JPH0725669A - Castable refractory for lining of sintered-metal container - Google Patents

Castable refractory for lining of sintered-metal container

Info

Publication number
JPH0725669A
JPH0725669A JP5193039A JP19303993A JPH0725669A JP H0725669 A JPH0725669 A JP H0725669A JP 5193039 A JP5193039 A JP 5193039A JP 19303993 A JP19303993 A JP 19303993A JP H0725669 A JPH0725669 A JP H0725669A
Authority
JP
Japan
Prior art keywords
raw material
refractory
lining
less
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5193039A
Other languages
Japanese (ja)
Other versions
JP2960631B2 (en
Inventor
Tsuyoshi Kobayashi
強 木林
Motohiro Tanaka
基博 田中
Takahiko Uda
孝彦 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Kogyo KK
Original Assignee
Showa Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16301153&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0725669(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Showa Kogyo KK filed Critical Showa Kogyo KK
Priority to JP5193039A priority Critical patent/JP2960631B2/en
Publication of JPH0725669A publication Critical patent/JPH0725669A/en
Application granted granted Critical
Publication of JP2960631B2 publication Critical patent/JP2960631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a castable refractory for lining a sintered-metal container having excellent durability and capable of mildly controlling the volume expansion associated with a secondary spinel formation by the heat reaction of a compounded raw material, preventing a pore formation in a texture and a strength loss, improving structural spalling resistance and abrasion resistance and enhancing high corrosion resistance which is characteristic of a magnesia raw material. CONSTITUTION:This is a refractory raw material consisting of 4-25wt.% of magnesia material which is finer than 150 mesh, 0.5-5wt.% of silica material having <=5mum of particle diameter and the remaining part of alumina material, alumina cement and an optional refractory material for imparting required properties. 100wt.% of the refractory raw material contains 3-25wt.% of MgO and 0.5-6wt.% of SiO3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融金属容器内張り用不
定形耐火物に係り、耐用性に優れていると共に容積安定
性および中間温度域(例えば1000℃前後)での強度
が向上せしめられた溶融金属容器内張り用不定形耐火物
を提供しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous refractory for lining a molten metal container, which is excellent in durability and has improved volume stability and strength in an intermediate temperature range (for example, around 1000 ° C.). It is intended to provide an amorphous refractory for lining a molten metal container.

【0002】[0002]

【従来の技術】取鍋その他の溶鋼などを収容する溶融金
属容器の内張りを形成するための不定形耐火物としては
従来のろう石質や珪石質、ジルコン質などに代り、近年
における真空脱ガス、連続鋳造、取鍋精錬などの技術普
及に伴い、その苛酷な処理条件に即応すべく、アルミナ
質やスピネル質などによる不定形耐火物を採用すること
が行われている。
2. Description of the Related Art As an amorphous refractory for forming the lining of a molten metal container for containing ladle or other molten steel, vacuum degassing in recent years has been used in place of conventional waxy stone, silica stone, and zircon. With the spread of technologies such as continuous casting and ladle refining, amorphous refractory materials such as alumina and spinel have been adopted in order to quickly respond to the severe processing conditions.

【0003】即ち斯かる技術として最近発表されたもの
に特開平5−97526号があり、粒径0.1mm以下のマ
グネシア系原料3〜10wt%、アルミナセメント3〜1
0wt%、残部をアルミナ系原料にて構成される耐火物原
料100wt%において、 MgO含有量が3〜10wt%の範
囲とすることが提案されている。
That is, as a technique recently announced as such a technique, there is JP-A-5-97526, in which a magnesia-based raw material having a particle diameter of 0.1 mm or less is 3 to 10 wt% and an alumina cement is 3-1.
It has been proposed that the MgO content be in the range of 3 to 10 wt% with 0 wt% and the remainder being 100 wt% of a refractory raw material composed of an alumina-based raw material.

