JPH05330930A - Castable refractory - Google Patents

Castable refractory

Info

Publication number
JPH05330930A
JPH05330930A JP4163383A JP16338392A JPH05330930A JP H05330930 A JPH05330930 A JP H05330930A JP 4163383 A JP4163383 A JP 4163383A JP 16338392 A JP16338392 A JP 16338392A JP H05330930 A JPH05330930 A JP H05330930A
Authority
JP
Japan
Prior art keywords
carbon
alumina
refractory
silicon carbide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4163383A
Other languages
Japanese (ja)
Other versions
JP2552987B2 (en
Inventor
Takashi Furukawa
高司 古川
Takeshi Takarabe
毅 財部
Akira Kojima
昭 小島
Noriyuki Inoue
典幸 井上
Hideaki Ohashi
秀明 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Crucible Co Ltd
Nippon Steel Corp
Nippon Rutsubo KK
Original Assignee
Nippon Crucible Co Ltd
Nippon Steel Corp
Nippon Rutsubo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co Ltd, Nippon Steel Corp, Nippon Rutsubo KK filed Critical Nippon Crucible Co Ltd
Priority to JP4163383A priority Critical patent/JP2552987B2/en
Priority to DE4317383A priority patent/DE4317383C2/en
Priority to MX9303227A priority patent/MX9303227A/en
Publication of JPH05330930A publication Critical patent/JPH05330930A/en
Application granted granted Critical
Publication of JP2552987B2 publication Critical patent/JP2552987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides

Abstract

PURPOSE:To provide a castable refractory used for a lining material of a hot iron runner of a blast furnace. CONSTITUTION:In a castable refractory composed mainly of magnesia-alumina base spinel and the rest of alumina, silicon carbide, carbon and a binder, 5-20wt.% silicon carbide having >=30 particle size and 5-20wt.% hydrophilic carbon having <=2mm particle size are compounded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高炉出銑樋、とくに大樋
の内張り材として使用する流し込み成形用不定形耐火物
に関するもので、メタル(溶銑)に対する耐食性、とく
にFeOに対する耐食性の向上を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unshaped refractory for casting used as a lining material for a blast furnace tap gutter, especially a gutter, and has improved corrosion resistance to metal (hot metal), particularly to FeO. It is a thing.

【0002】[0002]

【従来の技術】高炉出銑樋の内張り材として、流し込み
成形用耐火物が使用されているが、高炉の大型化、出銑
間隔の短縮、出銑量の増加、出銑時温度の高温化等が進
み、とくに出銑口からスキンマーダンパーに至る大樋で
は耐火物にとってますます苛酷になってきている。それ
に対応するため、種々の材質開発が行なわれてきたが、
最近ではアルミナ−カーボン系、アルミナ−炭化珪素−
カーボン系流し込み用不定形耐火物から、マグネシア・
アルミナ系スピネルを主として、アルミナ、炭化珪素、
炭素および結合材とからなるスピネル−炭化珪素−カー
ボン系流し込み成形用耐火物が、例えば、特開昭53−
82824号公報、特開昭55−37459号公報、特
開昭55−85478号公報において開示されている。
2. Description of the Related Art Casting refractories are used as lining materials for blast furnace tappipe, but the size of the blast furnace is increased, the tapping interval is shortened, the tapping amount is increased, and the tapping temperature is increased. Etc., and especially in the gutter from the taphole to the skinmer damper, the refractory is becoming more and more severe. In order to respond to that, various materials have been developed,
Recently, alumina-carbon system, alumina-silicon carbide-
From carbon type amorphous refractory for pouring to magnesia
Mainly alumina-based spinel, alumina, silicon carbide,
A spinel-silicon carbide-carbon cast molding refractory material comprising carbon and a binder is disclosed in, for example, JP-A-53-53.
No. 82824, JP-A-55-37459, and JP-A-55-85478.

