JPH046150A - Magnesia-chrome refractories - Google Patents

Magnesia-chrome refractories

Info

Publication number
JPH046150A
JPH046150A JP2105765A JP10576590A JPH046150A JP H046150 A JPH046150 A JP H046150A JP 2105765 A JP2105765 A JP 2105765A JP 10576590 A JP10576590 A JP 10576590A JP H046150 A JPH046150 A JP H046150A
Authority
JP
Japan
Prior art keywords
magnesia
refractories
alumina
aggregate
chrome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2105765A
Other languages
Japanese (ja)
Inventor
Hirotaka Shintani
新谷 宏隆
Nobuyuki Unosaki
鵜崎 暢之
Masayuki Sakaguchi
坂口 雅幸
Hiromasa Ishii
石井 宏昌
Tatsuo Kawakami
川上 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP2105765A priority Critical patent/JPH046150A/en
Publication of JPH046150A publication Critical patent/JPH046150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve spalling resistance by adding a prescribed percentage of alumina-based starting material of prescribed grain size to magnesia-chrome aggregate and allowing microcracks to occur in the structure of refractories. CONSTITUTION:Alumina-based starting material of <=5 mm grain size is added to magnesia-chrome aggregate by 0.5-10 wt. % of the amt. of the aggregate and they are molded and fired to form magnesia-chrome refractories. The alumina-based starting material reacts with the magnesia in the aggregate during firing and forms spinel. At this time, cubical expansion is caused and microcracks occur in the structure of the refractories. These cracks prevent the progress of cracking in the refractories and improve spalling resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐火物に関し、特にマグネシア−クロム質耐火
物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to refractories, and particularly to magnesia-chromium refractories.

〔従来の技術〕[Conventional technology]

マグネシア−クロム質耐火物は耐火度が高いのみならず
、塩基性スラグに対する耐食性に優れるという特長を有
し、従来から電気炉、・RHfiガス炉等で使用されて
いる。また、セメントロータリーキルン用耐火物として
も広く使用されている。
Magnesia-chromium refractories not only have high refractory properties but also have excellent corrosion resistance against basic slag, and have been used in electric furnaces, RHfi gas furnaces, and the like. It is also widely used as a refractory for cement rotary kilns.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

マグネシア−クロム質耐火物の中で、マグネシアとクロ
ム鉱を予備反応させた、いわゆる電融マグネシアクロム
タリンカーや焼結マグネシアクロムタリンカーなどの原
料を使用し、ダイレクトボンドの発達したマグネシアク
ロムリボンドれんがは熱間強度が大きく緻密なれんが組
織を有するので、更に優れた成績を示すが、耐スポーリ
ング性に劣るため用途が制限されている。
Among magnesia-chromium refractories, magnesia chrome ribbons are developed using raw materials such as so-called electrofused magnesia chrome tarinkar and sintered magnesia chromium talinker, which are made by pre-reacting magnesia and chromite, and have developed direct bonds. Bricks have a high hot strength and a dense brick structure, so they show even better results, but their use is limited because they have poor spalling resistance.

更に近年は、鋼の高級化志向が強く、・また、酸素ラン
スなどを設備した苛酷な条件下にあり、これに対応する
内張り材は更に耐用性の高いものが望まれている。
Furthermore, in recent years, there has been a strong trend toward higher quality steel, and the harsh conditions of equipment such as oxygen lances have created a demand for lining materials with even higher durability.

一般に、耐火物の熱衝撃等による亀裂の発生を完全に防
止することは不可能であるが、耐火物の耐用性は亀裂が
発生するか否かより、発生した亀裂が更に発達して耐火
物を貫通し、割れにまで至るか否かに左右されると考え
られる。従って、亀裂を小さく分散させることができれ
ば、耐火物はかえって割れ難くなり、実質的に耐スポー
リング性は向上することとなる。
Generally, it is impossible to completely prevent the occurrence of cracks in refractories due to thermal shock, etc., but the durability of refractories is determined by whether cracks occur or not. It is thought that it depends on whether or not the material penetrates through the surface and even cracks. Therefore, if the cracks can be made small and dispersed, the refractory will be less likely to crack, and the spalling resistance will be substantially improved.

