JP2000335980A - Graphite-containing monolithic refractory - Google Patents

Graphite-containing monolithic refractory

Info

Publication number
JP2000335980A
JP2000335980A JP11151055A JP15105599A JP2000335980A JP 2000335980 A JP2000335980 A JP 2000335980A JP 11151055 A JP11151055 A JP 11151055A JP 15105599 A JP15105599 A JP 15105599A JP 2000335980 A JP2000335980 A JP 2000335980A
Authority
JP
Japan
Prior art keywords
raw material
particle diameter
mullite
weight
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11151055A
Other languages
Japanese (ja)
Inventor
Sadakimi Kiyota
禎公 清田
Masato Kumagai
正人 熊谷
Akitoshi Urushiya
秋利 漆谷
Satoru Terayama
知 寺山
Noboru Komatsubara
昇 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd, Kawasaki Steel Corp filed Critical Kawasaki Refractories Co Ltd
Priority to JP11151055A priority Critical patent/JP2000335980A/en
Publication of JP2000335980A publication Critical patent/JP2000335980A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5037Clay, Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00551Refractory coatings, e.g. for tamping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve spalling resistance and obtain the same durability as brick even in a case where execution range is wide by compounding a mullite raw material specified in particle diameter and alumina content with artificial graphite having a specific particle diameter at a specific ratio. SOLUTION: This monolithic refractory comprises 10-70 wt.% mullite raw material containing 65-90 wt.% alimina having 100 μm to 10 mm particle diameter and 3-20 wt.% artificial graphite having 100 μm to 1 mm average particle diameter. Generally commercialized electrofused product or baked product can directly be used as the mullite raw material and, as necessary, single mullite raw material or plural mullite raw materials are pulverized and classified and compounded and can be used singly or as a mixture of the plural raw materials. It is preferable to add and use 0.5-6 wt.% pitch powder having 100 μm to 1 mm particle diameter and 4-12 wt.% SiC powder having <=100 μm particle diameter as additives to the monolithic refractory. Further, 1-10 wt.% magnesia or sillimanite mineral raw material having 100 μm to 3 mm particle diameter can be added to the monolithic refractory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は不定形耐火物、特に
混銑車内張り用の不定形耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous refractory, and more particularly to an amorphous refractory for lining a mixed iron car.

【0002】[0002]

【従来の技術】鉄鋼製造プロセスにおいて混銑車は、溶
銑を高炉から転炉へ運搬するために使用される。また十
数年前から溶銑のSi,SおよびP等の不純物を除去する
ための予備処理が混銑車で行なわれるようになった。通
常、混銑車の内張りは耐火れんがを積み重ねて施工され
る。しかし近年、れんが積みの熟練工が不足しているた
め、れんがに代替して不定形耐火物の使用が検討されて
いる。一般に不定形耐火物は取鍋や高炉出銑樋に使用さ
れ、コストの削減および施工の機械化,自動化に寄与し
ている。しかし混銑車内張り用としては、取鍋等と比較
して不定形耐火物の施工が困難であること、あるいは不
定形耐火物の耐用性が十分ではないこと等の理由で、不
定形耐火物が普及するに至っていない。
2. Description of the Related Art In a steel making process, a mixed iron wheel is used to transport hot metal from a blast furnace to a converter. For more than ten years, pretreatment for removing impurities such as Si, S, and P from hot metal has been performed in a mixed iron wheel. Usually, the lining of a mixed iron car is constructed by stacking refractory bricks. However, in recent years, there has been a shortage of skilled brick-laying workers, and the use of irregular-shaped refractories instead of bricks has been studied. In general, amorphous refractories are used for ladles and blast furnace tapping gutters, contributing to cost reduction and mechanization and automation of construction. However, for refractory linings, it is difficult to apply refractories compared to ladles, etc., or irregular refractories are not sufficiently durable. It has not spread yet.

【0003】混銑車用内張り材料としては、上述の予備
処理で生じる予備処理スラグに耐え得る耐溶損性と、鉄
皮で外周を拘束された環境での耐スポーリング性が要求
される。この観点からアルミナ−SiC−黒鉛れんがは、
含有するSiCと黒鉛がフラックスとの濡れ防止に効果が
あるため優れた耐溶損性を有し、さらに低熱膨張率,低
弾性率,高熱伝導率等の特性によって高い耐スポーリン
グ性を有している。
A lining material for a mixed iron vehicle is required to have erosion resistance capable of withstanding the pretreatment slag generated in the above pretreatment and spalling resistance in an environment where the outer periphery is restricted by a steel shell. From this viewpoint, alumina-SiC-graphite brick is
Since the contained SiC and graphite are effective in preventing wetting with the flux, they have excellent erosion resistance, and also have high spalling resistance due to their low thermal expansion coefficient, low elastic modulus, and high thermal conductivity. I have.

【0004】ところが上述のれんがと同種の不定形耐火
物は、黒鉛が水に対する濡れ性が悪いために、多量の添
加水を用いて流し込み施工性を確保する必要がある。そ
の結果、施工後の耐火物の気孔率が著しく高くなるとい
う問題がある。従来、この問題を解決するために、黒鉛
に水との濡れ性の良い酸化物を粉砕付着処理する方法
(特開平6-166574号公報)が提案されているものの、こ
の処理に要する費用が原料コストを押し上げるのが問題
である。また人造黒鉛(特開平8-183666号公報)や鱗状
黒鉛(特開平8-301667号公報)に機械的な衝撃を加える
方法も公知であるが、やはりコストの問題がある。さら
に無煙炭(特開平8-183667号公報)や土状黒鉛を利用す
る方法等も公知であるが、れんがに添加される鱗状黒鉛
と同等の耐溶損性と耐スポーリング性を得るのは困難で
ある。
However, in the case of the refractory of the same type as the above-mentioned brick, since graphite has poor wettability with water, it is necessary to use a large amount of added water to ensure pouring workability. As a result, there is a problem that the porosity of the refractory after construction is significantly increased. Conventionally, to solve this problem, a method of pulverizing and adhering an oxide having good wettability with water to graphite (JP-A-6-166574) has been proposed. The problem is to raise costs. A method of applying mechanical impact to artificial graphite (JP-A-8-183666) or scaly graphite (JP-A-8-301667) is also known, but still has a problem of cost. Further, a method using anthracite (JP-A-8-183667) or earth graphite is also known, but it is difficult to obtain erosion resistance and spalling resistance equivalent to scale graphite added to brick. is there.

