JPH03141152A - Carbon-containing unburned refractory brick - Google Patents

Carbon-containing unburned refractory brick

Info

Publication number
JPH03141152A
JPH03141152A JP1277792A JP27779289A JPH03141152A JP H03141152 A JPH03141152 A JP H03141152A JP 1277792 A JP1277792 A JP 1277792A JP 27779289 A JP27779289 A JP 27779289A JP H03141152 A JPH03141152 A JP H03141152A
Authority
JP
Japan
Prior art keywords
raw material
carbon
weight
refractory brick
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277792A
Other languages
Japanese (ja)
Inventor
Tsutomu Sato
力 佐藤
Hirotaka Shintani
新谷 宏隆
Tatsuo Kawakami
川上 辰男
Masayoshi Nakajima
正義 中嶋
Masanori Muroi
室井 允典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP1277792A priority Critical patent/JPH03141152A/en
Publication of JPH03141152A publication Critical patent/JPH03141152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve durability of carbon-containing unburned refractory brick by blending specific amounts of Al2O3 raw material, MgO raw material, C raw material, ZrO2 raw material, thermosetting resin and, if necessary, antioxidant and glass forming material, molding and heat-treating. CONSTITUTION:90-10wt.% total amounts of 3-50wt.% MgO raw material having 0.5-3mm particle diameter, such as calcined MgO having >=95% purity is blended with 3-50wt.% C raw material such as scaly graphite and the rest of Al2O3 having >=90wt.% purity, such as fused Al2O3 are blended with 10-90wt.% ZrO2 raw material having >=0.1mm particle diameter and containing partially stabilized ZrO2 and a thermosetting resin such as phenol resin. Further the blend is mixed with 3-30wt.% SiC as an antioxidant, 1-10wt.% (outer percentage) at least one or more of metallic powder such as Al, various kinds of carbonate, nitride and boride except SiC and 0.5-5wt.% (outer percentage) glass forming raw material such as refractory clay. Then the blend is molded, heat-treated in a nonoxidizing atmosphere at 150-600 deg.C to give carbon-containing unburned refractory brick.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は取鍋、溶銑予備処理容器、各種精錬炉の内張、
特にスラグライン部に使用する不焼成耐〔従来の技術〕 近年、製鋼工程においては鋼品質の高級化、省エネルギ
ー、製造プロセスの合理化等により耐火物の使用条件は
非常に過酷となっており、耐食性、耐スポーリング性に
優れた耐火物の開発が要望されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to ladles, hot metal pretreatment containers, linings for various smelting furnaces,
Unfired refractories used especially in slag line parts [Conventional technology] In recent years, the use conditions for refractories have become extremely harsh in the steel manufacturing process due to higher quality steel, energy conservation, rationalization of manufacturing processes, etc. There is a demand for the development of refractories with excellent spalling resistance.

かかる要望にこたえる耐火物として、例えば特公昭61
−882号公報に見られるように炭化珪素、アルミニウ
ム、更にはシリコンを添加することにより耐摩耗性を保
持しつつ耐衝撃性を向上させようとするアルミナ−3i
C−カーボンれんがが、また、特開昭60−19104
9号公報においては、アルミニウムのような低融点金属
を添加することによって熱間における強度を高めた焼結
アルミナ、合成ムライト、鱗状黒鉛、耐火粘土、フェノ
ール樹脂から構成されたれんがが、各々開示されている
が、例えば溶銑脱燐処理の際には、スラグに含存されて
いるCaOとSiO□との重量比が2以上に及ぶ、高塩
基度のスラグに曝されるので、スラグによる溶損の速度
が大きく、れんがは充分な耐用を示さない。
As a refractory that meets this demand, for example,
As seen in Publication No. 882, Alumina-3i attempts to improve impact resistance while maintaining wear resistance by adding silicon carbide, aluminum, and even silicon.
C-carbon brick, also JP-A-60-19104
No. 9 discloses bricks made of sintered alumina, synthetic mullite, scaly graphite, fireclay, and phenolic resin, each of which has increased hot strength by adding a low-melting point metal such as aluminum. However, during dephosphorization of hot metal, for example, the slag is exposed to highly basic slag in which the weight ratio of CaO and SiO The speed is high and the bricks do not have sufficient durability.

更に、特開昭60−191049号には合成ムライト及
び焼結アルミナの代わりにマグネシアを使用する例が示
されているが、スラグの塩基度が高い場合には、スラグ
への溶解量が少なく、前述のアルミナ−3iC−カーボ
ンれんがの場合よりも耐食性は良い。
Furthermore, JP-A-60-191049 shows an example of using magnesia instead of synthetic mullite and sintered alumina, but when the basicity of slag is high, the amount dissolved in the slag is small; The corrosion resistance is better than that of the alumina-3iC-carbon brick described above.