【0004】[0004]

【発明が解決しようとする課題】前記したような従来一
般技術によるものに対し特開平5−97526号による
ものは耐蝕性および耐スラグ浸透性が向上するものと言
えるが、加熱時にマグネシア原料とアルミナ系原料の反
応による二次スピネル生成に伴う体積膨脹が避けられ
ず、この体積膨脹による組織のポーラス化および強度低
下により構造スポーリングが発生し、安定した耐用性向
上を求め得ない。
It can be said that the corrosion resistance and the slag permeation resistance are improved by the method disclosed in Japanese Patent Laid-Open No. 5-97526 as compared with the conventional method as described above. Volume expansion due to the formation of secondary spinel due to the reaction of the system raw material is unavoidable, and the structure expands due to the porous structure and the decrease in strength due to this volume expansion, and stable improvement in durability cannot be demanded.

【0005】またこのような耐火物原料においては水と
の混練状態における流動性や内張り後の加熱焼成時にお
ける挙動が種々に変化し、そうした特性を適切に利用し
て強度特性および耐蝕性や耐スラグ性などの何れをも有
効に満足させることは容易でない。即ち容器内面の全体
に一体化して形成されるライニング内張り層においては
個々のブロックとして形成される場合に比しそれらの影
響を受け易く、従って個々の特性についてはそれなりに
好ましい結果が得られたとしても、実用的に好ましい内
張りを必ずしも得ることができない。
Further, in such a refractory raw material, the fluidity in a kneading state with water and the behavior during heating and baking after lining change in various ways, and strength characteristics, corrosion resistance and corrosion resistance are appropriately utilized by utilizing such characteristics. It is not easy to effectively satisfy any of the slag properties. That is, the lining lining layer formed integrally on the entire inner surface of the container is more susceptible to these effects than the case of being formed as individual blocks, so that it is possible to obtain reasonably preferable results for individual characteristics. However, it is not always possible to obtain a practically preferable lining.

【0006】[0006]

【課題を解決するための手段】本発明は上記したような
従来技術における課題を解決することについて検討を重
ね、前記したような溶融金属容器用内張り耐火物を得る
ための材料の組合わせ関係および粒度と配合量を適切に
選ぶことにより耐蝕性や耐スラグ浸透性を向上して耐用
性を高めると共に内張り形成のための混練物における流
動性、容器内に一体として形成された内張の焼成時にお
ける挙動を適切に制御し施工性および強度の如きにおい
ても卓越した不定形耐火物を得ることに成功したもので
あって以下の如くである。
The present invention has been studied to solve the above-mentioned problems in the prior art, and the combination of materials for obtaining a refractory lining for molten metal containers as described above and Corrosion resistance and slag permeation resistance are improved by appropriately selecting the particle size and blending amount to improve durability and fluidity in the kneaded material for forming the lining, and when firing the lining formed integrally in the container. It has succeeded in obtaining an amorphous refractory material which is excellent in terms of workability and strength by appropriately controlling the behavior in the above, and is as follows.

【0007】(1) 150メッシュ以下のマグネシア
系原料4〜25wt%と粒径5μm 以下のシリカ系原料0.
5〜5wt%および残部がアルミナ系原料、アルミナセメ
ントと必要に応じた特性を付与するための耐火性材料よ
り成る耐火物原料であり、該耐火物原料100wt%にお
いて MgO含有量が3〜25wt%であり、SiO2含有量が0.
5〜6wt%であることを特徴とする溶融金属容器内張り
用不定形耐火物。
(1) 4 to 25 wt% magnesia-based raw material of 150 mesh or less and silica-based raw material of particle size 5 μm or less.
5 to 5 wt% and the balance is an alumina-based raw material, a refractory raw material composed of alumina cement and a refractory material for imparting properties as required, and the MgO content is 3 to 25 wt% in 100 wt% of the refractory raw material. And the SiO 2 content is 0.
An amorphous refractory for lining a molten metal container, characterized by being 5 to 6 wt%.

【0008】(2) MgO 含有量のSiO2含有量に対する
比の値が3〜12であることを特徴とする前記(1)項
に記載の溶融金属容器内張り用不定形耐火物。
(2) The amorphous refractory for lining a molten metal container according to the item (1), wherein the ratio of the MgO content to the SiO 2 content is 3 to 12.