【0005】本発明者らは、特定の粒度のピッチと人造
黒鉛およびアルミナ骨材の組み合わせによって、低水分
量で流し込み施工性に優れ、しかも耐溶損性および耐ス
ポーリング性の高い不定形耐火物(特願平9-357559号公
報)を提案し、さらにマグネシア骨材を添加することに
よって耐スポーリング性を改善した不定形耐火物(特願
平10-106504 号公報)を提案した。しかし不定形耐火物
の施工範囲が広い場合(例えば混銑車の内張り等)に
は、より高い耐スポーリング性が望まれる。
[0005] The present inventors have developed an amorphous refractory having a low water content, excellent castability, and high erosion resistance and spalling resistance by using a combination of pitch having a specific particle size, artificial graphite and alumina aggregate. (Japanese Patent Application No. 9-357559) and an amorphous refractory (Japanese Patent Application No. 10-106504) improved in spalling resistance by adding magnesia aggregate. However, when the construction range of the irregular-shaped refractory is wide (for example, lining of a mixed iron wheel), higher spalling resistance is desired.

【0006】以上に述べたように、従来、不定形耐火物
の施工範囲が広い場合(例えば混銑車の内張り等)に
も、れんがに匹敵する耐用性(特に耐スポーリング性)
を有する不定形耐火物がなかったのが実情である。
As described above, conventionally, even when the construction range of the amorphous refractory is wide (for example, lining of a mixed iron wheel), the durability (especially the spalling resistance) is comparable to brick.
The fact is that there was no amorphous refractory having

【0007】[0007]

【発明が解決しようとする課題】本発明は、耐スポーリ
ング性を改善し、不定形耐火物の施工範囲が広い場合に
も従来のれんがと同様の耐用性を有する混銑車内張り用
不定形耐火物を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention improves the spalling resistance, and has the same durability as the conventional brick even when the range of construction of the refractory is wide. The purpose is to provide things.

【0008】[0008]

【課題を解決するための手段】本発明者らは、耐スポー
リング性の比較的良好な人造黒鉛を含有するアルミナ骨
材を主成分とする不定形耐火物を混銑車で試用して、そ
の耐用性を支配する要因を詳しく調査することによって
本発明を成すに至った。混銑車での試用によると、人造
黒鉛を含まない不定形耐火物を使用した場合は、熱応力
によって不定形耐火物の内部に溶銑と接触する面に平行
な亀裂を生じ、使用回数を重ねるにつれてスポーリング
によって不定形耐火物が加速的に損耗することが分かっ
た。実用に供するには耐スポーリング性を改善すること
が不可欠で、そのためには黒鉛化の進んだ炭素原料を多
量に添加し、低弾性率,低熱膨張率,高熱伝導率を達成
することが必要である。
Means for Solving the Problems The inventors of the present invention have tested an amorphous refractory mainly composed of alumina aggregate containing artificial graphite having relatively good spalling resistance in a mixed iron wheel, Detailed investigation of the factors governing service life led to the present invention. According to trials with mixed iron cars, when an amorphous refractory that does not contain artificial graphite is used, thermal stress creates a crack inside the amorphous refractory parallel to the surface that comes into contact with the hot metal, and as the number of uses increases It was found that spalling accelerated the wear of amorphous refractories. For practical use, it is essential to improve spalling resistance. To achieve this, it is necessary to add a large amount of graphitized carbon material to achieve low elastic modulus, low thermal expansion coefficient, and high thermal conductivity. It is.

【0009】黒鉛化の進んだ炭素原料としては、鱗状黒
鉛,キッシュ黒鉛および人造黒鉛がある。鱗状黒鉛およ
びキッシュ黒鉛を使用した場合は、流し込み施工性を確
保するために多量の添加水が必要であるため、施工後の
耐火物の気孔率が高くなり実用に適さない。ところが人
造黒鉛を使用した場合、流し込み施工性を確保するため
に必要な添加水量は人造黒鉛の粒度と相関があり、微細
粒では多量の添加水を必要とするが、粗粒では添加水が
少量ですむことが明らかになった。
[0009] Graphitized carbon raw materials include scaly graphite, quiche graphite and artificial graphite. When scaly graphite and quiche graphite are used, a large amount of added water is required to ensure pouring workability, so that the porosity of the refractory after construction is high and is not suitable for practical use. However, when artificial graphite is used, the amount of added water required to ensure pouring workability has a correlation with the particle size of artificial graphite, and fine particles require a large amount of added water, while coarse particles require a small amount of added water. It became clear that it was enough.

【0010】本発明は、粒径が 100μm〜10mmでかつア
ルミナを65〜90重量%含有するムライト原料を10〜70重
量%含有し、平均粒径が 100μm〜1mmの人造黒鉛を3
〜20重量%含有する不定形耐火物である。
The present invention relates to an artificial graphite having a particle size of 100 μm to 10 mm, containing 10 to 70% by weight of a mullite raw material containing 65 to 90% by weight of alumina, and having an average particle size of 100 μm to 1 mm.
It is an amorphous refractory containing up to 20% by weight.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
人造黒鉛の平均粒径が 100μm未満では、流し込み施工
性を確保するために必要な添加水量が増加し、大気中で
酸化が起こったり、添加物であるムライト原料中のシリ
カ成分を還元して耐用性を損なう原因になる。一方、人
造黒鉛の平均粒径が1mmを超えると、黒鉛が局在化する
ため耐スポーリング性の改善効果が小さくなるのみなら
ず、入手が困難でコストの面でも好ましくない。したが
って人造黒鉛は、粒径 100μm〜1mmの範囲のものを使
用する必要がある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
If the average particle size of the artificial graphite is less than 100 μm, the amount of added water necessary to ensure pouring workability increases, and oxidation occurs in the air, and the silica component in the mullite raw material, which is an additive, is reduced to reduce the usefulness. It may cause a loss of performance. On the other hand, if the average particle size of the artificial graphite exceeds 1 mm, the effect of improving spalling resistance is reduced due to the localization of the graphite, and it is difficult to obtain, which is not preferable in terms of cost. Therefore, it is necessary to use artificial graphite having a particle size in the range of 100 μm to 1 mm.