しかしながら、マグネシア−カーボンれんかにはガラス
形成成分が殆ど含まれていないことからガラスによる保
護層が形成されず、また稼動期間が長い箇所、あるいは
加熱と冷却が繰り返される箇所に使用する場合には、マ
グネシアの熱膨張率が大きいことがらスポーリングによ
り剥落したり、あるいはれんが組織が脆化して耐酸化性
が徐々に低下し、組織劣化が大きくなり、耐用性はアル
ミナ−5iC−カーボンれんがよりも低くなる場合があ
る。
However, since magnesia-carbon bricks contain almost no glass-forming components, they do not form a protective layer of glass, and when used in locations where the operating period is long or where heating and cooling are repeated. , Magnesia has a high coefficient of thermal expansion, so it may flake off due to spalling, or the brick structure will become brittle, gradually decreasing its oxidation resistance, resulting in greater structural deterioration, and its durability will be lower than that of alumina-5iC-carbon bricks. It may be lower.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、アルミナ−3iC−カーボンれんがであ
れば耐食性が劣り、また、マグネシア−カーボンれんが
であれば耐酸化性、耐スポーリング性において劣るとい
うように、従来のれんがは、例えば溶銑予備処理容器の
ようなスラグライン部用れんがとして使用するにあたっ
ての充分な耐用性を有していないというのが現状である
As mentioned above, alumina-3iC-carbon bricks have poor corrosion resistance, and magnesia-carbon bricks have poor oxidation resistance and spalling resistance. The current situation is that they do not have sufficient durability for use as bricks for slag line parts such as containers.

そこで、上記の事情に鑑み、本発明においては耐スポー
リング性に優れ、高塩基度スラグにさらされても耐食性
にも優れるだけでなく、長期間稼動しても酸化による組
織劣化が起き難い優れた耐用性を示す含炭素不焼成耐火
れんがを提供することを目的とする。
Therefore, in view of the above circumstances, the present invention not only has excellent spalling resistance and corrosion resistance even when exposed to high basicity slag, but also has an excellent structure that is resistant to structural deterioration due to oxidation even after long-term operation. The purpose of the present invention is to provide a carbon-containing unfired refractory brick that exhibits excellent durability.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明では、アルミナ質原
料、マグネシア質原料、カーボン譬原料の含量90〜1
0重量%と、ジルコニア質原料10〜90重量%、及び
熱硬化性樹脂から成る含炭素不焼成耐火れんがを提供す
るものである。
In order to achieve the above object, in the present invention, the content of the alumina raw material, magnesia raw material, and carbon raw material is 90 to 1.
The present invention provides a carbon-containing unfired refractory brick comprising 0% by weight, 10 to 90% by weight of a zirconia raw material, and a thermosetting resin.

更に、必要に応じてこれに酸化防止剤として、例えばA
n、Si、Mg、MgA/等の金属の微粉、S iC,
Ba C,BN、S i、N4等の炭化物、窒化物、硼
化物、フリット、硼珪酸ガラス等の低融点無機材料を加
え、混練・成形し、加熱処理を施すことも可能である。
Furthermore, if necessary, as an antioxidant, for example, A
Fine powder of metals such as n, Si, Mg, MgA/, SiC,
It is also possible to add low melting point inorganic materials such as carbides, nitrides, borides, frits, borosilicate glass, etc. such as Ba C, BN, Si, and N4, knead and shape, and heat-treat.

〔作用〕[Effect]

耐火性骨材として使用されるジルコニアは、粒径が0.
1鰭以上の部分安定化ジルコニア及び未安定化ジルコニ
アが使用できる。容積安定性の点では、部分安定化ジル
コニアを使用するのが好ましいが、耐食性がやや低下す
る傾向がある。未安定化ジルコニアは、耐食性の点では
良好であるが、容積安定性が劣る傾向がある。
Zirconia used as refractory aggregate has a particle size of 0.
One or more fins of partially stabilized zirconia and unstabilized zirconia can be used. In terms of volumetric stability, it is preferable to use partially stabilized zirconia, but corrosion resistance tends to be slightly lowered. Unstabilized zirconia has good corrosion resistance, but tends to have poor volumetric stability.

従って、ジルコニアの使用量を多くする場合には部分安
定化ジルコニアと未安定化ジルコニアを併用するのが好
ましい。
Therefore, when increasing the amount of zirconia used, it is preferable to use partially stabilized zirconia and unstabilized zirconia together.

ジルコニア添加によってスラグに対する耐食性が向上す
るメカニズムはジルコニアの融点が2600℃と高温で
ある上に、れんがから溶出したジルコニアが塩基度の高
いスラグ中で、ZrO□とCaOの固溶体を形成し、し
かもその固溶体が高融点を有することから、スラグ中に
高融点の粒子が懸濁することによってスラグの粘性を見
掛は上著しく増加して、スラグ−メタル界面におけるス
ラグの運動を抑制し、その結果れんがの溶損量が低下す
ることによるものと考えられる。
The mechanism by which the corrosion resistance against slag is improved by adding zirconia is that zirconia has a high melting point of 2,600°C, and zirconia eluted from bricks forms a solid solution of ZrO□ and CaO in the highly basic slag. Since the solid solution has a high melting point, the suspension of particles with a high melting point in the slag significantly increases the apparent viscosity of the slag, suppressing the movement of the slag at the slag-metal interface, and resulting in the formation of bricks. This is thought to be due to a decrease in the amount of erosion.