この発明は上記の事情に鑑みて提案されたものであって
、耐スポーリング性に優れたマグネシアクロム質耐火物
を提供することを目的とする。
This invention has been proposed in view of the above circumstances, and an object thereof is to provide a magnesia chromium refractory having excellent spalling resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の目的を達成するために以下の手段を採用
している。すなわち、マグネシア−クロム質からなる骨
材に対し、粒径511以下のアルミナ系原料を外掛けで
0.5〜10重景%重量したマグネシア−クロム質耐火
物である。
The present invention employs the following means to achieve the above object. That is, it is a magnesia-chromium refractory made by adding 0.5 to 10 percent by weight of alumina-based raw material having a particle size of 511 or less to aggregate made of magnesia-chromium.

〔作 用〕[For production]

本発明はマグネシア−クロム質からなる骨材に対し、ア
ルミナ系原料を外掛け0.5〜10重量%添加すること
により、マグネシア−クロム質耐火物の組織中でマイク
ロクラックを発生させ、耐スポーリング性を向上させて
いる。すなわち、焼成時にアルミナ系原料が骨材中のマ
グネシアと反応して、スピネル化するに伴い、体積膨張
を起こして、該耐火物のMi繊織中マイクロクランクを
発生させる。このように予め耐火物中に導入したマイク
ロクラックが使用中に耐火物中に発生する亀裂の進展を
防止、あるいは、抑制することにより、耐スポーリング
性を向上させている。
In the present invention, microcracks are generated in the structure of magnesia-chromium refractories by adding 0.5 to 10% by weight of alumina-based raw materials to aggregates made of magnesia-chromium. Improves polling performance. That is, during firing, the alumina-based raw material reacts with magnesia in the aggregate and turns into spinel, causing volumetric expansion and generating microcranks in the Mi fibers of the refractory. In this way, the microcracks introduced into the refractory in advance prevent or suppress the growth of cracks that occur in the refractory during use, thereby improving the spalling resistance.

アルミナ系原料の添加量が、上記骨材に対し、外掛けで
0.5重量%未満ではマイクロクラックの発生が充分で
はなく、上記目的を達成できない。
If the amount of the alumina-based raw material added is less than 0.5% by weight based on the aggregate, the generation of microcracks will not be sufficient and the above objective will not be achieved.

同じく10重量%を超える添加量では焼成時に発生する
マイクロクランクが大きくなりすぎて強度低下を招くと
ともに、耐スポーリング性向上の効果が低減されるので
好ましくない。
Similarly, if the amount added exceeds 10% by weight, microcranks generated during firing become too large, leading to a decrease in strength, and the effect of improving spalling resistance is reduced, which is not preferable.

本発明に使用するアルミナ系原料の粒径は、通常0.1
〜5.O+n程度であるが、より好ましくは0.35〜
l、Qmmとすることで耐火物内での好適なマイクロク
ラックの発生を得ることができる。粒径が5 m++を
超えたアルミナ系原料では、得られる耐火物内の組織の
多孔質化が過度に進行して耐火性が低下する。
The particle size of the alumina raw material used in the present invention is usually 0.1
~5. It is about O+n, but more preferably 0.35 to
1, Qmm, it is possible to obtain suitable generation of microcracks within the refractory. If the alumina-based raw material has a particle size exceeding 5 m++, the structure within the obtained refractory will become porous to an excessive extent, resulting in a decrease in fire resistance.

〔実施例〕〔Example〕

以下、本発明に関し、実施例をもとに更に、詳細に説明
する。
Hereinafter, the present invention will be described in more detail based on examples.