【0009】[0009]

【作用】[Action]

マグネシア原料:150メッシュ以下。マグネシア原料
は粒度が小となることにより二次スピネルを生成し易
く、150メッシュを超えると粒径が大きくなるに従い
二次スピネルが生成し難くなり、膨脹による容積安定化
を図ることが困難となる。またマグネシア系原料とアル
ミナ原料の加熱および冷却に伴う膨脹・収縮量の差によ
り粒界に空隙が生じ易くなり、逆に組織のポーラス化お
よび強度の低下をまねき、耐構造スポーリング性、耐摩
耗性、耐蝕性が低下する。150メッシュ以下としてこ
れらの関係を有効に解決する。
Magnesia raw material: 150 mesh or less. The magnesia raw material tends to generate a secondary spinel due to its small particle size, and when it exceeds 150 mesh, the secondary spinel becomes difficult to generate as the particle size increases, and it becomes difficult to stabilize the volume by expansion. . Also, due to the difference in expansion / contraction amount due to heating and cooling of the magnesia-based raw material and the alumina raw material, voids are likely to be created in the grain boundaries, and on the contrary, the structure becomes porous and the strength decreases, and the structure spalling resistance and wear resistance are increased. Resistance and corrosion resistance are reduced. Effectively solving these relationships by setting the mesh size to 150 mesh or less.

【0010】前記のようなマグネシア原料の添加量は4
〜25wt%であって、この添加量が4wt%未満であれば
マグネシア系原料の特徴である高耐蝕性の効果が充分に
発揮されず、また25wt%を越えると後述する膨脹緩和
手法をもってしても二次スピネル生成に伴う体積膨脹を
緩和・調整することが困難となり逆に耐熱性および耐蝕
性を低下させる結果となるので好ましくない。
The addition amount of the magnesia raw material as described above is 4
If the addition amount is less than 4 wt%, the effect of high corrosion resistance, which is a characteristic of the magnesia-based raw material, cannot be sufficiently exerted, and if it exceeds 25 wt%, the expansion relaxation method described later is used. However, it is not preferable because it is difficult to alleviate and adjust the volume expansion associated with the formation of the secondary spinel, and conversely the heat resistance and corrosion resistance are reduced.

【0011】さらに不定形耐火物はその特性上、水を添
加・混練し流し込み施工するため流動性も重要な特性で
あって、粒度構成としては、粒径150μ以下の添加量
は25〜35wt%の範囲が良く、25wt%未満では良好
な流動性が得られずまた35wt%を越えると流動性は良
いが混練水量が多くなり強度が低下する。このような条
件下において、粒径150メッシュ以下のマグネシア原
料添加量が25wt%を越えると、二次スピネル生成に必
要な粒径150μ以下のアルミナ系原料やアルミナセメ
ントおよび二次スピネル生成の調整に必要な5μ以下の
シリカ系原料の添加調整が困難となる。即ち25wt%以
下とすることによりこれらの調整関係を適切とする。
[0011] Further, the amorphous refractory has a characteristic that its fluidity is also important because it is added and kneaded with water and poured into it, and the particle size composition is such that the addition amount of particles having a particle size of 150 µ or less is 25 to 35 wt%. If the content is less than 25 wt%, good fluidity cannot be obtained, and if it exceeds 35 wt%, the fluidity is good but the kneading water amount increases and the strength decreases. Under these conditions, if the added amount of magnesia raw material with a particle size of 150 mesh or less exceeds 25 wt%, it is necessary to adjust the alumina-based raw material with a particle size of 150 μ or less, alumina cement, and secondary spinel formation necessary for secondary spinel production. It becomes difficult to adjust the required addition of the silica-based raw material of 5 μm or less. That is, these adjustment relationships are made appropriate by setting it to 25 wt% or less.

【0012】シリカ系原料:5μm 以下。シリカ系原料
は、本発明において後述する気化性シリカを採用するこ
とが好ましく、このものはその粒径が小さく、球状を呈
しているのでこの種不定形耐火物においては流動化促
進、充填性向上による養生ないし乾燥強度向上に有効で
あり、5μm 以下のものがこのような特性上有効であ
る。
Silica-based raw material: 5 μm or less. As the silica-based raw material, it is preferable to employ the vaporizable silica described later in the present invention. Since this material has a small particle size and has a spherical shape, it promotes fluidization and improves filling property in this type of amorphous refractory. It is effective for curing or improving the dry strength, and those having a thickness of 5 μm or less are effective for such characteristics.