ジルコニアの配合量は10重量%未満では耐食性の向上
効果が少なく、90重量%を超えると耐スポーリング性
が低下する上に、耐食性の向上に対するコストの比が大
きくなる。従って、ジルコニアの配合量は10〜90重
量%が良く、より好ましくは20〜50重量%である。
If the amount of zirconia is less than 10% by weight, the effect of improving corrosion resistance will be small, and if it exceeds 90% by weight, not only will the spalling resistance decrease, but the ratio of cost to improvement in corrosion resistance will increase. Therefore, the amount of zirconia blended is preferably 10 to 90% by weight, more preferably 20 to 50% by weight.

また、その粒度は径0.1鶴以上が良く、0,1ms以
下ではスラグの主成分であるCaOとの反応が促進され
、滓化され易くなるので好ましくない。
Further, the particle size is preferably 0.1 ms or more in diameter, and if it is 0.1 ms or less, the reaction with CaO, which is the main component of slag, is accelerated and it becomes easy to become slag, which is not preferable.

マグネシアはその融点が2800℃と高く、塩基性材料
であるために転炉スラグや脱燐スラグのようなCaOと
Sin、との重量比の値が2以上の高塩基度スラグに対
する耐食性に優れる。また、耐火材使用中にアルミナと
反応してスピネル(MgA、/z Oa )を生成し、
耐火材に残存膨張性を付与して容積安定性を増大させ、
目地開きや亀裂の生成による損耗の増大を抑制する。さ
らに第3成分であるZrO□とも反応して、ZrO□に
固溶してジルコニアの脱安定化を抑制し、未安定化ある
いは部分安定化ジルコニアの安定化に寄与する作用があ
る。従ってマグネシアは容積安定性並びにジルコニアの
高耐食性を十分発揮させるためには必要不可欠な成分で
ある。
Magnesia has a high melting point of 2800° C. and is a basic material, so it has excellent corrosion resistance against high basicity slags such as converter slags and dephosphorization slags in which the weight ratio of CaO to Sin is 2 or more. Also, during use of refractory materials, it reacts with alumina to produce spinel (MgA, /z Oa),
Adding residual expansion to refractory materials to increase volumetric stability,
Suppresses increased wear and tear due to joint opening and crack formation. Furthermore, it reacts with ZrO□, which is the third component, and forms a solid solution in ZrO□, thereby suppressing destabilization of zirconia and contributing to the stabilization of unstabilized or partially stabilized zirconia. Therefore, magnesia is an essential component in order to fully exhibit the volumetric stability and high corrosion resistance of zirconia.

マグネシア質原料としては純度95%以上の焼結マグネ
シア、天然マグネシア、電融マグネシアのいずれも使用
することができる。また、その粒度は径0.5〜3ml
の中粒から粗粒で用いることが好ましい。その添加量は
3〜50重量%が適切である。3重量%以下ではスピネ
ルの生成量あるいはジルコニアへの固溶量が少ないため
に容積安定作用が不十分であり、また50重量%以上で
は熱膨張率が大きいというマグネシアの特性が顕在化す
るため、耐スポーリング性が低下する。更に、スピネル
の生成量が多くなるために残存膨張率も大きくなり、れ
んが間のせり合いよる圧壊あるいは剥離損傷が発生する
ようになる。
As the magnesia raw material, any of sintered magnesia, natural magnesia, and fused magnesia with a purity of 95% or more can be used. In addition, the particle size is 0.5 to 3 ml in diameter.
It is preferable to use medium to coarse particles. The appropriate amount of addition is 3 to 50% by weight. If it is less than 3% by weight, the volume stabilizing effect is insufficient because the amount of spinel produced or the amount of solid solution in zirconia is small, and if it is more than 50% by weight, the characteristic of magnesia, which has a large coefficient of thermal expansion, becomes obvious. Spalling resistance decreases. Furthermore, as the amount of spinel produced increases, the residual expansion coefficient also increases, causing crushing or peeling damage due to contact between bricks.

カーボン質原料としては耐酸化性と耐スポーリング性に
優れている鱗状黒鉛が使用されるが、場合によっては、
アルミニウムあるいはシリコン等との反応性が良好なカ
ーボンブランクあるいはピッチ等も併用できる。カーボ
ンの配合量は5重量%未満では耐スポーリング性が低く
、50重■%を超えると酸化によるMi織劣化が大きく
なるので3〜50重量%の範囲が良く、10〜30重世
%の配合が特に好ましい。
Scale graphite is used as a carbonaceous raw material because it has excellent oxidation resistance and spalling resistance, but in some cases,
A carbon blank or pitch having good reactivity with aluminum or silicon can also be used. If the carbon content is less than 5% by weight, the spalling resistance will be low, and if it exceeds 50% by weight, the deterioration of the Mi fabric due to oxidation will increase, so a range of 3 to 50% by weight is best, and a carbon content of 10 to 30% by weight is good. Particularly preferred are formulations.