【0012】また不定形耐火物中の人造黒鉛の添加量に
ついては、人造黒鉛の添加量が3重量%未満では、低弾
性率,低熱膨張率,高熱伝導率を維持できず、耐スポー
リング性の改善効果が乏しくなる。一方、人造黒鉛の添
加量が20重量%を超えると、粗粒の黒鉛といえども流し
込み施工性の確保のために必要な添加水量が増加し、耐
用性を損なう原因になる。したがって不定形耐火物は、
人造黒鉛を3〜20重量%含有するものを使用する必要が
ある。
Regarding the addition amount of artificial graphite in the amorphous refractory, if the addition amount of artificial graphite is less than 3% by weight, low elastic modulus, low coefficient of thermal expansion, and high thermal conductivity cannot be maintained, and spalling resistance is low. The effect of improvement is poor. On the other hand, if the added amount of artificial graphite exceeds 20% by weight, the amount of added water necessary for ensuring the workability of pouring even coarse-grained graphite increases, which causes a deterioration in durability. Therefore, refractories of irregular shape
It is necessary to use one containing 3 to 20% by weight of artificial graphite.

【0013】ムライト原料の添加は、不定形耐火物の熱
膨張係数を小さくする効果がある。熱膨張係数の低下
は、熱衝撃抵抗を高めるため、耐スポーリング性を改善
する効果がある。混銑車の内張り等の周辺を鉄皮で強く
拘束された耐火物の場合は、熱膨張係数の低下によっ
て、加熱時には内面の圧縮熱応力が低減するために耐火
物の圧壊を防止でき、また冷却時には内面の引張り応力
が低減するために亀裂の発生を抑止できる。さらに高温
での機械的性質の改善(特に弾性率の低下)によって耐
スポーリング性を改善する効果がある。
The addition of the mullite raw material has the effect of reducing the coefficient of thermal expansion of the amorphous refractory. The decrease in the coefficient of thermal expansion increases the thermal shock resistance, and thus has the effect of improving the spalling resistance. In the case of refractories in which the periphery such as the lining of a mixed-iron car is strongly constrained by a steel shell, the thermal expansion coefficient decreases, which reduces the compressive thermal stress of the inner surface during heating. Sometimes the occurrence of cracks can be suppressed because the tensile stress on the inner surface is reduced. Further, there is an effect of improving spalling resistance by improving mechanical properties at high temperature (particularly, lowering the elastic modulus).

【0014】ムライトは3Al2O3 ・2SiO2の組成(アル
ミナ成分:約70重量%)を持つが、この組成よりアルミ
ナリッチな場合はムライト相とアルミナ相の混合物とな
り、シリカリッチな場合はムライト相とシリカ相の混合
物となる。ムライト原料中のアルミナ成分が65重量%未
満では、シリカ相に起因して低融物が多くなり、耐食性
が低下する。ムライト原料中のアルミナ成分が90重量%
を超えると、ムライト相が減少して、熱膨張係数低下の
効果が小さい。したがってムライト原料は、アルミナ成
分を65〜90重量%含有するものを使用する必要がある。
Mullite has a composition of 3Al 2 O 3 .2SiO 2 (alumina component: about 70% by weight). When the composition is alumina-rich, mullite becomes a mixture of a mullite phase and an alumina phase. Phase and a silica phase. If the alumina component in the mullite raw material is less than 65% by weight, the low melt is increased due to the silica phase, and the corrosion resistance is reduced. 90% by weight of alumina component in mullite material
If it exceeds, the mullite phase decreases and the effect of lowering the thermal expansion coefficient is small. Therefore, it is necessary to use a mullite raw material containing 65 to 90% by weight of an alumina component.

【0015】ムライトはアルミナに比較して耐食性が低
く、含有成分のシリカは炭素に還元されて耐用性を損な
う原因になる。ムライトの粒径が 100μm未満では、ス
ラグへの溶解速度が速くなり耐食性が著しく低下するの
みならず、炭素による還元速度も速くなり、実用に適さ
ない。一方、ムライトの粒径が10mmを超えると、骨材は
流し込み施工の際に分離しやすいという問題がある。し
たがってムライト原料は、粒径 100μm〜10mmのものを
使用する必要がある。
[0015] Mullite has lower corrosion resistance than alumina, and the silica contained therein is reduced to carbon, which is a cause of impairing the durability. If the particle size of the mullite is less than 100 μm, the dissolution rate in slag is increased and the corrosion resistance is remarkably reduced, and the reduction rate by carbon is also increased, which is not suitable for practical use. On the other hand, if the particle size of the mullite exceeds 10 mm, there is a problem that the aggregate is easily separated at the time of casting. Therefore, it is necessary to use a mullite material having a particle size of 100 μm to 10 mm.

【0016】不定形耐火物中のムライト原料の含有量
は、10重量%未満ではムライト相の量が少ないため熱膨
張係数を低下させる効果が小さく、高温での機械的性質
の改善効果も小さい。一方、ムライト原料の添加量が70
重量%を超えると不定形耐火物としての流動性を損な
う。したがって、不定形耐火物中のムライト原料の含有
量は10〜70重量%とする必要がある。
If the content of the mullite raw material in the amorphous refractory is less than 10% by weight, the effect of lowering the coefficient of thermal expansion is small due to the small amount of the mullite phase, and the effect of improving the mechanical properties at high temperatures is also small. On the other hand, the amount of mullite
If the content is more than 10% by weight, the fluidity of the amorphous refractory is impaired. Therefore, the content of the mullite raw material in the amorphous refractory must be 10 to 70% by weight.