【0013】前記シリカ系原料の添加量は0.5〜5wt%
であって、0.5wt%未満では、二次スピネル生成時の欠
点を補うのに不充分であり、一方5wt%を越えると耐熱
性に劣るため耐火物の耐熱性への影響が大きくなり耐用
性が低下する。これらの事由から前記、粒径5μm 以下
のシリカ系原料の使用量を0.5〜5wt%の範囲とした。
The amount of the silica-based material added is 0.5 to 5% by weight.
However, if it is less than 0.5 wt%, it is insufficient to make up for the drawbacks of secondary spinel formation. On the other hand, if it exceeds 5 wt%, the heat resistance is inferior because it has a large effect on the heat resistance of refractory materials. Sex decreases. For these reasons, the amount of the silica-based raw material having a particle size of 5 μm or less is set in the range of 0.5 to 5 wt%.

【0014】なお、不定形耐火物をはじめとする耐火物
においては、上記5μm 以下のシリカ系原料は耐熱性に
劣ること、加熱による収縮性が大きいこと、及び自己焼
結しやすいため耐火物組織の過焼結化を促進することな
どから通常多量には使用されず上記流動化促進目的など
を達成するためには、一般的に1wt%以内の使用で充分
であるが、本発明ではシリカ原料における収縮性が大き
い性質を有効に利用するもので、粒径150メッシュ以
下のマグネシア系原料とアルミナ系原料の加熱に伴う二
次スピネル生成時の組織ポーラス化及び強度低下に対
し、粒径5μ以下のシリカ系原料の自己焼結性及び収縮
性を利用する。すなわち、二次スピネル生成時の膨脹性
については、シリカ系原料の収縮性で、また組織ポーラ
ス化及び強度低下については自己焼結性で補うものであ
る。
In the case of refractory materials such as amorphous refractory materials, the silica-based raw material having a particle size of 5 μm or less is inferior in heat resistance, has a large shrinkage property due to heating, and easily self-sinters, so that the refractory structure is In order to achieve the above-mentioned fluidization promoting purpose, etc., it is generally sufficient to use 1 wt% or less because it promotes oversintering of the silica raw material. In order to effectively utilize the property that the shrinkage property is large, the grain size of 5μ or less against the tissue porous formation and the strength decrease at the time of the secondary spinel formation accompanying the heating of the magnesia-based raw material and the alumina-based raw material having the particle size of 150 mesh or less. The self-sintering property and shrinkage property of the silica-based raw material are used. That is, the expandability at the time of forming the secondary spinel is compensated by the shrinkage of the silica-based raw material, and the structure porosity and the decrease in strength are compensated by the self-sintering property.

【0015】上記以外の残部組成については、アルミナ
原料及び凝結剤としてのアルミナセメントと必要に応じ
た特性を付与するための耐火性材料より成るもので、ア
ルミナ原料としては粒度40mm以下、好ましくは8mm以
下のものを適宜に採用することができ、必要に応じた特
性を付与するための耐火性材料としては炭化珪素、酸化
クロムその他の材料が適宜に採用される。凝結剤として
のアルミナセメントは適宜にけい酸ソーダ、コロイダル
シリカ、アミンシリケート、アルミナゾル、燐酸ソー
ダ、燐酸アルミニウムなどを併用し得る。
The remaining composition other than the above is composed of an alumina raw material, an alumina cement as a coagulant, and a refractory material for imparting properties as required. The alumina raw material has a particle size of 40 mm or less, preferably 8 mm. The following may be appropriately adopted, and silicon carbide, chromium oxide, and other materials are appropriately adopted as the refractory material for imparting the required characteristics. As the alumina cement as a coagulant, sodium silicate, colloidal silica, amine silicate, alumina sol, sodium phosphate, aluminum phosphate and the like can be appropriately used in combination.

【0016】本発明において用いるマグネシア系原料と
は、海水マグネシアクリンカー、電融マグネシアクリン
カー、水酸化マグネシウム、炭酸マグネシウムおよび天
然に産出するマグネサイトであるが不定形耐火物では水
を使用するため、天然に産出するマグネサイトは水和反
応による耐消化性に劣るため必ずしも、好ましくない。
The magnesia-based raw materials used in the present invention are seawater magnesia clinker, electrofused magnesia clinker, magnesium hydroxide, magnesium carbonate and naturally-occurring magnesite. The magnesite produced in the above is inferior in the digestion resistance due to the hydration reaction and is not always preferable.