焼結マグネシアクリンカ−(粒径5龍以下)と天然クロ
ム鉱(粒径51以下)および酸化クロム(微粉)とを配
合した骨材に、粒径0.35〜1゜0鶴のアルミナ系原
料を、第1表の実施例1〜3に示す割合で添加した後、
760kgf/cnlの圧力で成形し、更に、この成形
体を1800℃以上で焼成して得られたマグネシア−ク
ロム質耐火物の物性値を第1表に示す。また、比較例1
として、アルミナ系原料を添加していない従来のマグネ
シア−クロム質耐火物を上記実施例1〜3と同様の工程
で製造し、その物性値も併せて示す。
An alumina-based raw material with a particle size of 0.35 to 1°0 is added to aggregate that is a mixture of sintered magnesia clinker (particle size 5 or less), natural chromite (particle size 51 or less), and chromium oxide (fine powder). were added in the proportions shown in Examples 1 to 3 in Table 1,
Table 1 shows the physical properties of the magnesia-chromium refractory obtained by molding at a pressure of 760 kgf/cnl and firing this molded body at 1800° C. or higher. Also, Comparative Example 1
A conventional magnesia-chromium refractory to which no alumina-based raw material was added was manufactured in the same process as in Examples 1 to 3 above, and its physical property values are also shown.

それぞれの物性値は以下のようにして調べた。The physical property values of each were investigated as follows.

気孔率(%):JIS  R2205による。Porosity (%): According to JIS R2205.

嵩比重   :JIS  R2205による。Bulk specific gravity: According to JIS R2205.

曲げ強さ(kgf /ctA、 a t 1400℃)
:JIS  R2213による。
Bending strength (kgf/ctA, at 1400℃)
: According to JIS R2213.

溶損指数  :高周波炉内張法により評価1650℃×
4時間、溶鋼による溶損量を比較例1を100とする指
数で示す。
Melting index: Evaluated by high frequency furnace lining method 1650℃×
The amount of erosion due to molten steel for 4 hours is expressed as an index, with Comparative Example 1 being 100.

耐スポーリング性:耐火物を1200℃に保持した電気
炉に挿入し、15分間加熱、15分間空冷を行う試験を
1サイクルとして、耐火物の組織が剥落するまでのサイ
クル数を調べた。
Spalling resistance: A refractory was inserted into an electric furnace maintained at 1200° C., and one cycle was a test in which the refractory was heated for 15 minutes and air cooled for 15 minutes, and the number of cycles until the structure of the refractory peeled off was investigated.

第1表に示すように、気孔率、嵩比重、■4゜0℃での
曲げ強さのいずれも、比較例1として示した従来のマグ
ネシア−クロム質耐火物と顕著な差異は認められない。
As shown in Table 1, there is no noticeable difference in porosity, bulk specific gravity, and bending strength at 4° to 0°C compared to the conventional magnesia-chromium refractory shown as Comparative Example 1. .

また、実施例1.2においては溶損指数は比較例1より
も低い値を示した。
Further, in Example 1.2, the erosion index showed a lower value than in Comparative Example 1.

更に、実施例1〜3では、上記耐スポーリング性に関す
る試験で本発明の実施例1〜3のいずれも、比較例1よ
りも耐久ポーリング性の大幅な向」二を示す結果が得ら
れた。
Furthermore, in Examples 1 to 3, in the above-mentioned spalling resistance test, all of Examples 1 to 3 of the present invention showed a significant improvement in durable polling resistance compared to Comparative Example 1. .

尚、本発明は上記実施例に限られるものではなく、本発
明で開示した趣旨を逸脱しない範囲で種々の応用が可能
であることはいうまでもない。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, and that various applications can be made without departing from the spirit disclosed in the present invention.