【0003】[0003]

【発明が解決しようとする課題】高炉大樋では、出銑口
からでた溶銑鉄と溶滓が、その比重差により溶銑鉄が下
側、溶滓が上側に分離し、大樋下流へと移動していく。
この溶銑鉄と溶滓との分離境界では、とくに耐火物の侵
食作用が激しく、界面付近の狭い部分で深くえぐるよう
に侵食されるのが常であり、これは溶銑鉄と溶滓の界面
に反応性に富んだFeOが生成し、耐火物と反応するこ
とで起きる現象であると考えられる。このFeOに侵食
され難いマグネシア・アルミナ質スピネルを耐火物に使
用することで侵食を抑制する方策がとられている。
In the blast furnace gutter, the hot metal and slag from the tap hole are separated into the lower part and the upper part by the difference in specific gravity, and the slag moves to the lower part of the gutter. To go.
At the separation boundary between the molten pig iron and the molten slag, the refractory is particularly erosive, and is usually deeply engraved in a narrow area near the interface, which is the interface between the molten pig iron and the molten slag. It is considered that this is a phenomenon that occurs when highly reactive FeO is generated and reacts with the refractory. This magnesia-alumina spinel, which is hard to be eroded by FeO, is used as a refractory material to prevent erosion.

【0004】しかしながら、耐火物の配合中に炭化珪素
が含有すると、炭化珪素とFeOは SiC+2FeO→SiO2+2Fe+C (1)式 の反応が進行し、マグネシア・アルミナ質スピネル使用
の効果を減少させてしまう。炭化珪素は溶滓に対する耐
食性、耐火物の耐スポーリング性等を確保するために有
用なもので、これを除去すると、これらの性質が低下し
てしまうという問題がある。
However, when silicon carbide is contained in the refractory mixture, silicon carbide and FeO undergo a reaction of the formula SiC + 2FeO → SiO 2 + 2Fe + C (1), which reduces the effect of using magnesia-alumina spinel. .. Silicon carbide is useful for ensuring the corrosion resistance to molten slag, the spalling resistance of refractory materials, and the like, and there is a problem that if these are removed, these properties deteriorate.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の問題点
を解決するためになされたもので、炭化珪素の粒度と使
用量を限定すること、並びにカーボンを添加することに
よって、マグネシア・アルミナ質スピネル−炭化珪素−
カーボン系流し込み成形用不定形耐火物を改良したもの
である。その要旨はマグネシア・アルミナ質スピネルを
主として、残部をアルミナ、炭化珪素、カーボン、およ
び結合材からなる流し込み成形用不定形耐火物において
30μm以上の炭化珪素5〜20重量%、粒径2mm以
下の親水性処理カーボン5〜20重量%を配合したこと
を特徴とする流し込み成形用不定形耐火物に関するもの
である。
The present invention has been made to solve the above-mentioned problems, and magnesia-alumina is obtained by limiting the grain size and the amount of silicon carbide used and by adding carbon. Spinel-Silicon Carbide-
This is an improved refractory carbon type castable amorphous material. The gist of this is that in cast amorphous refractories consisting mainly of magnesia-alumina spinel, the balance being alumina, silicon carbide, carbon, and a binder, 5 to 20% by weight of silicon carbide of 30 μm or more and hydrophilicity of 2 mm or less in particle size. The present invention relates to an amorphous refractory material for casting, which is characterized by containing 5 to 20% by weight of carbon treated with heat resistance.

【0006】[0006]

【作用】以下、本発明について詳細に説明する。マグネ
シア・アルミナ質スピネルは理論値でMgO28.3重
量%とAl2371.7重量%の化学組成で構成される
化合物である。理論化学組成の純度の高いマグネシア・
アルミナ質スピネルは非常に高価であり、耐火物として
は大量に使用することが困難であることから、本発明で
は電融法や焼成法によって、工業的に量産されている経
済的な市販のスピネルを使用する。このような工業的に
量産されているアルミナ・マグネシア質スピネルは理論
化学組成に必ずしも一致するものではないが、結晶組成
としては、必要なマグネシア・アルミナ質スピネルで構
成されているので、本発明の実施にあたってなんらの支
障はない。
The present invention will be described in detail below. Magnesia-alumina spinel is a compound having a theoretical composition of MgO 28.3% by weight and Al 2 O 3 71.7% by weight. Highly pure magnesia with theoretical chemical composition
Alumina spinel is very expensive and difficult to use in large quantities as a refractory material. Therefore, in the present invention, an economical commercially available spinel that is industrially mass-produced by the electrofusion method or firing method. To use. Such an industrially mass-produced alumina-magnesia spinel does not always match the theoretical chemical composition, but as the crystal composition, it is composed of the necessary magnesia-alumina spinel, and therefore There are no obstacles to the implementation.