【0017】また、本発明において用いるシリカ系原料
としては金属シリコンあるいはフェロシリコンなどの製
造時に発生する粉塵を集塵して得られる集塵粉が好まし
く、一般的にはシリカヒュームあるいは気化性シリカと
称され、粒径が小で、且つ球状をなしている。
Further, as the silica-based raw material used in the present invention, dust collecting powder obtained by collecting dust generated during production of metallic silicon or ferrosilicon is preferable, and generally silica fume or vaporizable silica is used. It has a small particle size and a spherical shape.

【0018】前述したようにして調整される耐火物原料
100wt%において、本発明によるものは MgO含有量が
3〜25wt%であり、またSiO2含有量は0.5〜6wt%で
あって、 MgO含有量が3%未満であると実用時における
摩耗深さおよび溶損深さの何れかが大となる傾向が認め
られ、一方この MgOが25wt%超となると、高温焼成後
の線変化率が低下するなどの好ましからざる傾向が認め
られる場合がある。SiO2含有量が0.5wt%未満のときは
曲げ強さなどが劣化し、一方6wt%超えにおいても高温
焼成時の線変化率などが低下する場合もある。
In the refractory raw material of 100 wt% adjusted as described above, the MgO content of the present invention is 3 to 25 wt%, and the SiO 2 content is 0.5 to 6 wt%. If the MgO content is less than 3%, it is observed that either the wear depth or the erosion depth tends to be large during practical use, while if the MgO content exceeds 25 wt%, the linear change rate after high temperature firing There may be an unfavorable tendency such as a decrease in If the SiO 2 content is less than 0.5 wt%, the bending strength and the like deteriorate, while if it exceeds 6 wt%, the linear change rate during high temperature firing may decrease.

【0019】なお本発明においては MgO含有量のSiO2
有量に対する比の値を3〜12とすることが粒径150
メッシュ以下のマグネシア系原料と粒径5μ以下のシリ
カ系原料の特性を充分に発揮させるために好ましい。即
ち耐火物原料100wt%における、 MgO含有量/SiO2
有量の比が3未満である場合、粒径5μ以下のシリカ系
原料の低耐熱性および収縮性というような欠点の方が大
きくなる傾向があり、また、12を越えると、粒径15
0メッシュ以下のマグネシア系原料とアルミナ系原料と
の加熱反応により二次スピネル生成にともなう膨脹性・
組織ポーラス化及び強度低下を抑制することが困難とな
る。 MgO含有量/SiO2含有量のより好ましい範囲は4〜
11である。
In the present invention, the value of the ratio of MgO content to SiO 2 content is set to 3 to 12 to obtain a particle size of 150.
This is preferable because the magnesia-based raw material having a mesh size or less and the silica-based raw material having a particle size of 5 μm or less can be sufficiently exhibited. That is, when the MgO content / SiO 2 content ratio in the refractory raw material of 100 wt% is less than 3, the drawbacks such as low heat resistance and shrinkage of the silica-based raw material having a particle size of 5 μ or less tend to be greater. And if it exceeds 12, the particle size is 15
Expansivity due to secondary spinel formation due to heating reaction of 0 mesh or less magnesia raw material and alumina raw material
It becomes difficult to suppress tissue porosity and strength reduction. More preferable range of MgO content / SiO 2 content is 4 to
Eleven.

【0020】[0020]

【実施例】本発明によるものの具体的な実施例について
説明すると、先ず本発明者等が採用した耐火原料の化学
組成は次の表1に示す如くである。
EXAMPLES Specific examples of the present invention will be described. First, the chemical composition of the refractory raw material adopted by the present inventors is as shown in Table 1 below.