【0017】ムライト原料は一般に市販されている電融
品または焼成品(合成品ともいう)をそのまま使用する
ことができ、あるいは必要に応じて粉砕,分級,配合し
て単独もしくは複数の原料の混合物として使用すること
ができる。また天然原料であるシリマナイト族鉱物を15
00〜1750℃で熱処理してムライトとすることも可能であ
り、電融品または焼成品と同様に単独もしくは複数の原
料の混合物として使用することができる。
As the mullite raw material, a commercially available electrofused product or calcined product (also referred to as a synthetic product) can be used as it is, or if necessary, pulverized, classified, blended, or a mixture of a plurality of raw materials. Can be used as In addition, the natural raw material sillimanite minerals
Mullite can be obtained by heat treatment at 00 to 1750 ° C., and it can be used alone or as a mixture of a plurality of raw materials in the same manner as an electrofused product or a calcined product.

【0018】本発明の不定形耐火物は、以上の基本的構
成のみによって十分に効果を発揮するが、この基本的構
成をさらに他の技術と組み合わせることができる。以下
に本発明に組み合わせるべき好ましい技術について説明
する。まずピッチ粉末を添加できる。ピッチ粉末の添加
量は 0.5〜6重量%とするのが望ましい。銑鉄と予備処
理スラグによる溶損テストの結果によると、ピッチ粉末
が他の炭素原料に比べて最も微量の添加でスラグの浸透
を抑制し、耐溶損性を改善することが分かった。混銑車
での試用においても、ピッチ粉末の微量添加で十分な耐
溶損性を確保できることを確認した。ただしピッチ粉末
の添加量が 0.5重量%未満では耐溶損性の改善効果が小
さく、6重量%を超えると加熱によって気孔率が上昇し
て溶損性が損なわれる。
Although the amorphous refractory of the present invention is sufficiently effective only with the above basic configuration, this basic configuration can be combined with other techniques. Hereinafter, preferred technologies to be combined with the present invention will be described. First, pitch powder can be added. The addition amount of the pitch powder is desirably 0.5 to 6% by weight. According to the results of the erosion test using pig iron and pre-treated slag, it was found that pitch powder suppressed slag penetration with the smallest amount of addition compared to other carbon materials and improved erosion resistance. It has been confirmed that sufficient resistance to erosion can be ensured by adding a small amount of pitch powder even in trials with mixed iron cars. However, if the added amount of the pitch powder is less than 0.5% by weight, the effect of improving the erosion resistance is small, and if it exceeds 6% by weight, the porosity increases due to heating, and the erosion resistance is impaired.

【0019】ピッチ粉末は、固定炭素が50重量%以上の
コールタールピッチ粉末が使用できる。ピッチ粉末は加
熱されると液化して、近傍の微細な気孔内に毛細管現象
で移動するため、ピッチ粉末の粒度は不定形耐火物の性
質に大きく影響しない。そのためピッチ粉末の粒径は特
に制限するものではないが、粒径が1mmを超えると液化
した後も偏在してしまう。また 100μm未満では添加水
量を増加させる必要があるので好ましくない。したがっ
てピッチ粉末は、粒径 100μm〜1mmのものを使用する
必要がある。
As the pitch powder, a coal tar pitch powder containing 50% by weight or more of fixed carbon can be used. Since the pitch powder is liquefied when heated and moves into nearby fine pores by capillary action, the particle size of the pitch powder does not significantly affect the properties of the amorphous refractory. Therefore, the particle size of the pitch powder is not particularly limited, but if the particle size exceeds 1 mm, the pitch powder is unevenly distributed even after liquefaction. On the other hand, if it is less than 100 μm, the amount of added water must be increased, which is not preferable. Therefore, it is necessary to use a pitch powder having a particle size of 100 μm to 1 mm.

【0020】またSiC粉末を添加できる。SiC粉末の粒
径は 100μm以下、添加量は4〜12重量%とするのが望
ましい。大気中では、黒鉛は高温で酸化する。粒度 100
μm〜1mmの人造黒鉛の場合は約1000℃までは酸化しな
いが、さらに高温になると高酸素雰囲気で酸化が進行す
る。そのためSiC粉末を添加すると、SiC粉末が人造黒
鉛に先行して酸化するため、人造黒鉛の酸化を抑制でき
る。この効果は1300℃以上で顕著に発揮される。
Further, SiC powder can be added. It is desirable that the particle size of the SiC powder be 100 μm or less, and the amount added be 4 to 12% by weight. In the atmosphere, graphite oxidizes at high temperatures. Particle size 100
In the case of artificial graphite of μm to 1 mm, it does not oxidize up to about 1000 ° C., but at higher temperatures, oxidation proceeds in a high oxygen atmosphere. Therefore, when the SiC powder is added, the SiC powder is oxidized before the artificial graphite, so that the oxidation of the artificial graphite can be suppressed. This effect is remarkably exhibited at 1300 ° C. or higher.

【0021】100μmを超える粒径のSiC粉末では、こ
の黒鉛の酸化を抑制する効果が小さいので好ましくな
い。粒径 100μm以下のSiC粉末の添加量が4重量%未
満では、黒鉛の酸化を抑制する効果が小さいので好まし
くない。一方、添加量が12重量%を超えると、酸化抑制
の効果が飽和すると同時に、流し込み施工性を確保する
ために必要な添加水量が増加して、耐用性が損なわれ
る。
It is not preferable to use SiC powder having a particle size exceeding 100 μm because the effect of suppressing the oxidation of graphite is small. If the amount of the SiC powder having a particle diameter of 100 μm or less is less than 4% by weight, the effect of suppressing the oxidation of graphite is small, which is not preferable. On the other hand, if the addition amount exceeds 12% by weight, the effect of suppressing oxidation is saturated, and at the same time, the amount of added water necessary for ensuring the pouring workability increases, and the durability is impaired.

