the boundary Was also recognized. In general, it is said that when heat insulation is performed on the back side of the refractory, the temperature of the refractory increases and the durability deteriorates, and the same result was obtained with an alumina-magnesia material.

(比較例2)次に、内張り耐火物4として、91質量%アルミナ−6質量%マグネシアで、マグネシアのうち6分の4(質量基準)が予めアルミナ−マグネシアスピネルとして配合された、1500℃熱処理後の線変化率が0.3%の材質の流し込み不定形耐火物を用いた。比較例1と同様の断熱を実施した。この結果、浸潤深さは30mm前後まで軽減したものの内張り耐火物4の寿命は、従来例と同程度かやや悪い程度であった。   (Comparative Example 2) Next, as the lining refractory 4, heat treatment at 1500 ° C., in which 91 mass% alumina-6 mass% magnesia and 4/6 of magnesia (mass basis) were previously blended as alumina-magnesia spinel. A cast amorphous refractory made of a material having a line change rate of 0.3% was used. Insulation similar to that of Comparative Example 1 was performed. As a result, although the infiltration depth was reduced to about 30 mm, the life of the lining refractory 4 was about the same as or slightly worse than that of the conventional example.

(比較例3)さらに、内張り耐火物4として、91質量%アルミナ−6質量%マグネシアで、マグネシアの95質量%以上がペリクレースとして配合された、1500℃の熱処理後の線変化率が1.5%の材質の流し込み不定形耐火物を用いた。なお、この比較例3では、断熱シートを施工しなかった。この結果、内張り耐火物4の寿命が、従来例に比べ約11%長くなった。
(比較例4)内張り耐火物4として、94質量%アルミナ−3質量%マグネシアで、マグネシアの95質量%以上がペリクレースとして配合された材質の流し込み不定形耐火物を用い、比較例1と同様の断熱シートを施工した。この結果、内張り耐火物4の寿命が、従来例よりは長いが比較例3よりは短くなった。これは、ペリクレース比率の高いマグネシアを用いても、マグネシア総量が4質量%未満では1500℃の熱処理後の室温での線変化率が0.7%と低く、耐火物の緻密化の効果が十分得られないためと考えられた。
(比較例5)内張り耐火物4として、やや不純物の多いアルミナ原料を用い、90質量%アルミナ−6質量%マグネシアで、マグネシアの95質量%以上がペリクレースとして配合し、アルミナ原料から来る不純物(チタニア、酸化鉄、シリカ)が1質量%である、1500℃の熱処理後の線変化率が0.7%の材質の流し込み不定形耐火物を用い、比較例1と同様の断熱シートを施工した。この結果、内張り耐火物4の寿命が、従来例よりは長いが比較例3よりは短くなった。これは、ペリクレース比率の高いマグネシアを用いても、低融点の液相が生じやすい不純物の影響で1500℃の熱処理後の室温での線変化率が0.7%と低く、耐火物の緻密化の効果が十分得られないためと考えられた。
なお、他の比較例、従来例及び本発明例1で用いた内張り耐火物4では、アルミナ原料から来る不純物(チタニア、酸化鉄、シリカ)は0.5質量%であり、表1に示した何れの試験例においても、組成として示した数値の合計以外の残部は、マグネシア原料及びアルミナセメントから来るアルミナ及びマグネシア以外の不純物などの成分である。
(Comparative example 3) Further, as the lining refractory 4, the linear change rate after heat treatment at 1500 ° C, in which 91 mass% alumina-6 mass% magnesia and 95 mass% or more of magnesia were blended as periclase, was 1.5. % Flow-in amorphous refractories were used. In Comparative Example 3, no heat insulating sheet was applied. As a result, the life of the lining refractory 4 is about 11% longer than that of the conventional example.
(Comparative Example 4) As the lining refractory material 4, a non-cast refractory material having a flow rate of 94 mass% alumina-3 mass% magnesia and 95 mass% or more of magnesia blended as periclase was used. An insulation sheet was constructed. As a result, the life of the lining refractory 4 was longer than that of the conventional example but shorter than that of Comparative Example 3. This is because even when magnesia with a high periclase ratio is used, if the total amount of magnesia is less than 4% by mass, the linear change rate at room temperature after heat treatment at 1500 ° C. is as low as 0.7%, and the effect of densifying the refractory is sufficient. It was thought that this was not possible.
(Comparative Example 5) As the lining refractory 4, an alumina raw material with a little impurities is used, 90 mass% alumina-6 mass% magnesia, 95 mass% or more of magnesia is blended as periclase, and impurities coming from the alumina raw material (titania) A heat-insulating sheet similar to that of Comparative Example 1 was constructed using a cast amorphous refractory material having a linear change rate of 0.7% after heat treatment at 1500 ° C., which is 1 mass% of iron oxide, silica). As a result, the life of the lining refractory 4 was longer than that of the conventional example but shorter than that of Comparative Example 3. This is because even when magnesia with a high periclase ratio is used, the linear change rate at room temperature after heat treatment at 1500 ° C. is as low as 0.7% due to the influence of impurities that tend to generate a liquid phase with a low melting point, and the refractory is densified. It was thought that this effect was not sufficiently obtained.
In addition, in the lining refractories 4 used in other comparative examples, conventional examples, and invention examples 1, impurities (titania, iron oxide, silica) coming from the alumina raw material were 0.5% by mass and are shown in Table 1. In any of the test examples, the balance other than the sum of the numerical values shown as the composition is components such as impurities other than alumina and magnesia coming from the magnesia raw material and the alumina cement.