【0021】[0021]

【表1】 [Table 1]

【0022】然して上記表1による耐火原料およびその
他の原料を用いた本発明による実施例は次の表2〜表5
に示す如くで、またこのような本発明実施例に対する比
較例は更に後述する表6と表7に示す如くである。
However, the examples according to the present invention using the refractory raw materials and other raw materials according to the above Table 1 are shown in the following Tables 2 to 5.
Further, comparative examples for the examples of the present invention are as shown in Tables 6 and 7 described later.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】[0028]

【表7】 [Table 7]

【0029】なお前記したような表2〜表7において1
000℃または1500℃の焼成における試験方法とし
ては、いずれも同一水量で耐火原料を混合し、型枠内に
振動鋳込みし、110℃×24時間乾燥したものを準備
して電気炉内の大気中で各々1000°×3時間、15
00℃×3時間焼成後各特性を測定した。 曲げ強さ: JIS−R2553に準ずる 線変化率: JIS−R2554に準ずる
In Table 2 to Table 7 as described above, 1
As a test method for firing at 000 ° C. or 1500 ° C., the refractory raw materials are mixed in the same amount of water, vibration-cast into a mold, and dried at 110 ° C. for 24 hours. At 1000 ° x 3 hours each, 15
Each property was measured after firing at 00 ° C. for 3 hours. Bending strength: According to JIS-R2553 Line change rate: According to JIS-R2554

【0030】耐蝕性の評価方法としては、溶鋼取鍋スラ
グと鉄を使用し高周波誘導炉にて1700℃×3時間侵
蝕させた後、溶損深さを測定した。
As a method for evaluating the corrosion resistance, molten steel ladle slag and iron were used and eroded in a high frequency induction furnace at 1700 ° C. for 3 hours, and then the erosion depth was measured.

【0031】耐摩耗性の評価方法としては、サンドブラ
スト法により、下記条件で試料の摩耗深さを測定した。 ・試料は、1000℃×3時間焼成した160×140
×40mmの形状のものを使用した。 ・元バルブ圧力:3.6kg/cm2 ・距離:185mm ・輻射角度:90° ・噴射材:粒径28
メッシュのコラングム ・ルズル径:φ5mm ・噴射時間:30秒
As a method of evaluating wear resistance, the wear depth of the sample was measured by the sandblast method under the following conditions. -The sample is 160 x 140 baked at 1000 ° C for 3 hours.
A 40 mm shape was used.・ Original valve pressure: 3.6kg / cm 2・ Distance: 185mm ・ Radiation angle: 90 ° ・ Injection material: Particle size 28
Korangum of mesh ・ Loose diameter: φ5mm ・ Injection time: 30 seconds

【0032】[0032]

【発明の効果】以上説明したような本発明によるときは
配合原料の加熱反応による二次スピネル生成に伴う体積
膨脹を適切に緩和調整せしめ、組織のポーラス化および
強度低下を有効に防止し、耐構造スポーリング性および
耐摩耗性を向上させることによって、マグネシア系原料
の特徴である高耐蝕性を充分に発揮せしめ、耐用性に優
れた溶融金属容器内張り用不定形耐火物を的確に提供し
得るものであるから工業的にその効果の大きい発明であ
る。
According to the present invention as described above, the volume expansion associated with the secondary spinel formation due to the heating reaction of the compounded raw materials is appropriately relaxed and controlled, and the porous structure and strength reduction are effectively prevented, and By improving the structural spalling property and wear resistance, the high corrosion resistance characteristic of magnesia-based raw materials can be fully exerted, and an amorphous refractory for lining a molten metal container with excellent durability can be accurately provided. Therefore, the invention is industrially effective.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 150メッシュ以下のマグネシア系原料
4〜25wt%と粒径5μm 以下のシリカ系原料0.5〜5
wt%および残部がアルミナ系原料、アルミナセメントと
必要に応じた特性を付与するための耐火性材料より成る
耐火物原料であり、該耐火物原料100wt%において M
gO含有量が3〜25wt%であり、SiO2含有量が0.5〜6
wt%であることを特徴とする溶融金属容器内張り用不定
形耐火物。
1. A magnesia-based raw material having a size of 150 mesh or less 4 to 25 wt% and a silica-based raw material having a particle size of 5 μm or less 0.5 to 5
wt% and the balance is a refractory raw material consisting of an alumina-based raw material, an alumina cement and a refractory material for imparting properties as required, and M at 100 wt% of the refractory raw material
gO content is 3-25 wt%, SiO 2 content is 0.5-6
An amorphous refractory for lining a molten metal container, characterized by being wt%.
【請求項2】 MgO 含有量のSiO2含有量に対する比の値
が3〜12であることを特徴とする請求項1に記載の溶
融金属容器内張り用不定形耐火物。
2. The amorphous refractory for lining a molten metal container according to claim 1, wherein the value of the ratio of the MgO content to the SiO 2 content is 3 to 12.
JP5193039A 1993-07-09 1993-07-09 Irregular refractories for lining molten metal containers Expired - Lifetime JP2960631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5193039A JP2960631B2 (en) 1993-07-09 1993-07-09 Irregular refractories for lining molten metal containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5193039A JP2960631B2 (en) 1993-07-09 1993-07-09 Irregular refractories for lining molten metal containers