【0022】SiC粉末は、黒鉛の酸化を抑制する他に、
熱伝導率を高める効果がある。したがって耐スポーリン
グ性を改善する観点からも、SiC粉末の添加は好まし
い。さらに粒径 100μm〜3mmのマグネシアやシリマナ
イト族鉱物原料を1〜10重量%添加すると、残存膨張性
を付加することができ、亀裂の発生を低減できる。マグ
ネシアとしては、仮焼品,焼成品等が使用できるが、特
に電融品が望ましい。
The SiC powder suppresses the oxidation of graphite,
It has the effect of increasing the thermal conductivity. Therefore, from the viewpoint of improving the spalling resistance, the addition of the SiC powder is preferable. Further, when 1 to 10% by weight of a raw material of magnesia or a sillimanite group mineral having a particle size of 100 μm to 3 mm is added, the residual expandability can be added and the generation of cracks can be reduced. As magnesia, a calcined product, a calcined product, or the like can be used, and an electrofused product is particularly desirable.

【0023】本発明の不定形耐火材に使用される添加材
の効果は以上に説明した通りであるが、ムライトと置換
あるいは併用して使用する材料として、粒径 0.1μm〜
10mmのアルミナを使用できる。また粒径 0.1μm〜10mm
のマグネシア−アルミナスピネルを添加することもでき
る。粒径 0.1μm〜10mmのアルミナあるいはマグネシア
−アルミナスピネルは電融品が望ましい。
The effect of the additive used in the irregular refractory material of the present invention is as described above. However, as a material to be used in place of or in combination with mullite, a particle diameter of 0.1 μm to
10mm alumina can be used. The particle size is 0.1μm ~ 10mm
Magnesia-alumina spinel can also be added. The fused alumina or magnesia-alumina spinel having a particle size of 0.1 μm to 10 mm is preferably an electrofused product.

【0024】マグネシア−アルミナスピネルは、約25重
量%のMgOを含有するスピネル単体もしくはスピネルと
コランダムの混合相を有する原料が使用できる。スラグ
の塩基度(CaO/SiO2)が2より低い場合はアルミナ単
体で使用するのが望ましく、塩基度が2より高い場合は
マグネシア−アルミナスピネルを使用するのが望まし
い。
As the magnesia-alumina spinel, a spinel containing about 25% by weight of MgO or a raw material having a mixed phase of spinel and corundum can be used. When the basicity (CaO / SiO 2 ) of the slag is lower than 2, it is preferable to use alumina alone, and when the basicity is higher than 2, it is preferable to use magnesia-alumina spinel.

【0025】粒度分布は、必要に応じて種々の粒度の原
料を配合して調整する。粒度の調整については、各粒度
のバランスが重要である。粒度分布のグラフを作成する
場合に、グラフの横軸を粒径、縦軸を微粒側からの累積
体積率として、各軸を対数を用いてグラフを作成する
と、直線的な粒度分布(アンドレアセンの式に従う粒度
分布)になり、かつその直線の傾きがq= 0.2〜0.28の
範囲であることが望ましい。
The particle size distribution is adjusted by mixing raw materials of various particle sizes as required. For the adjustment of the particle size, the balance of each particle size is important. When creating a graph of the particle size distribution, if the horizontal axis of the graph is the particle size and the vertical axis is the cumulative volume ratio from the fine particle side, and the graph is created using logarithm on each axis, a linear particle size distribution (Andreasen And the slope of the straight line is preferably in the range of q = 0.2 to 0.28.

【0026】その他、添加する微量の原料としては、加
熱なしで強度を持たせるためのアルミナセメント、強度
を補うSi等の金属、不定形耐火物の流動性を調整するた
めのカーボンブラック,粘土,シリカ微粉および各種の
分散剤、減水剤、セメント硬化調整剤を添加しても良
い。
Other small amounts of raw materials to be added include alumina cement for providing strength without heating, metals such as Si for supplementing strength, carbon black, clay for adjusting fluidity of amorphous refractories, and the like. Silica fine powder and various dispersants, water reducing agents, and cement setting modifiers may be added.

【0027】[0027]

【実施例】以下に実施例に従い本発明の効果を詳細に説
明する。表1,2に示す人造黒鉛およびムライト原料に
所定量の添加水を添加して万能ミキサーで混練した後、
フローテーブルを使用して15回タッピングフロー(目標
は 180mm)を測定して、流動性を調査した。なお表1,
2に示す成分以外は、共通してSiCを10重量%,ピッチ
粉末を2重量%,カーボンブラックを 0.5重量%,金属
シリコン粉末を2重量%,アルミナセメントを3重量
%,粘土を1重量%,仮焼アルミナ微粉を15重量%含有
し、残部は電融アルミナである。さらに分散剤を 0.1重
量%添加した。
EXAMPLES The effects of the present invention will be described in detail below with reference to examples. After adding a predetermined amount of added water to artificial graphite and mullite raw materials shown in Tables 1 and 2, and kneading with a universal mixer,
Using a flow table, the tapping flow was measured 15 times (the target was 180 mm), and the flowability was examined. Table 1,
Except for the components shown in 2, 2, 10% by weight of SiC, 2% by weight of pitch powder, 0.5% by weight of carbon black, 2% by weight of metal silicon powder, 3% by weight of alumina cement, 1% by weight of clay , Containing 15% by weight of calcined alumina fine powder, with the balance being fused alumina. Further, 0.1% by weight of a dispersant was added.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】その後、40×40×160mm の角柱状の金枠に
流し込み、24時間養生後、脱枠して110℃で24時間乾燥
した。さらにその後、コークスブリーズ中で1400℃で3
時間保持して焼成を行ない、気孔率および熱膨張率を測
定した。また台形柱形状の金枠に流し込み、24時間養生
後、脱枠して 110℃で24時間乾燥した。さらにその後、
コークスブリーズ中で 500℃×3時間保持して冷却して
溶損試験を行なった。溶損試験は、試験片8枚でるつぼ
を組み、内部に溶銑を入れて窒素フロー中で1600℃まで
昇温した後、溶銑予備処理スラグ(塩基度 1.8)を1時
間毎に投入,掻き出しを行ない、合計3時間保持して冷
却した。
Thereafter, the mixture was poured into a 40 × 40 × 160 mm prismatic metal frame, cured for 24 hours, deframed and dried at 110 ° C. for 24 hours. Then, at 1400 ° C in a coke breeze,
The sintering was carried out for a period of time, and the porosity and the coefficient of thermal expansion were measured. It was poured into a trapezoidal column-shaped metal frame, cured for 24 hours, deframed and dried at 110 ° C. for 24 hours. And then
The melt erosion test was performed by cooling in a coke breather at 500 ° C. for 3 hours. In the erosion test, a crucible was assembled with eight test pieces, hot metal was put inside, the temperature was raised to 1600 ° C in a nitrogen flow, and then hot metal pretreatment slag (basicity 1.8) was charged and scraped every hour. The cooling was carried out for a total of 3 hours.