(本発明例1)内張り耐火物4として、比較例3と同じ91質量%アルミナ−6質量%マグネシアで、マグネシアの95質量%以上がペリクレースとして配合された、1500℃の熱処理後の室温での線変化率が1.5%の材質を用いた。また、比較例1と同様の断熱シートを施工した。この結果、内張り耐火物4の寿命は、従来例に比べ33%長くなった。   (Invention Example 1) As lining refractory 4, 91 mass% alumina-6 mass% magnesia same as Comparative Example 3, and 95 mass% or more of magnesia was blended as periclase at room temperature after heat treatment at 1500 ° C. A material having a linear change rate of 1.5% was used. Moreover, the heat insulation sheet similar to the comparative example 1 was constructed. As a result, the life of the lining refractory 4 was 33% longer than that of the conventional example.

すなわち、内張り耐火物4の材質変更による寿命の延長が、比較例3の寿命の延長である11%、これに加えてさらに断熱材2の層を設けたことによる寿命の延長が、本発明例1と比較例3の寿命の延長の差異である22%であると考えられる。   That is, the life extension by changing the material of the lining refractory 4 is 11%, which is the extension of the life of the comparative example 3, and in addition to this, the life extension by providing a layer of the heat insulating material 2 is an example of the present invention. This is considered to be 22%, which is the difference in the extension of the lifetime between 1 and Comparative Example 3.

本発明例1と比較例3におけるライニング構造体において、使用前の予熱末期において、内張り耐火物4の稼動面の温度を1200℃とし、48時間予熱した後の内張り耐火物4のスピネル化比率を図2に示す。図2は、本発明例1(断熱材あり)と比較例3(断熱材なし)における、内張り耐火物の稼動面からの距離とマグネシアのスピネル化比率との関係を示す図である。内張り耐火物4の厚みは130mmである。   In the lining structures in Invention Example 1 and Comparative Example 3, at the end of preheating before use, the temperature of the working surface of the lining refractory 4 was 1200 ° C., and the spinelization ratio of the lining refractory 4 after preheating for 48 hours was As shown in FIG. FIG. 2 is a diagram showing the relationship between the distance from the working surface of the lining refractory and the magnesia spinelization ratio in Invention Example 1 (with heat insulating material) and Comparative Example 3 (without heat insulating material). The thickness of the lining refractory 4 is 130 mm.