【0007】このようなマグネシア・アルミナ質スピネ
ルは製鋼工場の溶鋼鍋の内張り耐火物や、溶鉱炉樋の内
張り耐火物に導入されてすでに使用されており、全く新
規な原料ではないが、耐火物に含有されるマグネシア・
アルミナ質スピネルに注目しての溶損機構については必
ずしも明らかではない。
[0007] Such magnesia-alumina spinel has been introduced into the lining refractory of a molten steel ladle in a steelmaking plant and the lining refractory of a blast furnace gutter, and has already been used. Magnesia contained
The erosion mechanism focusing on alumina spinel is not always clear.

【0008】大樋の溶滓と溶銑鉄の界面付近で鋭角的に
えぐられていく、いわゆるメタルゾーン部と称される部
分の局部的溶損について、本発明者等の研究から、マグ
ネシア・アルミナ質スピネルは溶銑鉄に対する耐食性
(耐FeO性)は優れているものの、混在する溶滓によ
って侵食されるとともに、前記(1)式で示されるよう
に炭化珪素から由来するSiO2 との反応によって、エ
ンスタタイト(enstatite MgO・Si
2) 等の低融成分を生成し、さらに耐火物中のマグネ
シア・アルミナ質スピネルの侵食が進行するとの知見が
得られた。
From the researches by the present inventors, the inventors of the present invention have studied the local melting loss of a so-called metal zone part which is sharply scooped near the interface between the slag and hot pig iron of a large gutter. Although spinel has excellent corrosion resistance to molten pig iron (FeO resistance), it is eroded by the mixed slag and reacts with SiO 2 derived from silicon carbide as shown in the above formula (1) to give Tight (enstate MgO / Si
It was found that low-melting components such as O 2 ) are generated and further the erosion of magnesia-alumina spinel in the refractory proceeds.

【0009】この反応を抑制するためには、マグネシア
・アルミナ質スピネルの粒子を74μm以上の粗いもの
とすることが好ましい。また、本発明による耐火物中の
マグネシア・アルミナ質スピネルの量は、40重量%以
下では耐食性としての大きな効果はなく、70重量%以
上では溶銑鉄への耐食性は向上するものの、溶滓による
侵食が進行するとともに、耐スポーリング性が低下す
る。
In order to suppress this reaction, it is preferable to make the magnesia-alumina spinel particles coarser than 74 μm. Further, when the amount of magnesia-alumina spinel in the refractory according to the present invention is 40% by weight or less, there is no great effect as corrosion resistance, and when it is 70% by weight or more, corrosion resistance to molten pig iron is improved, but corrosion by molten slag And the spalling resistance is deteriorated.

【0010】アルミナは電融法、あるいは焼成法によっ
て工業的に量産されているもので、化学組成として純度
98%以上で、その結晶は高温まで安定なα型のものを
使用する。アルミナはマグネシア・アルミナ質スピネル
と異なり、溶銑成分中のFeOに侵食され易いが、その
反面、溶滓成分に対して比較的侵食され難い。したがっ
て、耐火物中の骨材部分やマグネシア・アルミナ質スピ
ネル粒子の使用し難い74μm以下の微細粒部分にアル
ミナを使用することが好ましい。アルミナの使用量とし
ては、3重量%以下では微粉体として進行する焼結性が
低下し、耐火物構造体としての強度を充分に発揮できな
い。また、15重量%以上では、溶銑鉄による侵食が進
行して好ましくない。
Alumina is industrially mass-produced by an electrofusion method or a firing method, and has a chemical composition with a purity of 98% or more, and its crystal is α type which is stable up to a high temperature. Unlike magnesia-alumina spinel, alumina is easily eroded by FeO in the hot metal component, but on the other hand, it is relatively hard to be eroded by the slag component. Therefore, it is preferable to use alumina for the aggregate portion in the refractory and for the fine grain portion of 74 μm or less where it is difficult to use the magnesia / alumina spinel particles. If the amount of alumina used is 3% by weight or less, the sinterability that progresses as a fine powder is reduced, and the strength of the refractory structure cannot be sufficiently exhibited. On the other hand, if the content is 15% by weight or more, the erosion by the hot metal is advanced, which is not preferable.