アルミナ質原料は粗粒あるいは微粉のいずれで使用して
もよいが、強固なれんが組織を構成するためにジルコニ
アは径0・5〜511の粗粒で用いることが望ましく、
そのためにはジルコニア添加量の少ない配合のれんがで
は粗粒がら微粉にわたる種々の粒度のアルミナを添加す
る必要があるが、ジルコニア添加量の多い配合のれんが
では径l龍以下の中粒から微粉のアルミナのみでもよい
。アルミナとしては90%以上の純度を有する原料が好
ましく、この点から高純度電融アルミナが特に好ましい
。アルミナの配合量はマグネシア、カーボン、ジルコニ
アを除いた残部である。
The alumina raw material may be used in the form of coarse particles or fine powder, but in order to form a strong brick structure, it is desirable to use zirconia in the form of coarse particles with a diameter of 0.5 to 511 mm.
To achieve this, it is necessary to add alumina of various particle sizes ranging from coarse to fine to bricks with a small amount of zirconia added, but with bricks with a large amount of zirconia added, it is necessary to add alumina of medium to fine particles with a diameter of less than 1. You can also use only As the alumina, a raw material having a purity of 90% or more is preferable, and from this point of view, high-purity fused alumina is particularly preferable. The amount of alumina blended is the balance excluding magnesia, carbon, and zirconia.

本発明では必要に応じてStCを添加することができる
。一般にれんがは使用に伴ない、COガスによって徐々
に酸化が進行するが、SiCはそのれんが中にあっては
酸化を防止する働きがある。
In the present invention, StC can be added as necessary. Generally, as bricks are used, oxidation progresses gradually due to CO gas, but SiC in the bricks has the function of preventing oxidation.

SiCの配合量が3重量%未満では長期間の稼動中の耐
酸化性が不十分となり、また30重量%を超えるとれん
がの耐酸化性の面では問題ないが、SiC+2CO=S
iOi +3C なる反応により生成する5inZ量が多くなるために耐
食性が低下し、また、れんが組織が緻密化°するために
剥離損傷を起こし易くなる。従って、その配合量は3〜
30重量%、特に5〜15重量%の範囲が最も好ましい
If the blending amount of SiC is less than 3% by weight, oxidation resistance during long-term operation will be insufficient, and if it exceeds 30% by weight, there will be no problem in terms of oxidation resistance of the brick, but SiC + 2CO = S
Since the amount of 5inZ produced by the iOi +3C reaction increases, corrosion resistance decreases, and the brick structure becomes denser, making it more likely to cause peeling damage. Therefore, the blending amount is 3~
Most preferred is a range of 30% by weight, especially from 5 to 15% by weight.

本発明ではカーボン質原料の酸化防止剤とじてSiC以
外に各種の炭化物、硼化物、窒化物、および金属微粉や
ガラス形成原料を添加することがテキる。金属粉末とし
ては、アルミニウム、シリコン、マグネシウム、カルシ
ウム、クロム等の中の1種又は2種以上の混合物又はそ
の合金が使用できる。金属粉末は耐火れんが中の酸素分
圧を低下させてカーボンの酸化を抑制すると共に、カー
ボンと反応して炭化物を、生成しカーボン結合を強化す
る作用により、熱間強度を高くする効果がある。金属粉
末の添加量は上記の骨材配合に対し、1重量%未満では
効果が少なく、10重世%を超えると熱膨張が大きくな
りすぎて耐スポーリング性が低下したり、あるいは、酸
化された後の酸化物の組成物によっては耐食性が低下す
る。従って、その添加量は1〜10重量%、特に、2〜
5重星%の範囲の添加量が好ましく、また金属粉末の粒
度は小さい程効果的である。
In the present invention, it is possible to add various carbides, borides, nitrides, metal fine powders, and glass forming raw materials in addition to SiC as antioxidants for the carbonaceous raw material. As the metal powder, one or a mixture of two or more of aluminum, silicon, magnesium, calcium, chromium, etc., or an alloy thereof can be used. Metal powder has the effect of increasing hot strength by reducing the oxygen partial pressure in the refractory brick and suppressing carbon oxidation, as well as reacting with carbon to generate carbide and strengthening carbon bonds. If the amount of metal powder added is less than 1% by weight with respect to the above aggregate mixture, the effect will be small, and if it exceeds 10% by weight, the thermal expansion will become too large and the spalling resistance will decrease, or oxidation will occur. Corrosion resistance decreases depending on the composition of the oxide after oxidation. Therefore, the amount added is 1 to 10% by weight, especially 2 to 10% by weight.
The amount added is preferably in the range of 5%, and the smaller the particle size of the metal powder, the more effective it is.