【0031】冷却後、各試験片を鉛直方向(溶銑と接触
する面と垂直方向)に切断して、溶損の最大深さ(溶銑
とスラグの界面)を標準試料と比較する方法で行なっ
た。ここで標準試料とは、現行の混銑車用れんがであ
り、その組成はアルミナ−7重量%SiC−15重量%鱗状
黒鉛である。なお一部の試料は、脱枠および乾燥の後、
コークスブリーズ中で1400℃で3時間焼成した後、気孔
率を調査した。
After cooling, each test piece was cut in the vertical direction (perpendicular to the surface in contact with the hot metal), and the maximum depth of erosion (the interface between the hot metal and slag) was compared with a standard sample. . Here, the standard sample is a current brick for a mixed iron wheel, and its composition is alumina-7% by weight SiC-15% by weight scale graphite. In addition, some samples, after deframing and drying,
After firing in a coke breeze at 1400 ° C. for 3 hours, the porosity was investigated.

【0032】さらに上述の調査(以下、実験段階の評価
という)で優れた流動性と溶損指数が得られた配合につ
いては、モルタルミキサーで3分間混練し、混銑車の直
胴部からコニカル部にかけて2m×4mの範囲に厚さ20
0mm で流し込み、24時間養生後、脱枠してバーナーで48
時間乾燥して、実際に 250チャージ使用して耐用性を評
価(以下、実炉評価という)した。
Further, the composition having excellent fluidity and erosion index obtained in the above-mentioned investigation (hereinafter referred to as evaluation in the experimental stage) was kneaded with a mortar mixer for 3 minutes, and the conical portion was removed from the straight body portion of the mixed iron wheel. 20m thick in the area of 2m x 4m
Pour at 0mm, after curing for 24 hours, remove the frame and use a burner for 48
After drying for an hour, the durability was evaluated by actually using 250 charges (hereinafter referred to as actual furnace evaluation).

【0033】実炉評価においては、溶銑と接触する面
(以下、稼働面という)に垂直な亀裂の有無を外観観察
によって調査した。また使用した後の耐火物を回収し、
周辺のれんがの残厚と比較を行なった。回収するために
耐火物を切断する際に、稼働面に平行な内部亀裂の有無
を調査した。その結果を表1および表2に示す。表1は
本発明例の性能、表2は比較例の性能をまとめたもので
ある。
In the actual furnace evaluation, the presence or absence of cracks perpendicular to the surface in contact with the hot metal (hereinafter referred to as the operating surface) was examined by external appearance observation. Also collect the refractories after use,
A comparison was made with the remaining thickness of the surrounding brick. When cutting the refractory for recovery, the existence of internal cracks parallel to the working surface was investigated. The results are shown in Tables 1 and 2. Table 1 summarizes the performance of the present invention, and Table 2 summarizes the performance of the comparative example.

【0034】まず人造黒鉛の効果について説明する。人
造黒鉛の平均粒径が 100μmを下回る場合(比較例1:
平均粒径30μm)、流動性を確保するために多量の添加
水が必要となり、気孔率が増加する原因になる。その結
果、実験段階の溶損の評価で劣悪な特性を示しており、
実用に適さない。また人造黒鉛の平均粒径が1mmを上回
る場合(比較例2:平均粒径 1.5mm)、黒鉛が偏在する
ために耐スポーリング性が向上しない。その結果、実炉
評価では亀裂が多く発生し、損耗が速かった。
First, the effect of artificial graphite will be described. When the average particle size of the artificial graphite is less than 100 μm (Comparative Example 1:
(Average particle size 30 μm), a large amount of added water is required to ensure fluidity, and this causes an increase in porosity. As a result, it showed inferior characteristics in the evaluation of erosion at the experimental stage,
Not practical. When the average particle size of artificial graphite exceeds 1 mm (Comparative Example 2: average particle size of 1.5 mm), spalling resistance is not improved due to uneven distribution of graphite. As a result, in the actual furnace evaluation, many cracks were generated and the wear was fast.

【0035】一方、人造黒鉛の平均粒径が 100μm〜1
mmの場合(発明例1〜3)、実験段階の評価では気孔率
が低く優れた溶損指数を示し、 250チャージの実炉評価
においても亀裂は観察されず、れんがに匹敵する残厚を
示した。人造黒鉛の添加量を2重量%添加した場合(比
較例3)、実験段階の評価では溶損指数は優れているも
のの、実炉評価では多数の内部割れが発生し、れんがに
比べて残厚が著しく少なかった。また人造黒鉛を22重量
%添加した場合(比較例4)、実験段階での溶損評価で
劣悪な特性を示し、実用に適さない。
On the other hand, the artificial graphite has an average particle size of 100 μm to 1 μm.
In the case of mm (Invention Examples 1 to 3), the porosity was low in the evaluation at the experimental stage and an excellent erosion index was exhibited, and no crack was observed in the actual furnace evaluation of 250 charges, indicating a residual thickness comparable to brick. Was. When 2% by weight of artificial graphite was added (Comparative Example 3), although the erosion index was excellent in the evaluation at the experimental stage, many internal cracks occurred in the evaluation in the actual furnace, and the residual thickness was larger than that of the brick. Was significantly less. Further, when 22% by weight of artificial graphite was added (Comparative Example 4), poor properties were exhibited in the evaluation of erosion at the experimental stage, which was not suitable for practical use.