【0011】炭化珪素は各種溶融金属やスラグに対する
耐食性、さらにはスポーリング破壊に対する抵抗性が大
きいことは周知である。しかしながら、溶鋼や溶銑中に
生成しているFeOに対しては前記(1)式のような反
応によって分解し、マグネシア・アルミナ質スピネルを
使用した耐火物の溶損を進行させる。本発明では、耐火
物に含まれるマグネシア・アルミナ質スピネルの弱点、
すなわち、溶滓に対する侵食性や耐スポーリング性を改
善するために使用する。
It is well known that silicon carbide has a high corrosion resistance against various molten metals and slag, and further has a high resistance to spalling fracture. However, FeO generated in the molten steel or the hot metal is decomposed by the reaction represented by the formula (1), and the melting loss of the refractory using magnesia-alumina spinel is promoted. In the present invention, the weakness of the magnesia-alumina spinel contained in the refractory,
That is, it is used to improve the erosion resistance to the molten slag and the spalling resistance.

【0012】また、炭化珪素も工業的に量産されている
もので、純度が高いほど耐食性として好ましいといえる
が、耐火物用として、よく使用されている純度約85%
が下限である。さらに、本発明は前記(1)式の反応の
進行を遅らせ、マグネシア・アルミナ質スピネルと反応
して耐火物の溶損に結びつくSiO2 の生成量を低減さ
せるため、炭化珪素の粒子を30μm以上の粗い粒径の
ものを使用する。30μm未満になるとマグネシア・ア
ルミナ質スピネルとの反応が進行し易く、耐火物の溶損
が進行する。炭化珪素の使用量としては、5重量%未満
であれば溶滓に対する耐食性および構造体としての耐ス
ポーリング性が不足し、20重量%超では、耐食性、耐
スポーリング性は向上するものの、FeOを含む溶銑に
対する耐食性は大幅に低下してくる。
Silicon carbide is also industrially mass-produced, and it can be said that the higher the purity, the better the corrosion resistance. However, the purity of about 85%, which is often used for refractories, is high.
Is the lower limit. Furthermore, the present invention delays the progress of the reaction of the above formula (1) and reduces the production amount of SiO 2 which reacts with magnesia-alumina spinel and leads to melting loss of refractory, so that the particles of silicon carbide are 30 μm or more. Use a coarse particle size. If it is less than 30 μm, the reaction with the magnesia-alumina spinel is likely to proceed, and the melting loss of the refractory material proceeds. If the amount of silicon carbide used is less than 5% by weight, the corrosion resistance to molten slag and the spalling resistance as a structure are insufficient, and if it exceeds 20% by weight, the corrosion resistance and spalling resistance are improved, but FeO Corrosion resistance to hot metal containing Cu decreases significantly.

【0013】カーボンは大気中で高温に加熱すると酸化
消耗するという短所があるものの、各種溶融金属や溶滓
に濡れ難く、例えば溶鋼や溶銑およびその中に含まれて
いるFeOに対しての耐食性がすぐれている。また、膨
張係数が小さいことから熱的なスポーリング破壊に対す
る抵抗性が大きいという長所があることは周知である。
このようなカーボンの長所を組み入れた耐火物として
は、例えば、転炉や電気炉用として開発され、すぐれた
実績を挙げているマグネシア−カーボン煉瓦がある。
Carbon has the disadvantage that it is oxidized and consumed when heated to a high temperature in the atmosphere, but it is difficult to wet with various molten metals and molten slag, and, for example, has a corrosion resistance to molten steel, hot metal and FeO contained therein. It is excellent. Further, it is well known that it has the advantage that it has a large resistance to thermal spalling fracture due to its small expansion coefficient.
Examples of refractory materials incorporating such advantages of carbon include magnesia-carbon bricks that have been developed for converters and electric furnaces and have an excellent track record.

【0014】しかしながら、水を加えて混練し流動硬化
させて成形する流し込み成形用不定形耐火物では、カー
ボンが撥水性であるため、その添加量が増加すると、所
定の流動性を得るために必要な加水量が増加してしま
う。この結果、成形後の組織の緻密性が失われ、溶銑鉄
や溶滓が侵入して溶損を加速させることになる。このた
め、耐火物中のカーボンの添加量を極力抑制しているの
が現状である。
However, in the castable refractory for casting, in which water is added and kneaded to be fluidized and cured, the carbon is water-repellent. Therefore, if the amount of carbon added is increased, it is necessary to obtain a predetermined fluidity. The amount of water added will increase. As a result, the compactness of the structure after forming is lost, and molten pig iron and molten slag penetrate to accelerate the melting loss. Therefore, the present situation is to suppress the amount of carbon added to the refractory as much as possible.