ガラス形成原料としては、耐火粘土、セリサイト、長石
、シリカフラワー、水ガラス粉末、硼砂、硼珪酸ガラス
、フリット等のシリカ又は酸化硼素が主体の原料の1種
以上が使用できる。
As the glass forming raw material, one or more of raw materials mainly composed of silica or boron oxide, such as fireclay, sericite, feldspar, silica flour, water glass powder, borax, borosilicate glass, and frit, can be used.

ガラス形成原料は高温度域においては液相を生成するた
めに、れんが表面からの酸素の拡散を著しく抑制するこ
とができる。しかし、ガラス質形成原料の添加量が多す
ぎた場合には骨材が液相中に浮遊するような状態になる
ために、熱間強度及び耐食性が著しく低下する。ガラス
形成原料の添加量は、骨材配合に対し0.5重量%未満
では耐酸化性が不十分であり、5重量%を超えると熱間
強度及び耐食性が低下する。従って、0.5〜5重量%
、特に1〜3重量%が好ましい添加量である。
Since the glass-forming raw material generates a liquid phase in a high temperature range, it can significantly suppress the diffusion of oxygen from the brick surface. However, if the amount of the glass-forming raw material added is too large, the aggregate will be suspended in the liquid phase, resulting in a significant decrease in hot strength and corrosion resistance. If the amount of the glass forming raw material added is less than 0.5% by weight based on the aggregate mixture, oxidation resistance will be insufficient, and if it exceeds 5% by weight, hot strength and corrosion resistance will decrease. Therefore, 0.5-5% by weight
A particularly preferable addition amount is 1 to 3% by weight.

上述した金属粉末及びガラス形成原料はそれぞれ単独で
も効果があるが、2つを併用するとさらに耐酸化性の向
上に効果的である。
Although each of the metal powder and glass forming raw material described above is effective when used alone, a combination of the two is more effective in improving oxidation resistance.

さらに、熱硬化性樹脂としてはフェノール樹脂、フラン
樹脂、エポキシ樹脂、変性フェノール樹脂、メラミン樹
脂、尿素樹脂等が使用できるが、残留炭素量及び価格の
点で、フェノール樹脂又はフェノール変性樹脂が特に好
ましい。
Further, as the thermosetting resin, phenol resin, furan resin, epoxy resin, modified phenol resin, melamine resin, urea resin, etc. can be used, but phenol resin or phenol-modified resin is particularly preferred in terms of residual carbon content and price. .

上述した原料構成による配合を常法によって混練・成形
した後、150〜600℃の非酸化性雰囲気で加熱処理
(すなわち硬化処理)されることによって本発明の含炭
素不焼成耐火れんがが得られる。
The carbon-containing unfired refractory brick of the present invention is obtained by kneading and molding the above-mentioned raw material composition by a conventional method and then heat-treating (i.e., hardening treatment) in a non-oxidizing atmosphere at 150 to 600°C.

〔実施例〕〔Example〕

以下、第1表〜第4表に基づいて、本発明の実施例につ
いて説明する。
Examples of the present invention will be described below based on Tables 1 to 4.

尚、以下の実施例において、成形、硬化処理条件は以下
の通りである。
In addition, in the following examples, molding and curing treatment conditions are as follows.

・成形 : 油圧プレス ・形状 :  114X115X65mm・成形圧: 
 1500kgf/cnl・硬化処理:200℃×24
時間 去1皿上 第1表に示す配合割合で混練、成形、硬化処理を行い、
不焼成A1z O:I  MgOZr0zC系れんがを
得た。本実施例では種々の粒度のZrO□とアルミナと
の配合量を変えて、各種物性の測定試験を行った。Zr
O□を添加しない従来品が比較例1、過度のZrO,を
添加し、アルミナを添加しないものを比較例9として示
した。
・Forming: Hydraulic press ・Shape: 114X115X65mm ・Forming pressure:
1500kgf/cnl・Curing treatment: 200℃×24
Knead, mold, and harden at the mixing ratio shown in Table 1 on one plate for an hour.
An unfired A1z O:I MgOZr0zC brick was obtained. In this example, measurements of various physical properties were carried out by changing the blending amount of ZrO□ of various particle sizes and alumina. Zr
Comparative Example 1 is a conventional product in which O□ is not added, and Comparative Example 9 is a product in which an excessive amount of ZrO is added and no alumina is added.

従来品(比較例品阻1)に対し、マグネシアとジルコニ
アを添加する本発明品患2〜8は耐食性に優れ、残存膨
張率は大きい。
Compared to the conventional product (comparative example product No. 1), the products No. 2 to No. 8 of the present invention to which magnesia and zirconia are added have excellent corrosion resistance and a large residual expansion rate.

比較測高1b9は耐食性に優れるものの耐久ポーリング
性に劣り、かつ高価なジルコニア原料を95重量%も配
合しているので耐食性の向上に対するコストの比が大き
い。
Although Comparative Height Measurement 1b9 has excellent corrosion resistance, it is inferior in durable poling property, and contains 95% by weight of expensive zirconia raw material, so the ratio of cost to improvement in corrosion resistance is large.