断熱材2を有しない比較例3に対して、断熱材2を有する本発明例1では、各部においてスピネル化比率が24〜30ポイント高く、特に中央部である56〜75mmの深さの部分においては11%に対して35%と、比較例3に対し、比率にして3.2倍のスピネル化比率であった。   In Comparative Example 3 that does not have the heat insulating material 2, in the present invention example 1 that has the heat insulating material 2, the spinelization ratio is 24 to 30 points higher in each part, especially in the central portion having a depth of 56 to 75 mm. The ratio was 35% with respect to 11%, and the ratio of spinelization was 3.2 times that of Comparative Example 3.

これにより、アルミナ60質量%以上、マグネシア4質量%以上を含有し、かつ、マグネシアの50質量%以上は、ペリグレースとして供給される内張り耐火物4であって、鉄皮1と永久張り耐火物3の間に、熱伝達係数が100W/mK以下の断熱材を設けることで、内張り耐火物4の耐用期間を延長できることがわかった。As a result, 60 mass% or more of alumina and 4 mass% or more of magnesia are contained, and 50 mass% or more of magnesia is the lining refractory 4 supplied as periglace, and the iron skin 1 and the permanent refractory 3 It was found that the lifetime of the lining refractory 4 can be extended by providing a heat insulating material having a heat transfer coefficient of 100 W / m 2 K or less during

なお、本発明は、上記の実施の形態に限られず、種々設計変更を適用することができるのは勿論である。   Of course, the present invention is not limited to the above-described embodiments, and various design changes can be applied.

1 鉄皮
2 断熱材
3 永久張り耐火物
4 内張り耐火物
DESCRIPTION OF SYMBOLS 1 Iron skin 2 Heat insulation material 3 Permanent tension refractory 4 Lined refractory

Claims (3)

鉄皮側から順に、永久張り耐火物と、内張り耐火物とを有する溶融金属容器のライニング構造体の製造方法であって、
前記鉄皮と前記永久張り耐火物の間に、熱伝達係数が100W/mK以下の断熱材を設け、
前記内張り耐火物として、アルミナ60質量%以上、及びマグネシア4質量%以上を含有し、かつ、1500℃で3時間熱処理した前後で室温での線変化率が0.8%以上である不焼成耐火物および/または不定形耐火物を施工し、
前記溶融金属容器の使用前に、前記内張り耐火物の稼動面を800℃以上1300℃未満の温度で予熱する、溶融金属容器のライニング構造体の製造方法。
A method for producing a lining structure of a molten metal container having a permanent refractory and a lining refractory in order from the iron skin side,
Between the iron skin and the permanent refractory, a heat insulating material having a heat transfer coefficient of 100 W / m 2 K or less is provided.
Non-fired refractory containing 60% by mass or more of alumina and 4% by mass or more of magnesia as the lining refractory and having a linear change rate at room temperature of 0.8% or more before and after heat treatment at 1500 ° C. for 3 hours. Construction and / or irregular refractories,
The manufacturing method of the lining structure of a molten metal container which preheats the working surface of the said lining refractory at the temperature of 800 degreeC or more and less than 1300 degreeC before using the said molten metal container.
請求項1に記載の溶融金属容器のライニング構造体の製造方法であって、前記溶融金属容器の使用前に、前記内張り耐火物の稼動面を800℃以上1200℃以下の温度で予熱することを特徴とする、溶融金属容器のライニング構造体の製造方法。   It is a manufacturing method of the lining structure of the molten metal container of Claim 1, Comprising: Before using the said molten metal container, preheating the working surface of the said lining refractory at the temperature of 800 degreeC or more and 1200 degrees C or less. A method for manufacturing a lining structure of a molten metal container, characterized in that 施工前の前記内張り耐火物は、前記マグネシアの50質量%以上をペリクレースまたは焼成ドロマイトを含み、
前記溶融金属容器の使用前の予熱では、施工前の前記内張り耐火物において、ペリクレースまたは焼成ドロマイトであったマグネシアの一部が、アルミナとスピネル化するまで予熱する請求項1または2に記載の溶融金属容器のライニング構造体の製造方法。
The lining refractory before construction includes 50% by mass or more of the magnesia periclase or baked dolomite,
3. The melting according to claim 1, wherein in the preheating before use of the molten metal container, in the lining refractory before construction, a part of magnesia that was periclase or calcined dolomite is preheated until it is spineled with alumina. A manufacturing method of a lining structure of a metal container.
JP2015517516A 2014-01-23 2015-01-16 Method for manufacturing lining structure of molten metal container Active JP5907312B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014010237 2014-01-23
JP2014010237 2014-01-23
PCT/JP2015/000185 WO2015111394A1 (en) 2014-01-23 2015-01-16 Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal

Publications (2)

Publication Number Publication Date
JP5907312B2 true JP5907312B2 (en) 2016-04-26
JPWO2015111394A1 JPWO2015111394A1 (en) 2017-03-23

Family

ID=53681206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015517516A Active JP5907312B2 (en) 2014-01-23 2015-01-16 Method for manufacturing lining structure of molten metal container

Country Status (5)

Country Link
JP (1) JP5907312B2 (en)
KR (1) KR101929640B1 (en)
CN (1) CN105917186B (en)
TW (1) TWI572581B (en)
WO (1) WO2015111394A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428692B2 (en) * 2016-03-28 2018-11-28 Jfeスチール株式会社 Refractory structure
TWI837098B (en) * 2017-08-29 2024-04-01 美商維蘇威美國公司 Refractory lining structure and metallurgical vessel
JP6995709B2 (en) * 2018-07-06 2022-01-17 新東工業株式会社 Cast steel casting manufacturing system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229685A (en) * 1993-02-01 1994-08-19 Shinagawa Refract Co Ltd Heating and drying method of inner lining refractory of closed vessel for treating molten steel
JPH07330452A (en) * 1994-06-13 1995-12-19 Harima Ceramic Co Ltd Casting refractories for molten steel treating equipment
JP2001302364A (en) * 2000-04-20 2001-10-31 Nippon Steel Corp Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JP2002037677A (en) * 2000-05-16 2002-02-06 Nippon Steel Corp Drying method of precast block
JP2003171183A (en) * 2001-12-05 2003-06-17 Nippon Steel Corp Alumina-magnesia castable refractory having low elastic modulus, precast block, and vessel for molten metal
JP2004011970A (en) * 2002-06-05 2004-01-15 Jfe Steel Kk Pig iron retainer
JP2004142957A (en) * 2002-10-21 2004-05-20 Nippon Steel Corp Low elastic modulus alumina-magnesia castable refractory, pre-cast block, and molten metal vessel
JP2006045050A (en) * 2004-06-29 2006-02-16 Jfe Steel Kk Monolithic refractory
JP2010155764A (en) * 2009-01-05 2010-07-15 Nisshin Steel Co Ltd Unfired brick refractory
JP2010266103A (en) * 2009-05-14 2010-11-25 Jfe Steel Corp Refractory lining structure for container for iron manufacturing
JP2011105986A (en) * 2009-11-17 2011-06-02 Jfe Steel Corp Refractory-lining structure of vessel for iron-making
JP2013040722A (en) * 2011-08-17 2013-02-28 Nippon Steel & Sumitomo Metal Corp Lining repair method
JP2013040721A (en) * 2011-08-17 2013-02-28 Nippon Steel & Sumitomo Metal Corp Drying method of lining

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04220131A (en) 1991-01-28 1992-08-11 Mitsubishi Materials Corp Manufacture of deformed section bar
JPH10167846A (en) 1996-12-02 1998-06-23 Kobe Steel Ltd Drying method for alumina-magnesia amorphous refractory material and amorphous refractory material produced by that method
JP4220131B2 (en) * 2001-02-01 2009-02-04 品川白煉瓦株式会社 Amorphous refractory composition for ladle
JP3903321B2 (en) * 2004-12-28 2007-04-11 株式会社大紀アルミニウム工業所 Molten metal ladle
CN103172388A (en) * 2011-12-20 2013-06-26 旭硝子陶瓷株式会社 Magnesium spinel lithoidal refractory body

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229685A (en) * 1993-02-01 1994-08-19 Shinagawa Refract Co Ltd Heating and drying method of inner lining refractory of closed vessel for treating molten steel
JPH07330452A (en) * 1994-06-13 1995-12-19 Harima Ceramic Co Ltd Casting refractories for molten steel treating equipment
JP2001302364A (en) * 2000-04-20 2001-10-31 Nippon Steel Corp Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JP2002037677A (en) * 2000-05-16 2002-02-06 Nippon Steel Corp Drying method of precast block
JP2003171183A (en) * 2001-12-05 2003-06-17 Nippon Steel Corp Alumina-magnesia castable refractory having low elastic modulus, precast block, and vessel for molten metal
JP2004011970A (en) * 2002-06-05 2004-01-15 Jfe Steel Kk Pig iron retainer
JP2004142957A (en) * 2002-10-21 2004-05-20 Nippon Steel Corp Low elastic modulus alumina-magnesia castable refractory, pre-cast block, and molten metal vessel
JP2006045050A (en) * 2004-06-29 2006-02-16 Jfe Steel Kk Monolithic refractory
JP2010155764A (en) * 2009-01-05 2010-07-15 Nisshin Steel Co Ltd Unfired brick refractory
JP2010266103A (en) * 2009-05-14 2010-11-25 Jfe Steel Corp Refractory lining structure for container for iron manufacturing
JP2011105986A (en) * 2009-11-17 2011-06-02 Jfe Steel Corp Refractory-lining structure of vessel for iron-making
JP2013040722A (en) * 2011-08-17 2013-02-28 Nippon Steel & Sumitomo Metal Corp Lining repair method
JP2013040721A (en) * 2011-08-17 2013-02-28 Nippon Steel & Sumitomo Metal Corp Drying method of lining

Also Published As

Publication number Publication date
CN105917186B (en) 2017-11-28
KR20160111484A (en) 2016-09-26
CN105917186A (en) 2016-08-31
TW201600491A (en) 2016-01-01
KR101929640B1 (en) 2018-12-14
TWI572581B (en) 2017-03-01
JPWO2015111394A1 (en) 2017-03-23
WO2015111394A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
RU2573458C2 (en) Composite refractory material for internal lining of blast-furnace
RU2570859C2 (en) Ceramic lining of blast furnace hearth
JP5907312B2 (en) Method for manufacturing lining structure of molten metal container
JP5361795B2 (en) Lined casting material
JP6662346B2 (en) Refractory and manufacturing method thereof
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
JP6287918B2 (en) Manufacturing method of container for high temperature
JP2014530161A (en) Ramming-type amorphous refractory for refractory lining of metallurgical vessel, installation method thereof, and metallurgical vessel comprising a lining using the ramming-type amorphous refractory, particularly a blast furnace
JP5712888B2 (en) Lined lining structure for steelmaking containers
JP5950398B2 (en) Lining structure
CN103936443A (en) Novel micropore corundum brick and preparation method thereof
KR100678635B1 (en) Unshrinking high temperature light weight refractory containing metal powder
US10281212B2 (en) Fired precast block
JP6204825B2 (en) Immersion nozzle
JP7032084B2 (en) Amorphous refractory
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP6415356B2 (en) Silicon carbide refractory block for molten iron and method for producing the same
JP5594406B2 (en) Construction method of irregular refractories
CN109776076A (en) High-strength corundum refractory clay
JPH0725669A (en) Castable refractory for lining of sintered-metal container
TWI478892B (en) No carbon and aluminum magnesium does not burn bricks
JP7119870B2 (en) Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories
JPS5855379A (en) Refractory castable for ladle lining
JPH0671422A (en) Method for lining bottom part in ladle
JP5804442B2 (en) Lining drying method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250