【0015】本発明はマグネシア・アルミナ質スピネル
の耐メタル性(耐FeO性)を活かし、その短所である
溶滓に対する耐食性を改善するため、炭化珪素の使用量
および粒度を限定し、さらに、カーボンの使用量を増加
させたことにある。このため、使用するカーボンは水と
濡れ易く処理し、カーボン粒子表面を親水性化したもの
を使用することが必要である。
In the present invention, the metal resistance (FeO resistance) of magnesia-alumina spinel is utilized to improve the corrosion resistance against molten slag, which is its disadvantage, so that the amount of silicon carbide used and the grain size are limited, and further, carbon is used. Is to increase the usage of. For this reason, it is necessary to treat the carbon to be used so that it can be easily wet with water and to make the surface of the carbon particles hydrophilic.

【0016】使用するカーボンとしては、ピッチ、メソ
フェーズカーボン、カーボンブラック、コークス、黒鉛
等が挙げられる。親水性カーボンの製造は、これらのカ
ーボンに、例えばリノール酸ソーダ、フミン酸アンモニ
ウム塩、アルギン酸ソーダ、リグニンスルホン酸ソー
ダ、アルキルベンゼンスルホン酸ソーダ等を加えて混練
し、スプレイドライヤーで乾燥処理する。
Examples of carbon used include pitch, mesophase carbon, carbon black, coke, graphite and the like. To produce hydrophilic carbon, for example, sodium linoleate, ammonium humate, sodium alginate, sodium lignin sulfonate, sodium alkylbenzene sulfonate, etc. are added to these carbons and kneaded, and then dried with a spray dryer.

【0017】このようにして製造したものを使用する
か、または、親水性を与えるための処理をした市販品を
使用することができる。すなわち、流し込み成形用不定
形耐火物として必要な混練添加水量を増やすことなく、
カーボン量を増やせるようにした親水性処理カーボンを
使用することが重要である。図1は、親水処理したカー
ボンと処理しないカーボンとの一定の流動性を得るのに
必要な加水量と添加カーボン量との関係を示す。
The product thus produced can be used, or a commercially available product that has been treated to impart hydrophilicity can be used. That is, without increasing the amount of kneading addition water required as an amorphous refractory for casting,
It is important to use hydrophilically treated carbon that allows the amount of carbon to be increased. FIG. 1 shows the relationship between the amount of water added and the amount of added carbon required to obtain a certain fluidity between hydrophilically treated carbon and untreated carbon.

【0018】表1の実施例1の親水性処理カーボンを除
く配合物を一定にし、親水性処理カーボン量を2〜14
重量%に変化させたときのフロー値150mmを示す場
合の添加水量および未処理カーボン量を2〜10重量%
に変化させたときのフロー値150mmを示す場合を測
定した。この結果、カーボン量10重量%の場合と比較
すると、親水性処理カーボンでは5.5%であるのに対
して、未処理カーボンでは8.0%であり、大幅な加水
が必要である。このようなカーボンは2mm以上では耐
火物構造体としての強度が低下するか、またはカーボン
粒子が酸化されて耐火物の耐食性が低下してしまう。ま
た、粒径が小さいほどカーボン添加量は少なくても耐食
性は向上する。使用量として5重量%未満では充分な耐
食性が発現されず、20重量%を越えると親水性を賦与
したカーボンといえども添加水量が増加して、耐火物構
造体としての緻密性が損なわれ、結果として耐食性が低
下する。
The formulation except for the hydrophilically treated carbon of Example 1 in Table 1 was kept constant and the amount of hydrophilically treated carbon was 2-14.
The amount of added water and the amount of untreated carbon when the flow value is 150 mm when changed to 2% by weight are 2 to 10% by weight.
The case where the flow value when changed to 50 mm was 150 mm was measured. As a result, compared with the case where the amount of carbon is 10% by weight, the hydrophilic treated carbon has 5.5%, whereas the untreated carbon has 8.0%, which requires a large amount of water. If such carbon has a thickness of 2 mm or more, the strength of the refractory structure decreases, or the carbon particles are oxidized to deteriorate the corrosion resistance of the refractory. Further, the smaller the particle size, the more the corrosion resistance is improved even if the amount of carbon added is small. If the amount used is less than 5% by weight, sufficient corrosion resistance will not be exhibited, and if it exceeds 20% by weight, the amount of added water will increase even with carbon imparting hydrophilicity, and the compactness of the refractory structure will be impaired. As a result, the corrosion resistance decreases.