〈以下余白〉 ス11影 第2表に示す配合割合で混練、成形、硬化処理を行い、
不焼成Alz O:I −MgOZr0zC系れんがを
得た。本実施例では種々の粒度のマグネシアの配合量を
変えて、上記と同様の各種物性の測定試験を行った。マ
グネシアを添加しない従来品が比較例m1O1過度のマ
グネシアを添加したものを比較例11h17として示し
た。
〈Left below〉 Knead, mold, and harden the mixture according to the proportions shown in Table 2.
An unfired AlzO:I-MgOZr0zC brick was obtained. In this example, various physical property measurement tests similar to those described above were conducted by changing the blending amount of magnesia having various particle sizes. A conventional product to which no magnesia was added was Comparative Example m1, and a product to which an excessive amount of magnesia was added was shown as Comparative Example 11h17.

本発明品N11i1〜16はマグネシアの添加により残
存膨張率は大きくなり、溶損量は小さくなる。
In the products of the present invention N11i1 to N11i16, the residual expansion coefficient increases and the amount of erosion decreases due to the addition of magnesia.

本発明品1’hll〜16に対し、比較例品隘10は残
存膨張率がやや小さく、また比較測高11h17は耐ス
ポーリング性に劣るためいずれも適当でない。
Compared to products 1'hl to 16 of the present invention, Comparative Example Product 10 has a slightly smaller residual expansion coefficient, and Comparative Height Measurement 11h17 has inferior spalling resistance, so none of them are suitable.

〈以下余白〉 271− 去財I引l 第3表に示す配合割合で混練、成形、硬化処理を行い、
不焼成A (2203Mg OZ r 02−C系れん
がを得た0本実施例では黒鉛の配合量を変えて、上記と
同様の各種物性の測定試験を行った。黒鉛を添加しない
従来品が比較例m18、過度の黒鉛を添加したものを比
較例患23として示した。
〈Left below〉 271-Removed property I Knead, mold, and harden at the mixing ratio shown in Table 3,
Unfired A (2203Mg OZ r 02-C brick was obtained) In this example, the amount of graphite blended was changed and various physical property measurement tests were conducted in the same manner as above.A conventional product without graphite added was used as a comparative example. Comparative Example No. 23 was obtained by adding an excessive amount of graphite to m18.

黒鉛を添加しない比較例高嵩18は耐スポーリング性に
劣り、黒鉛添加量が50重量%を超える比較例高尚23
では耐酸化性が著しく低下し、また、残存膨張率も小さ
くなる。
Comparative example Takasho 18, which does not contain graphite, has poor spalling resistance, and comparative example Takasho 23, in which the amount of graphite added exceeds 50% by weight.
In this case, the oxidation resistance is significantly reduced, and the residual expansion coefficient is also reduced.

く以下余白〉 ス」l達土 第4表に示す配合割合で混練、成形、硬化処理を行い、
不焼成Alz Os  MgOZr0zC系れんがを得
た。本実施例ではS I Cs 84 C1硼珪酸ガラ
スおよび金属粉末(、l、MgA1合金、金属シリコン
)の配合量を変えて、上記と同様の各種物性の測定試験
を行った。B、Cおよび硼珪酸ガラスを添加しないもの
を比較例11h32として示した。
(Left below) Knead, mold and harden the clay according to the proportions shown in Table 4.
An unfired Alz Os MgOZr0zC brick was obtained. In this example, various physical property measurement tests similar to those described above were conducted by changing the blending amounts of S I Cs 84 C1 borosilicate glass and metal powder (1, MgA1 alloy, metal silicon). Comparative Example 11h32 was shown as Comparative Example 11h32 in which B, C and borosilicate glass were not added.

比較測高N1132は本発明品磁25のSiCの配合量
5重量%を40重量%にまで増量したものであり、その
溶損指数は74から120まで増加しており、耐食性の
低下の著しいことがわかる。
Comparative measurement N1132 has the SiC content increased from 5% by weight of the present invention product 25 to 40% by weight, and its erosion index has increased from 74 to 120, indicating a significant decrease in corrosion resistance. I understand.

本発明品11kL26および11h27ではそれぞれ/
1の増量、MgA1の添加を行い、その結果、耐食性、
耐酸化性を向上させ、熱間曲げ強さを大きくする作用が
ある。
The products of the present invention, 11kL26 and 11h27, have /
1 and added MgA1, resulting in corrosion resistance,
It has the effect of improving oxidation resistance and increasing hot bending strength.