【0036】一方、人造黒鉛を3〜20重量%添加した場
合(発明例4〜6)は、多量の添加水を必要とせず、実
験段階の評価で気孔率が低く優れた溶損指数を示した。
さらに実炉評価においても亀裂は観察されず、れんがに
匹敵する耐用性を示した。次にムライト原料の効果につ
いて説明する。ムライト原料の粒径が 100μmを下回る
場合(比較例5:粒径10〜 100μm)、ムライト原料の
スラグへの溶解性が高まるとともに、併用添加された黒
鉛と反応するため、実験段階の溶損の評価で劣悪な特性
を示しており、実用に適さない。またムライト原料の粒
径が10mmを上回る場合(比較例6:粒径10〜30mm)、ム
ライト原料が粗大であるため実験段階の流動性の評価に
おいて分離する傾向が見られ、実用に適さない。
On the other hand, when artificial graphite was added in an amount of 3 to 20% by weight (Inventive Examples 4 to 6), a large amount of added water was not required, and the porosity was low in the evaluation at the experimental stage, indicating an excellent erosion index. Was.
Furthermore, no cracks were observed in the actual furnace evaluation, and the durability was comparable to that of brick. Next, the effect of the mullite raw material will be described. When the particle size of the mullite raw material is less than 100 μm (Comparative Example 5: particle size of 10 to 100 μm), the solubility of the mullite raw material in slag increases, and the mullite raw material reacts with the graphite added in combination. It shows poor characteristics in evaluation and is not suitable for practical use. When the mullite raw material has a particle size of more than 10 mm (Comparative Example 6: particle size of 10 to 30 mm), the mullite raw material is coarse and tends to separate in the evaluation of fluidity in an experimental stage, which is not suitable for practical use.

【0037】一方、ムライト原料の粒径が 100μm〜10
mmの場合(発明例7,8)、スラグに対する耐食性も十
分であり、黒鉛との反応性も低いため、実験段階で高い
溶損評価が得られ、流動性の評価でも分離する傾向は見
られなかった。 250チャージの実炉評価においても亀裂
は観察されず、れんがに匹敵する残厚を示した。 ムラ
イト原料を8重量%添加した場合(比較例7)、熱膨張
係数が高く、実験段階の評価の溶損指数は優れているも
のの、実炉評価では多数の亀裂が発生し、れんがに比べ
て残厚が少なかった。またムライト原料を75重量%添加
した場合(比較例8)、流動性を確保するために多量の
添加水が必要となり、気孔率が増加する。その結果、実
験段階での溶損評価で劣悪な特性を示すのみならず、流
動性の評価において分離する傾向が見られ、実用に適さ
ない。
On the other hand, the mullite raw material has a particle size of 100 μm to 10 μm.
In the case of mm (Invention Examples 7 and 8), the corrosion resistance to slag is sufficient and the reactivity with graphite is low, so that a high erosion evaluation is obtained in the experimental stage, and a tendency to separate even in the evaluation of fluidity is observed. Did not. No cracks were observed in the actual furnace evaluation of 250 charges, and the remaining thickness was comparable to that of brick. When the mullite raw material was added in an amount of 8% by weight (Comparative Example 7), although the thermal expansion coefficient was high and the erosion index evaluated in the experimental stage was excellent, many cracks were generated in the actual furnace evaluation, and compared with brick. The remaining thickness was small. Further, when 75% by weight of the mullite raw material is added (Comparative Example 8), a large amount of added water is required to secure fluidity, and the porosity increases. As a result, not only do the erosion evaluations at the experimental stage show inferior properties, but also there is a tendency to separate in the evaluation of the fluidity, which is not practical.

【0038】一方、ムライト原料を10〜70重量%添加し
た場合(発明例9〜11)は、十分に熱膨張係数を低くす
ることができ、添加水を多く必要としない。その結果、
実験段階の評価で気孔率が低く優れた溶損指数を示し、
流動性の評価においても分離の傾向は見られなかった。
さらに実炉評価でも亀裂は観察されず、れんがに匹敵す
る残厚を示し、優れた耐用性を示した。
On the other hand, when the mullite raw material is added in an amount of 10 to 70% by weight (Inventive Examples 9 to 11), the coefficient of thermal expansion can be sufficiently reduced, and a large amount of added water is not required. as a result,
In the evaluation at the experimental stage, the porosity is low and shows an excellent erosion index,
No tendency for separation was observed in the evaluation of fluidity.
Further, no cracks were observed in the actual furnace evaluation, the residual thickness was comparable to that of brick, and excellent durability was exhibited.

【0039】さらにムライト原料中のアルミナ成分が65
重量%を下回る場合(比較例9:アルミナ成分63重量
%)、シリカ相に起因して低融物が多くなり、耐食性が
低下するので好ましくない。ムライト原料中のアルミナ
成分が90重量%を超える場合(比較例10:アルミナ成分
93重量%)、ムライト相の量が減少するために熱膨張係
数を低下させる効果が小さくなるので好ましくない。
Further, the alumina component in the mullite raw material is 65
If the amount is less than 10% by weight (Comparative Example 9: 63% by weight of alumina component), the amount of low melt is increased due to the silica phase, and the corrosion resistance is undesirably reduced. When the alumina component in the mullite raw material exceeds 90% by weight (Comparative Example 10: Alumina component
93% by weight), which is not preferable because the effect of lowering the coefficient of thermal expansion is reduced because the amount of the mullite phase is reduced.

【0040】一方、ムライト原料中のアルミナ成分が65
〜90重量%の場合(発明例12,13)は、耐食性を損なう
こともなく、熱膨張係数は十分低下する。実炉評価でも
亀裂は観察されず、れんがに匹敵する残厚を示し、優れ
た耐用性を示した。またムライト原料は、電融品および
焼成品ともに使用できることは表1に示す通りである。
On the other hand, when the alumina component in the mullite raw material is 65%
In the case of 9090% by weight (Inventive Examples 12 and 13), the coefficient of thermal expansion is sufficiently reduced without impairing the corrosion resistance. No cracks were observed in the actual furnace evaluation, showing a residual thickness comparable to that of brick, and excellent durability. As shown in Table 1, the mullite raw material can be used for both electrofused and calcined products.