【0019】結合材として、アルミナセメント、超微粒
シリカ(非晶質)、耐火粘土を使用する。アルミナセメ
ントは0.5〜2重量%使用する。0.5重量%以下で
は施工後の構造体の保形性が充分ではなく、2重量%以
上では、耐火性、耐食性がないアルミナセメント中に含
有されるCaOの影響により、耐火物の耐食性が低下す
る。
Alumina cement, ultrafine silica (amorphous), and refractory clay are used as the binder. Alumina cement is used in an amount of 0.5 to 2% by weight. If it is 0.5% by weight or less, the shape retention of the structure after construction is not sufficient, and if it is 2% by weight or more, the corrosion resistance of the refractory is reduced due to the influence of CaO contained in the alumina cement, which has neither fire resistance nor corrosion resistance. descend.

【0020】耐火粘土は、約1重量%添加する。1重量
%以上では配合物の粘性が増し、流し込み性が低下す
る。シリカ超微粉は、約1重量%添加する。大部分が1
μm以下の球形非晶質で、添加により高温強度が増大す
る。これら配合粉体の分散性をよくするため、約0.1
重量%の解膠剤を使用する。
About 1% by weight of refractory clay is added. If it is 1% by weight or more, the viscosity of the composition increases and the pouring property decreases. About 1% by weight of ultrafine silica powder is added. Mostly 1
It is a spherical amorphous material with a size of μm or less, and its high temperature strength increases when added. To improve the dispersibility of these compounded powders, approximately 0.1
% Peptizer is used.

【0021】[0021]

【実施例】比較例1に炭化珪素超微粉を8重量部含有し
た配合の例、また比較例2に炭化珪素超微粉を3重量部
含有した配合の例で、本比較例を耐侵食性指数の基準と
した。比較例3にスピネル骨材量の少ない配合の例を示
した。 耐メタル(耐FeO) 実施例1および2は、本発明の実施例で30μm以上の
炭化珪素微粉と親水性処理カーボンを使用したもので、
耐メタル(耐FeO)侵食指数が、それぞれ84と81
で、良好な結果を得た。 フロー値 一般に、微粉カーボン量が多いと流動性が低下するとい
われているが、実施例1,2ともに10重量部以上のカ
ーボンがありながら、比較例3重量部の場合と比較して
流動性に変化はみられない。 硬化強度 24時間養生後の強度は脱枠に必要な強度を有してお
り、この実施例のアルミナセメント量で適当である。 800℃熱間強度 アルミナセメントを使用した場合、強度が低下するとい
われる800℃の強度を測定したところ、強度は十分で
あった。 1,450℃焼成物性 線変化率が±0.1%以内であり、容積安定性に優れ
る。
EXAMPLE An example of the composition containing 8 parts by weight of the ultrafine silicon carbide powder in Comparative Example 1 and an example of the composition containing 3 parts by weight of the ultrafine silicon carbide powder in Comparative Example 2 are shown in this comparative example. Was used as the standard. Comparative Example 3 shows an example of blending with a small amount of spinel aggregate. Metal Resistant (FeO Resistant) Examples 1 and 2 are examples of the present invention in which fine particles of silicon carbide having a size of 30 μm or more and hydrophilically treated carbon are used.
Metal (FeO) resistance erosion index is 84 and 81, respectively.
Then, good results were obtained. Flow Value Generally, it is said that if the amount of fine carbon powder is large, the fluidity is lowered. However, in both Examples 1 and 2, although the carbon amount was 10 parts by weight or more, the fluidity was lower than that in Comparative Example 3 parts by weight. There is no change. Hardening strength The strength after curing for 24 hours has the strength required for deframed, and is suitable for the amount of alumina cement in this example. 800 ° C. Hot Strength The strength at 800 ° C., which is said to decrease in strength when alumina cement was used, was measured and found to be sufficient. 1,450 ° C fired physical properties The linear change rate is within ± 0.1%, and the volume stability is excellent.