〈以下余白〉 273− 去」1生i 第1表に示す本発明品II&14を250 t ?R銑
車のスラグライン部に比較例品隘1 (従来品)ととも
に内張すした。使用回数187回目に点検したところ、
本発明高嵩4のれんがを内張すした箇所は突出していて
、その損耗速度は0.18n+/chであり、従来高嵩
1のそれは0.30+u/chであった。すなわち、本
発明品隘4は従来品磁1よりも約40%損耗速度が遅く
、耐用性に優れる結果を得た。
<Alorary margin> 273-3- "1 Life 1 II & 14 shown in Table 1 250 t? The slag line part of the R pig iron car was lined with Comparative Example Product No. 1 (conventional product). When I inspected it for the 187th time I used it,
The brick-lined area of the high-bulk 4 of the present invention is prominent, and its wear rate is 0.18 n+/ch, whereas that of the conventional high-bulk 1 was 0.30+u/ch. That is, the product No. 4 of the present invention had a wear rate about 40% slower than the conventional product No. 1, and had excellent durability.

尚、上記第1表〜第4表に挙げる各種物性を測定する方
法を以下に列挙する。
The methods for measuring the various physical properties listed in Tables 1 to 4 above are listed below.

i、物理試験: J I S  R2205−74によ
る。
i. Physical test: According to JIS R2205-74.

ii 、圧縮試験: J I S  R2206−77
による。
ii. Compression test: JIS R2206-77
by.

iii 、曲げ試験: J I S  R2213−7
8による。
iii. Bending test: JIS R2213-7
According to 8.

iv、残存膨張収縮率の測定: 25X25X114鶴の試片をコークスプリーズと共に
SiCサガーに詰め、1400℃×2時間処理した際の
試片の長さの方向の変化率を測定(3回反復)。
iv. Measurement of residual expansion/shrinkage rate: 25 x 25 x 114 crane specimens were packed in a SiC sagger with coke please, and the rate of change in the length direction of the specimens was measured when treated at 1400°C for 2 hours (repeated 3 times).

■、耐食性(溶損量の測定):高周波炉内張法。■Corrosion resistance (measurement of the amount of erosion): High frequency furnace lining method.

処理剤として脱燐剤〔配合割合二酸化鉄50%9石灰(
Cab)30%、ホタル石(CaFz)20%〕とソー
ダ灰を用い、1450℃で1時間毎に交互に投入−排滓
し、計4回反復する。
As a treatment agent, a dephosphorizing agent (compounding ratio: iron dioxide 50%, 9 lime (
Using fluorite (CaFz) 30%, fluorite (CaFz) 20%] and soda ash, the process was repeated 4 times in total at 1450° C. by alternately charging and draining every hour.

テスト(処理)終了後、試片の縦方向断面の溶損面積を
計測する。
After the test (processing) is completed, measure the erosion area of the longitudinal cross section of the specimen.

vi、酸化摩耗試験: 予め酸素−プロパンバーナで1200℃に保持した横型
円筒炉に40u+角の立方体状の試片を10〜15個投
入し、17rpmで30分間回転後取り出した際の試験
前後の試片の重量減少率を求め、供試れんが間で比較し
た。
vi. Oxidation wear test: 10 to 15 40U square cube specimens were placed in a horizontal cylindrical furnace previously maintained at 1200°C with an oxygen-propane burner, rotated at 17 rpm for 30 minutes, and then taken out. The weight loss rate of the specimens was determined and compared between the test bricks.

vi、熱間曲げ試験: 25X25X150の試片をコークスプリーズに埋め、
1400℃で30分間保持後、スパン長さ120鶴で3
点法で測定。
vi. Hot bending test: A 25x25x150 specimen was buried in coke pleat,
After holding at 1400℃ for 30 minutes, the span length was 120℃.
Measured by point method.

vii 、スポーリング試験; 1500℃に保持した溶鋼中へ30X30X 150 
mmの試片を3分間浸漬−空冷のサイクルを2回行った
際の試料表面に見られる亀裂で判定。
vii, Spalling test; 30X30X 150 into molten steel kept at 1500℃
Judgment is made by the cracks found on the sample surface when a 3-minute immersion-air cooling cycle is performed on a 3-mm sample.

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明にあってはジルコニアを使用して
いるので、スラグ中に溶出したジルコニアがZrO□と
CaOの固溶体を形成して、見掛は上スラグの粘性を著
しく増加させて、スラグ−メタル界面におけるスラグの
運動を抑制することから、れんがの耐食性を著しく高め
ることができ、マグネシアを使用しているので、目地開
きが抑制され、カーボンを使用しているので耐久ポーリ
ング性を高めることができ、更にSiCを使用すること
により長期間にわたって酸化防止効果が維持でき、各種
の炭化物、硼化物、窒化物、金属微粉、およびガラス形
成原料等の酸化防止剤を添加することによって、より耐
酸化性が向上するため、従来のれんがでは到達し得なか
った耐用性を得ることが可能となった。
As mentioned above, since zirconia is used in the present invention, the zirconia eluted into the slag forms a solid solution of ZrO□ and CaO, which apparently significantly increases the viscosity of the upper slag. By suppressing the movement of slag at the slag-metal interface, the corrosion resistance of bricks can be significantly improved. Since magnesia is used, joint opening is suppressed, and since carbon is used, durability against poling is improved. Furthermore, by using SiC, the antioxidant effect can be maintained for a long period of time, and by adding antioxidants such as various carbides, borides, nitrides, metal fine powders, and glass forming raw materials, Due to improved oxidation resistance, it has become possible to obtain durability that was not possible with conventional bricks.

本発明による含炭素不焼成れんがをスラグライン部に内
張すすることによって、寿命の大幅な向上、溶損バラン
スの改善、補修サイクルの延長、ライニングれんがの1
巻化、窯炉の軽量化、メタル受容量の増加等のメリット
が得られるものである。また、その用途としては転炉、
電気炉等の精錬炉、混銑車、溶銑及び溶鋼鍋、樋等のス
ラグライン部でその効果を発揮できる。
By lining the slag line with carbon-containing unfired bricks according to the present invention, the service life can be greatly improved, the balance of erosion and damage can be improved, the repair cycle can be extended, and the lining brick can be
This provides benefits such as winding, lighter weight of the kiln, and increased metal capacity. In addition, its uses include converters,
Its effects can be demonstrated in slag line parts such as refining furnaces such as electric furnaces, pig iron mixing cars, hot metal and molten steel ladle, and gutters.

Claims (1)

【特許請求の範囲】 〔1〕アルミナ質原料、マグネシア質原料、カーボン質
原料の合量90〜10重量%と、ジルコニア質原料10
〜90重量%、及び熱硬化性樹脂から成ることを特徴と
する含炭素不焼成耐火れんが。 〔2〕炭化物、硼化物、窒化物、および金属微粉の少な
くとも1種を外掛け1〜10重量%添加したことを特徴
とする請求項第1項に記載の含炭素不焼成耐火れんが。 〔3〕ガラス形成原料を外掛け0.5〜5重量%添加し
たことを特徴とする請求項第1項乃至第2項に記載の含
炭素不焼成耐火れんが。
[Scope of Claims] [1] Total amount of alumina raw material, magnesia raw material, and carbon raw material 90 to 10% by weight, and 10% by weight of zirconia raw material
90% by weight of a carbon-containing unfired refractory brick, and a thermosetting resin. [2] The carbon-containing unfired refractory brick according to claim 1, further comprising 1 to 10% by weight of at least one of carbides, borides, nitrides, and fine metal powders. [3] The carbon-containing unfired refractory brick according to any one of claims 1 to 2, wherein the glass-forming raw material is added in an amount of 0.5 to 5% by weight.
JP1277792A 1989-10-24 1989-10-24 Carbon-containing unburned refractory brick Pending JPH03141152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277792A JPH03141152A (en) 1989-10-24 1989-10-24 Carbon-containing unburned refractory brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277792A JPH03141152A (en) 1989-10-24 1989-10-24 Carbon-containing unburned refractory brick

Publications (1)

Publication Number Publication Date
JPH03141152A true JPH03141152A (en) 1991-06-17

Family

ID=17588354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277792A Pending JPH03141152A (en) 1989-10-24 1989-10-24 Carbon-containing unburned refractory brick

Country Status (1)

Country Link
JP (1) JPH03141152A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038818A1 (en) * 1998-01-28 1999-08-05 Krosaki Corporation Alumina-magnesia-graphite type refractory
KR100384619B1 (en) * 2000-09-06 2003-05-22 조선내화 주식회사 sliding plate refractory for flow controling of molten metal
JP2008247615A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Refractory for in-furnace wall, and waste treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038818A1 (en) * 1998-01-28 1999-08-05 Krosaki Corporation Alumina-magnesia-graphite type refractory
KR100384619B1 (en) * 2000-09-06 2003-05-22 조선내화 주식회사 sliding plate refractory for flow controling of molten metal
JP2008247615A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Refractory for in-furnace wall, and waste treatment apparatus

Similar Documents

Publication Publication Date Title
Lee et al. Evolution of in situ refractories in the 20th century
KR100297091B1 (en) Chrome-free brick
JPH0753600B2 (en) Molten steel container
Ertuğ Classification and characteristics of predominant refractories used in metallurgy
JPH03141152A (en) Carbon-containing unburned refractory brick
JP2022161032A (en) Castable refractory and molten steel ladle
JPH0323275A (en) Monolithic refractory for casting
JPH11147758A (en) Production of refractory material
JPH06172044A (en) Castable refractory of alumina spinel
JP2633018B2 (en) Carbon containing refractories
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JPS606305B2 (en) Manufacturing method of sialon matrix refractories
JPH046150A (en) Magnesia-chrome refractories
JPH03205347A (en) Magnesia-carbon brick
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH11147776A (en) Amorphous refractory
JPH03205348A (en) Magnesia-carbon brick
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JPH05330930A (en) Castable refractory
JPS63151661A (en) Non-burnt alumina-magnesia base brick
JPS6127349B2 (en)
JPS5813511B2 (en) Tuna Direct Bond Rengano Seizou Hohou
JPH0867572A (en) Refractory for casting execution
JP2002274962A (en) Monolithic refractory composition for lance pipe
JPH02267150A (en) Carbon-containing refractory for iron melting