【0041】[0041]

【発明の効果】本発明は、混銑車内張り用の不定形耐火
物として、平均粒径が 100μm〜1mmの人造黒鉛を、3
〜20重量%含有し、粒径が 100μm〜10mmでかつアルミ
ナを65〜90重量%含有するムライト原料を10〜70重量%
含有する不定形耐火物を用いることによって、耐火物内
部の亀裂の発生を防止し、れんがに匹敵する耐用性を達
成した。
According to the present invention, artificial graphite having an average particle size of 100 μm to 1 mm is used as an amorphous refractory for lining a mixed iron car.
10 to 70% by weight of mullite raw material containing ~ 20% by weight, having a particle size of 100µm to 10mm and containing 65 to 90% by weight of alumina
The use of the contained refractory material prevented the occurrence of cracks inside the refractory material and achieved a durability equivalent to that of brick.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 正人 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 漆谷 秋利 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 寺山 知 兵庫県赤穂市中広字東沖1576番地の2 川 崎炉材株式会社内 (72)発明者 小松原 昇 兵庫県赤穂市中広字東沖1576番地の2 川 崎炉材株式会社内 Fターム(参考) 4G033 AA02 AA15 AB01 BA01 4K014 AD21 4K051 AA06 AB03 AB05 BB03 BE03 GA01 LA02 LA11 LC01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masato Kumagai 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Research Institute (72) Inventor Akitoshi Urushiya 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture ( No address) Inside the Mizushima Works of Kawasaki Steel Corporation (72) Inventor Satoshi Terayama 1576 Nakahiro, Higashi-oki, Higashi-Oki 2 Kawasaki Furnace Materials Co., Ltd. (72) Inventor Noboru Komatsubara Naka, Ako City, Hyogo Prefecture F-term in Kawasaki Reactor Co., Ltd., 1576, Hiroki Higashi-oki, F-term (reference) 4G033 AA02 AA15 AB01 BA01 4K014 AD21 4K051 AA06 AB03 AB05 BB03 BE03 GA01 LA02 LA11 LC01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粒径が 100μm〜10mmでかつアルミナを
65〜90重量%含有するムライト原料を10〜70重量%含有
し、平均粒径が 100μm〜1mmの人造黒鉛を3〜20重量
%含有することを特徴とする不定形耐火物。
Claims: 1. Alumina having a particle size of 100 μm to 10 mm and alumina
An amorphous refractory comprising 10 to 70% by weight of a mullite raw material containing 65 to 90% by weight and 3 to 20% by weight of artificial graphite having an average particle size of 100 μm to 1 mm.
JP11151055A 1999-05-31 1999-05-31 Graphite-containing monolithic refractory Pending JP2000335980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11151055A JP2000335980A (en) 1999-05-31 1999-05-31 Graphite-containing monolithic refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11151055A JP2000335980A (en) 1999-05-31 1999-05-31 Graphite-containing monolithic refractory

Publications (1)

Publication Number Publication Date
JP2000335980A true JP2000335980A (en) 2000-12-05

Family

ID=15510320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11151055A Pending JP2000335980A (en) 1999-05-31 1999-05-31 Graphite-containing monolithic refractory

Country Status (1)

Country Link
JP (1) JP2000335980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155166A (en) * 2007-12-27 2009-07-16 Ngk Insulators Ltd Refractory mortar cured material
US7833923B2 (en) 2007-12-10 2010-11-16 Ngk Insulators, Ltd. Monolithic refractory material having low expansibility, high strength, and crack extension resistance
CN108342531A (en) * 2017-01-23 2018-07-31 宝山钢铁股份有限公司 Blast furnace taphole frame passage gas fire pressed material and application method
JP2022041396A (en) * 2020-09-01 2022-03-11 Jfeスチール株式会社 Method of selecting graphite, graphite-containing castable refractory, and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833923B2 (en) 2007-12-10 2010-11-16 Ngk Insulators, Ltd. Monolithic refractory material having low expansibility, high strength, and crack extension resistance
JP2009155166A (en) * 2007-12-27 2009-07-16 Ngk Insulators Ltd Refractory mortar cured material
JP4480758B2 (en) * 2007-12-27 2010-06-16 日本碍子株式会社 Refractory mortar cured molding
CN108342531A (en) * 2017-01-23 2018-07-31 宝山钢铁股份有限公司 Blast furnace taphole frame passage gas fire pressed material and application method
JP2022041396A (en) * 2020-09-01 2022-03-11 Jfeスチール株式会社 Method of selecting graphite, graphite-containing castable refractory, and method of producing the same
JP7369106B2 (en) 2020-09-01 2023-10-25 Jfeスチール株式会社 Method for sorting graphite and manufacturing method for castable refractories containing graphite

Similar Documents

Publication Publication Date Title
JP2007182337A (en) Low carbonaceous magnesia carbon brick
JP3283883B2 (en) Alumina-magnesia-graphite refractory for continuous casting
JP3952332B2 (en) Graphite-containing amorphous refractory material for chaotic vehicles
JP2001114571A (en) Castable refractory for trough of blast furnace
JP2004131310A (en) Castable refractory for lining tundish
WO2022215727A1 (en) Castable refractory
JP2000335980A (en) Graphite-containing monolithic refractory
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
JP2022161032A (en) Castable refractory and molten steel ladle
JP2000203953A (en) Castable refractory for trough of blast furnace
JPH08259340A (en) Magnesia-carbon-based castable refractory
KR100299460B1 (en) Monolithic refractory contained carbon
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
JPH0633179B2 (en) Irregular refractory for pouring
JP2607963B2 (en) Pouring refractories
JPH07115952B2 (en) Irregular shaped refractory for stainless hot metal ladle and stainless hot metal ladle lining it
JP4468323B2 (en) Carbon materials for refractories and their uses
JP2747734B2 (en) Carbon containing refractories
JP4361048B2 (en) Lightweight castable refractories for molten aluminum and aluminum alloys
JP2005335966A (en) Graphite-containing castable refractory
JP2552987B2 (en) Refractory for casting
JP3238592B2 (en) Irregular cast refractory moldings
JP2023165768A (en) Castable refractories and molten steel ladle using the same
JP6354807B2 (en) Cast refractories for blast furnace main slag line
JPH11292642A (en) Monolithic refractory for lining metal mixing car