【0022】[0022]

【表1】 [Table 1]

【0023】[備考] アルミナ骨材 8,000〜44μm スピネル骨材 (マグネシア・アルミナ質スピネ
ル)8,000〜74μm アルミナ微粉 44μm以下 炭化珪素微粉 30〜125μm 炭化珪素超微粉 10μm以下 親水性処理カーボン 2mm以下 耐火粘土 猿投木節粘土 シリカ超微粉 約1μm以下
[Remarks] Alumina aggregate 8,000-44 μm Spinel aggregate (magnesia / alumina spinel) 8,000-74 μm Alumina fine powder 44 μm or less Silicon carbide fine powder 30-125 μm Silicon carbide ultrafine powder 10 μm or less Hydrophilic treated carbon 2 mm Below fire-resistant clay Sarutoki-bushi clay Silica ultrafine powder About 1 μm or less

【0024】[試験方法]フロー値(mm) JIS
R2521による。流し込み施工の場合130〜150
mmが適する。内径100mmのフローコーン内に1k
gの試料を入れたものをフロー試験機のフローテーブル
に載せ、フローコーンを除去し、テーブル上に塊状の試
料が残り、このフローテーブルに打撃を与える試験方法
で測定した。フローテーブルの上下動の打撃による衝撃
で試料はテーブル上に沈下拡張し、広い面積にわたって
流動した材料の最長部と最短部を測定し、その平均値を
フロー値とした。耐侵食性試験 耐メタル侵食性お
よび耐スラグ侵食性は高周波溶解試験炉にて内張りに供
試試料を張り合わせ、高炉銑鉄と高炉スラグ(塩基度C
aO/SiO2 =1.3)を重量で1対1の割合で溶解
し、1,550℃×6Hrs浸漬させ、侵食深さを測定
し、比較例2の場合を100とした。
[Test method] Flow value (mm) JIS
According to R2521. In the case of pouring construction 130-150
mm is suitable. 1k in a flow cone with an inner diameter of 100mm
The sample containing g of the sample was placed on the flow table of the flow tester, the flow cone was removed, and a lumpy sample remained on the table, and measurement was performed by a test method in which the flow table was hit. The sample sinked and expanded on the table by the impact of vertical movement of the flow table, and the longest and shortest parts of the material flowing over a wide area were measured, and the average value was used as the flow value. Corrosion resistance test For metal erosion resistance and slag erosion resistance, test samples are laminated to the lining in a high frequency melting test furnace, and blast furnace pig iron and blast furnace slag (basic C
aO / SiO 2 = 1.3) was dissolved at a ratio of 1: 1 by weight and immersed in 1,550 ° C. × 6 Hrs, and the erosion depth was measured. The case of Comparative Example 2 was set to 100.

【0025】[0025]

【発明の効果】以上説明したようにマグネシア・アルミ
ナ質スピネルを主として、残部がアルミナ、炭化珪素、
カーボンおよび結合材からなる流し込み成形用不定形耐
火物において、粒径30μm以上の炭化珪素5〜20重
量%、粒径2mm以下の親水性処理カーボン5〜20重
量%を配合使用することによって、高炉出銑樋、特に大
樋の内張り材として溶銑による耐食性の向上を図ること
ができた。
As described above, the magnesia-alumina spinel is mainly used, and the balance is alumina, silicon carbide,
In a cast refractory for casting, which comprises carbon and a binder, by blending 5 to 20% by weight of silicon carbide having a particle size of 30 μm or more and 5 to 20% by weight of hydrophilic carbon having a particle size of 2 mm or less, a blast furnace It was possible to improve the corrosion resistance of hot metal as a lining material for tap gutters, especially large gutters.