〈以下余白〉 本発明による実施例と従来の耐火物との比較筒   1
   表 〔発明の効果〕 以」二、説明したように、本発明によれば、マグネシア
−クロム質耐火物において、骨材にアルミナ系原料を添
加することによって、従来のマグネシア−クロム質耐火
物の特長を損なうことなく1、耐スポーリング性の著し
く向上したマグネシアクロム質耐火物を提供することが
できる。
<Left below> Comparison of embodiments of the present invention and conventional refractories 1
Table [Effects of the Invention] As explained in Section 2, according to the present invention, in magnesia-chromium refractories, an alumina-based raw material is added to the aggregate, thereby improving the conventional magnesia-chromium refractories. 1. A magnesia chromium refractory with significantly improved spalling resistance can be provided without sacrificing its features.

Claims (1)

【特許請求の範囲】[Claims] (1)マグネシア−クロム質からなる骨材に対し、粒径
5mm以下のアルミナ系原料を外掛けで0.5〜10重
量%添加することを特徴とするマグネシア−クロム質耐
火物。
(1) A magnesia-chromium refractory characterized by adding 0.5 to 10% by weight of an alumina-based raw material having a particle size of 5 mm or less to an aggregate made of magnesia-chromium.
JP2105765A 1990-04-20 1990-04-20 Magnesia-chrome refractories Pending JPH046150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105765A JPH046150A (en) 1990-04-20 1990-04-20 Magnesia-chrome refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105765A JPH046150A (en) 1990-04-20 1990-04-20 Magnesia-chrome refractories

Publications (1)

Publication Number Publication Date
JPH046150A true JPH046150A (en) 1992-01-10

Family

ID=14416286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105765A Pending JPH046150A (en) 1990-04-20 1990-04-20 Magnesia-chrome refractories

Country Status (1)

Country Link
JP (1) JPH046150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314196A (en) * 1992-05-06 1993-11-26 Nippon Electron:Kk Graphic processing system
KR100481882B1 (en) * 1999-08-30 2005-04-11 주식회사 포스코 MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
KR100481883B1 (en) * 1999-08-30 2005-04-11 주식회사 포스코 PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
JP2010211829A (en) * 2010-06-07 2010-09-24 Canon Inc Information processing device, information processing method, and computer-readable recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314196A (en) * 1992-05-06 1993-11-26 Nippon Electron:Kk Graphic processing system
KR100481882B1 (en) * 1999-08-30 2005-04-11 주식회사 포스코 MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
KR100481883B1 (en) * 1999-08-30 2005-04-11 주식회사 포스코 PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
JP2010211829A (en) * 2010-06-07 2010-09-24 Canon Inc Information processing device, information processing method, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
KR100297091B1 (en) Chrome-free brick
CN1050591C (en) Fired microporous carbon-aluminium brick
JPH01278469A (en) Magnesia-calcia based refractory
JP3343297B2 (en) Fired refractory brick for lining
JPH046150A (en) Magnesia-chrome refractories
JP2003238250A (en) Yttria refractory
JP2960631B2 (en) Irregular refractories for lining molten metal containers
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2021147275A (en) Magnesia-spinel refractory brick
JP2951432B2 (en) Unfired refractory containing magnesia
JPH0633179B2 (en) Irregular refractory for pouring
JP3703104B2 (en) Magnesia-chromic unfired brick
JPH0324425B2 (en)
JP3209842B2 (en) Irregular refractories
JP2003002754A (en) Heat insulating castable refractory
JPH06172044A (en) Castable refractory of alumina spinel
JPH0421563A (en) Production of magnesia-chrome-based refractory
JP2003342080A (en) Castable chromia refractory and precast block manufactured using the same
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JPH0388761A (en) Magnesia-chrome refractory
JPH03141152A (en) Carbon-containing unburned refractory brick
JPH04243957A (en) Magnesia-chromium refractory
JPH03205347A (en) Magnesia-carbon brick
JPS63151661A (en) Non-burnt alumina-magnesia base brick
JPH04338161A (en) Burned magnesia-spinel brick