Publications (2)

Publication Number Publication Date
JPH0725669A true JPH0725669A (en) 1995-01-27
JP2960631B2 JP2960631B2 (en) 1999-10-12

Family

ID=16301153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5193039A Expired - Lifetime JP2960631B2 (en) 1993-07-09 1993-07-09 Irregular refractories for lining molten metal containers

Country Status (1)

Country Link
JP (1) JP2960631B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972102A (en) * 1996-10-29 1999-10-26 North American Refractories Co. Hydraulically-bonded monolithic refractories containing a calcium oxide-free binder comprised of a hydratable alumina source and magnesium oxide
KR100473111B1 (en) * 1997-05-30 2005-07-05 하리마 세라믹 가부시키가이샤 Amorphous refractory materials for casting and molten steel containers
KR100511588B1 (en) * 1996-12-25 2005-12-14 구로사키요교 가부시키가이샤 Spray construction method of castable composition for non-slump spray
JP2015166290A (en) * 2014-03-03 2015-09-24 黒崎播磨株式会社 Monolithic refractory for tundish lining
JP2016052962A (en) * 2014-09-03 2016-04-14 新日鐵住金株式会社 Construction method of castable to abutting part of molten steel ladle and lining structure of liner part of molten steel ladle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972102A (en) * 1996-10-29 1999-10-26 North American Refractories Co. Hydraulically-bonded monolithic refractories containing a calcium oxide-free binder comprised of a hydratable alumina source and magnesium oxide
KR100511588B1 (en) * 1996-12-25 2005-12-14 구로사키요교 가부시키가이샤 Spray construction method of castable composition for non-slump spray
KR100473111B1 (en) * 1997-05-30 2005-07-05 하리마 세라믹 가부시키가이샤 Amorphous refractory materials for casting and molten steel containers
JP2015166290A (en) * 2014-03-03 2015-09-24 黒崎播磨株式会社 Monolithic refractory for tundish lining
JP2016052962A (en) * 2014-09-03 2016-04-14 新日鐵住金株式会社 Construction method of castable to abutting part of molten steel ladle and lining structure of liner part of molten steel ladle

Also Published As

Publication number Publication date
JP2960631B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP5361795B2 (en) Lined casting material
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP3514393B2 (en) Castable refractories for lining dip tubes or lance pipes used in molten metal processing
JPH0725669A (en) Castable refractory for lining of sintered-metal container
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH0633179B2 (en) Irregular refractory for pouring
JPH026373A (en) Cast amorphous refractory
JP2014084269A (en) Castable refractory for nonferrous metal refining vessel and precast block using the same
JP3014775B2 (en) Pouring refractory
JP3157310B2 (en) Refractory
JPH04130066A (en) Magnesia-olivine monolithic refractory material
JPH046150A (en) Magnesia-chrome refractories
JPH06199575A (en) Alumina-spinel castable refractory
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JPH02141480A (en) Castable refractory
JPH0725668A (en) Refractory for casting work
JPH0517241A (en) Aluminous castable refractory
JPH06172044A (en) Castable refractory of alumina spinel
JPH11240773A (en) Castable refractory
JP4181658B2 (en) Alumina-magnesia casting material
JPH07110792B2 (en) Basic amorphous refractory
JP3176836B2 (en) Irregular refractories
KR960006234B1 (en) Composition of refractory materials
JPH0465370A (en) Casting material for molten pig iron pretreating vessel
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

EXPY Cancellation because of completion of term