【図面の簡単な説明】[Brief description of drawings]

【図1】流し込み成形用不定形耐火物における添加カー
ボン量と加水量との関係を示す。
FIG. 1 shows the relationship between the amount of added carbon and the amount of water added in an amorphous refractory for casting.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 昭 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 井上 典幸 愛知県豊田市美里4−3−3 (72)発明者 大橋 秀明 愛知県豊田市栄生町1−24−2 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kojima 1 Kimitsu, Kimitsu-shi, Chiba Inside Nippon Steel Corporation (72) Inventor Noriyuki Inoue 4-3-3 Misato Toyota, Aichi (72) ) Inventor Hideaki Ohashi 1-24-2 Eiyo-cho, Toyota City, Aichi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マグネシア・アルミナ質スピネルを主と
して、残部がアルミナ、炭化珪素、カーボンおよび結合
材からなる流し込み成形用不定形耐火物において、粒径
30μm以上の炭化珪素5〜20重量%、粒径2mm以
下の親水性処理カーボン5〜20重量%を配合すること
を特徴とする流し込み成形用不定形耐火物。
1. An amorphous refractory for casting, which comprises magnesia / alumina spinel and the balance alumina, silicon carbide, carbon and a binder, and has a particle size of 5 to 20% by weight and a particle size of 30 μm or more. An amorphous refractory material for casting, comprising 5 to 20% by weight of hydrophilically treated carbon of 2 mm or less.
JP4163383A 1992-06-01 1992-06-01 Refractory for casting Expired - Fee Related JP2552987B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4163383A JP2552987B2 (en) 1992-06-01 1992-06-01 Refractory for casting
DE4317383A DE4317383C2 (en) 1992-06-01 1993-05-25 Unshaped refractory casting material
MX9303227A MX9303227A (en) 1992-06-01 1993-05-31 REFRACTORY NOT CONFORMED FOR CAST IRON.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4163383A JP2552987B2 (en) 1992-06-01 1992-06-01 Refractory for casting

Publications (2)

Publication Number Publication Date
JPH05330930A true JPH05330930A (en) 1993-12-14
JP2552987B2 JP2552987B2 (en) 1996-11-13

Family

ID=15772848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4163383A Expired - Fee Related JP2552987B2 (en) 1992-06-01 1992-06-01 Refractory for casting

Country Status (3)

Country Link
JP (1) JP2552987B2 (en)
DE (1) DE4317383C2 (en)
MX (1) MX9303227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161375A (en) * 2007-12-28 2009-07-23 Nippon Crucible Co Ltd Silicon carbide matter casting material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014007599B4 (en) * 2014-05-26 2017-01-05 Technische Universität Dresden Use of carbon-based nuclei to intensify the hydration of Portland cement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382824A (en) * 1976-12-28 1978-07-21 Nippon Steel Corp Casting refractories for melt metal conduit
JPS5537459A (en) * 1978-09-09 1980-03-15 Kyushu Refractories Conduit refractories for melt metal
JPS609983B2 (en) * 1978-12-20 1985-03-14 黒崎窯業株式会社 Hydraulic fireproof composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161375A (en) * 2007-12-28 2009-07-23 Nippon Crucible Co Ltd Silicon carbide matter casting material

Also Published As

Publication number Publication date
DE4317383C2 (en) 2000-07-06
MX9303227A (en) 1994-05-31
JP2552987B2 (en) 1996-11-13
DE4317383A1 (en) 1993-12-02

Similar Documents

Publication Publication Date Title
JPH0420871B2 (en)
KR930005250B1 (en) Refractory containing aluminium nitride oxide refractory for sliding nozzle and nozzle for continuously casting
JP3514393B2 (en) Castable refractories for lining dip tubes or lance pipes used in molten metal processing
JPH0352428B2 (en)
WO2022215727A1 (en) Castable refractory
JP2552987B2 (en) Refractory for casting
JP2022161032A (en) Castable refractory and molten steel ladle
JP2000203953A (en) Castable refractory for trough of blast furnace
JPH08259340A (en) Magnesia-carbon-based castable refractory
JPH0633179B2 (en) Irregular refractory for pouring
JPS606305B2 (en) Manufacturing method of sialon matrix refractories
JP2633018B2 (en) Carbon containing refractories
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JP2000335980A (en) Graphite-containing monolithic refractory
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JPH0421625B2 (en)
JPH03141152A (en) Carbon-containing unburned refractory brick
JPH06345551A (en) Refractory for casting molding
JP2023165768A (en) Castable refractories and molten steel ladle using the same
JPH03205347A (en) Magnesia-carbon brick
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH11147776A (en) Amorphous refractory
JPS6024072B2 (en) Blast furnace gutter material
JP2736261B2 (en) Irregular refractories for pouring
JP3400494B2 (en) Basic refractories for molten metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees