JPH0323275A - Monolithic refractory for casting - Google Patents

Monolithic refractory for casting

Info

Publication number
JPH0323275A
JPH0323275A JP1155003A JP15500389A JPH0323275A JP H0323275 A JPH0323275 A JP H0323275A JP 1155003 A JP1155003 A JP 1155003A JP 15500389 A JP15500389 A JP 15500389A JP H0323275 A JPH0323275 A JP H0323275A
Authority
JP
Japan
Prior art keywords
weight
magnesia
clinker
amount
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1155003A
Other languages
Japanese (ja)
Other versions
JPH0633179B2 (en
Inventor
Yoshiaki Kawase
川瀬 義明
Yukihiro Suekawa
幸弘 末川
Kazuhiro Furuta
和浩 古田
Kosuke Kurata
倉田 浩輔
Taijiro Matsui
泰次郎 松井
Saburo Matsuo
三郎 松尾
Sumio Sakaki
澄生 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP1155003A priority Critical patent/JPH0633179B2/en
Publication of JPH0323275A publication Critical patent/JPH0323275A/en
Publication of JPH0633179B2 publication Critical patent/JPH0633179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title refractory having superior resistance to corrosion, permeation of slag and spalling by adding a specified hardening agent to a mixture consisting of prescribed amts. of high purity aluminous starting material, spinel clinker, magnesia clinker and amorphous silica. CONSTITUTION:A mixture consisting of >=57wt.% high purity aluminous starting material such as mixture of sintered alumina clinker with calcined alumina, 10-30wt.% spinel clinker such as sintered spinel, 1-10wt.% magnesia clinker of <0.21mm grain size such as sintered magnesia and 0.2-3wt.% amorphous silica is prepd. and alumina cement as a hardening agent is added to the mixture by 0.5-<3wt.% of the amt. of the mixture. Activated magnesia may be added as the hardening agent by 0.2-5wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流し込み用不定形耐火物、とくに取錫内張り
、DH,RH用浸漬管、タンディッシュ用母材等の流し
込み施工に好適な耐火物に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a refractory material suitable for pouring monolithic refractories, particularly tin linings, dip pipes for DH and RH, base materials for tundishes, etc. relating to things.

〔従来の技術〕[Conventional technology]

従来からかかる流し込み用不定形耐火物として、珪石質
,ロー石質,シャモット質,高アルミナ質.マグネシア
質.ロー石一ジルコン質等が使用されてきた。
Conventionally, castable monolithic refractories have been made of silica, rosite, chamotte, and high alumina. Magnesia quality. Raw stone, zircon, etc. have been used.

近年、真空脱ガス法,連続鋳造.取錫精諌技術の向上か
ら、高級鋼種が精錬されるようになり、溶鋼温度の上昇
、更に滞隔時間の延長等により、処理条件はますます苛
酷になってきており、従来の材質のものでは耐食性,耐
スポーリング性及び容積安定性等の点で対応できなくな
ってきている。
In recent years, vacuum degassing and continuous casting have been introduced. With improvements in tin refining technology, high-grade steels are now being refined, and processing conditions are becoming increasingly harsh due to increases in molten steel temperature and longer residence times. However, it is no longer possible to meet the requirements in terms of corrosion resistance, spalling resistance, volume stability, etc.

このため、このような苛酷fよ処理条件に適応可能な耐
火物として、材質面からスビネルクリン力一を使用した
スビネル質不定形耐火物が、特開昭60−60985号
公報、特開昭64−87577号公報等に開示されてい
る。
For this reason, as a refractory that can be adapted to such severe processing conditions, Subinel monolithic refractories using Subinel Klinriki have been proposed in JP-A-60-60985 and JP-A-64- It is disclosed in JP-A No. 87577 and the like.

このスビネル質不定形耐火物はスピネルクリンカーの特
性、たとえば熱膨張係数が小さいことや、スラグ浸漬抵
抗性の大きいこと等を有効に利用して、耐食性,耐スポ
ーリング性及び容積安定性等に優れ、そのうえ、熱的ス
ポーリング性やスラグ浸透に起因する亀裂.剥離の抑制
にも優れたものである。
This Subinel monolithic refractory effectively utilizes the characteristics of spinel clinker, such as its low coefficient of thermal expansion and high resistance to slag immersion, and has excellent corrosion resistance, spalling resistance, and volume stability. , as well as cracks caused by thermal spalling and slag penetration. It is also excellent in suppressing peeling.

とくに特開昭60−60985号公報に記載のものは、
耐火材に付与すべき膨張性を、従来の塩基性材料に見ら
れるように、Kg○−^l,03の反応により生じるス
ビネル膨張によるものではなく、微粉部分を構或するl
O〜35重量%含有されるアルミナと3〜10重量%含
有されるアルミナセメント中のCaOとの高温での反応
によるCa0・6^R 2 0 sの形或に伴う膨張を
利用して耐火物としての膨張性を付与したことにある。
In particular, the one described in Japanese Patent Application Laid-Open No. 60-60985,
The expansibility that should be imparted to the refractory material is not due to Subinel expansion caused by the reaction of Kg○-^l,03, as seen in conventional basic materials, but is due to the expansion of the fine powder portion.
Refractories are made by utilizing the form of Ca0.6^R20s or the accompanying expansion caused by the reaction between alumina containing O~35% by weight and CaO in alumina cement containing 3~10% by weight at high temperatures. This is due to the fact that it has been given expandability.

しかしながら、操業条件が苛酷な場合にはその溶損量は
極端に大きくなるという欠点がある。
However, there is a drawback that the amount of erosion becomes extremely large when operating conditions are severe.

また、特開昭64−87577号公報に記載のものは、
容積安定性を得るためにマグネシアを添加したものであ
るが、スラグの浸潤が大きく、耐スポーリング性に劣る
ことから剥離.地金差しが大きいという欠点があった。
Moreover, the one described in Japanese Patent Application Laid-Open No. 64-87577 is
Magnesia was added to achieve volumetric stability, but the infiltration of slag was large and the spalling resistance was poor, resulting in peeling. The drawback was that the metal holder was large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、と記各公報に記載の内張り耐火物は、従前
の不定形材料に比較して、耐食性.耐スポーリング性及
び容積安定性等の改善により高耐用性を得ることを可能
にしたが、スラグ浸潤に伴う構造的なスポーリングを誘
発しやすい欠点があり、稼動中期.末期に剥離損耗を生
じ、安定性の点からの改善を望まれている。
In this way, the lining refractories described in the above publications have better corrosion resistance than conventional monolithic materials. Although improvements in spalling resistance and volumetric stability have made it possible to achieve high durability, there is a drawback that structural spalling due to slag infiltration is likely to occur, making it difficult to maintain performance during the middle of operation. Peeling and wear occur in the final stages, and improvements in stability are desired.

本発明において解決すべき課題は、かかる従来の耐火材
料の欠点を解消することにあって、MgOクリン力一と
スビネルクリン力一を併用することによる耐食性向上の
効果を、耐スラグ浸潤性,耐スポーリング性を劣化させ
ることなく改善することにある。
The problem to be solved in the present invention is to eliminate the drawbacks of such conventional refractory materials, and to combine the effects of improving corrosion resistance by using MgO Clin Power and Subinel Clin Power in combination with slag infiltration resistance and slag resistance. The objective is to improve polling performance without deteriorating it.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の流し込み用不定形耐火物は、高純度アルミナ原
料が少なくとも57重量%と、スビ不ルクリンカーが1
0〜30重量%と、粒径0,21mm未満のマグネシア
クリンカーが1〜10重量%と、非晶貿シリカが0.2
 〜3重量%とからI工る混合物に、硬化剤としてアル
ミナセメントを外掛け0。5重量%以lffil%未満
、または活性マグネシア外掛け0、2〜5重量%を配合
したものである。
The castable monolithic refractory of the present invention contains at least 57% by weight of high-purity alumina raw material and 1% by weight of subaru clinker.
0 to 30% by weight, 1 to 10% by weight of magnesia clinker with a particle size of less than 0.21 mm, and 0.2% of amorphous trade silica.
-3% by weight of alumina cement as a hardening agent, or 0.5% to less than 10% by weight, or 0.2 to 5% by weight of activated magnesia.

また、上記発明において、高純度アルミナ原科の中の1
〜20重量%を粒径0,21mm以上のマグネシアクリ
ンカーと置き換えることも可能である。
Further, in the above invention, one of the high purity alumina raw materials
It is also possible to replace ~20% by weight with magnesia clinker with a particle size of 0.21 mm or more.

本発明に使用する高純度アルミナ原料としては、具体的
には焼結アルミナ,電融アルミナもしくは仮焼アルミナ
をさし、スビネルクリン力一としては、焼結スピネル,
電融スビネル、マグネシアクリン力一としては、焼結マ
グネシア,電融マグネシア等の不純物の少ないものが使
用できる。
The high purity alumina raw material used in the present invention specifically refers to sintered alumina, fused alumina or calcined alumina, and examples of the high purity alumina raw material include sintered spinel,
As the electrofused subinel and magnesia cleaner, those with less impurities such as sintered magnesia and electrofused magnesia can be used.

本発明の配合組戊において、アルミナースピネルーマグ
ネシアの使用比率は、材料の耐食性,耐スラグ浸潤性,
容積安定性から決定される。
In the compound composition of the present invention, the usage ratio of alumina spinel-magnesia is determined by the corrosion resistance, slag infiltration resistance,
Determined from volumetric stability.

〔作用j 本発明において配合されるマグネシアは、アルミナとス
ビネル化反応による膨張性付与及び酸化鉄含有スラグに
対する耐食性向上,スラグ浸潤抑制機能を有する。しか
しながら、l重量%より少ない範囲では材料の膨張性を
付与するのに充分ではなく、またlO重量%より多い範
囲では膨張が過度となり、使用中の組織劣化をもたらす
[Function j] The magnesia blended in the present invention has the function of imparting expandability through a subinelization reaction with alumina, improving corrosion resistance to iron oxide-containing slag, and suppressing slag infiltration. However, a range less than 1% by weight is not sufficient to impart expandability to the material, and a range greater than 10% by weight causes excessive expansion, resulting in tissue deterioration during use.

1〜10 1 量%配合されるマグネシアクリン力一の
粒度に関しては、耐食性,均一なスビネル化反応を起こ
させるためには0.21+n未満である必要がある。
The particle size of the magnesia curing powder blended in an amount of 1 to 101% by weight needs to be less than 0.21+n in order to achieve corrosion resistance and to cause a uniform subinelization reaction.

スピネル原料の使用比率は、配合される非晶質シリカの
量による耐食性によって規制される。スビネルの使用量
が30重量%を越える範囲では、逆にMgO−^l20
is+02 系低融物生成量増大に起因する耐食性劣化
の傾向を示す。このことからスビネルの配合量は10〜
30重量%に規制されるが、粒度に関してはとくに規制
はない。
The usage ratio of the spinel raw material is regulated by the corrosion resistance depending on the amount of amorphous silica blended. Conversely, if the amount of Subinel used exceeds 30% by weight, MgO-^l20
is+02 This shows a tendency for corrosion resistance to deteriorate due to an increase in the amount of low-melting substances produced. From this, the blending amount of Subinel is 10~
Although it is regulated to 30% by weight, there is no particular regulation regarding particle size.

マタ・非晶質シリカの添加は、硬化促進及び養生から乾
燥初期の強度発現を付与し、さらに材料の通気性を低レ
ベルに維持し、かつスラグの浸透の抑制効果を期侍する
ことができる。
The addition of mata/amorphous silica accelerates hardening and imparts strength development during the initial stage of drying from curing, further maintains the air permeability of the material at a low level, and can suppress the penetration of slag. .

非晶質シリカ0.2重量%以下では強度発現に乏しく、
また3重量%以上ではMgO−^1 2 0 3  S
 I 0 2系低融物生成による過焼結傾向が増大し、
スポーリング性に劣り好ましくない。また、非晶質シリ
カの粒度としては、比表面積20〜500m’/gのも
のが好ましい。
If the amorphous silica is less than 0.2% by weight, strength development is poor;
Moreover, at 3% by weight or more, MgO-^1 2 0 3 S
The tendency for oversintering due to the formation of I02-based low melting substances increases,
Unfavorable because of poor spalling properties. Furthermore, the particle size of the amorphous silica is preferably one with a specific surface area of 20 to 500 m'/g.

本発明の高純度アルミナ原料は、上記のマグネシア.ス
ビネル,非晶質シリカの使用比率を規制することによっ
て決定され、少なくとも57重量%の配合量となる。
The high-purity alumina raw material of the present invention is the above-mentioned magnesia. It is determined by regulating the usage ratio of Subinel and amorphous silica, which is at least 57% by weight.

さらに、本発明に用いる高純度アルミナ原料の一部を粒
径が0.21+m以上のマグネシアクリンカーに置き換
えることによって耐食性の向上を図ることができる。し
かしながら、マグネシアクリンカーを20重量%以上使
用すると膨張が大き なり過ぎ、また耐スポーリング性
も劣化する欠点がある。
Furthermore, corrosion resistance can be improved by replacing a part of the high-purity alumina raw material used in the present invention with magnesia clinker having a particle size of 0.21+m or more. However, if more than 20% by weight of magnesia clinker is used, the expansion will be too large and the spalling resistance will also deteriorate.

そのため、その量は1〜20重量%の範囲に規定される
Therefore, its amount is defined in the range of 1 to 20% by weight.

本発明において配合される硬化剤は、アルミナセメント
もしくは活性マグネシアである。添加量が多いと、メリ
ライト, Ca2(^f,Mg,Si)so,のような
CaO−^R20y−Mg〇一Si O.系低融物の生
sxmの増大をもたらし、耐食性の低下を生じることか
ら、セメン}lとしては外掛け3重量%未満、好ましく
はCavilとして0.75重量%以下、もしくは活性
マグネシア外掛け5重量%以下である。
The hardening agent blended in the present invention is alumina cement or activated magnesia. If the amount added is large, CaO-^R20y-Mg〇-SiO. Since this results in an increase in raw sxm of the low-melting system and a decrease in corrosion resistance, the outer weight of cement is less than 3% by weight, preferably 0.75% by weight or less as Cavil, or the outer weight of activated magnesia is 5% by weight. % or less.

とくに、活性マグネシアの場合、添加量が多いと^12
0s−MgOのスピネル生戊反応による膨張性大により
組織の劣化を誘発することからも量的に制限されるもの
である。
In particular, in the case of activated magnesia, if the amount added is large^12
The amount of 0s-MgO is also limited because it induces tissue deterioration due to its high expandability due to the spinel formation reaction.

逆にセメント量として、0.5 重量%以下もしくは活
性マグネシア0。2重量%以下では、施工後脱枠するま
での硬化時間が長く、かつ強度発現に乏しく好ましくな
い。
On the other hand, if the amount of cement is less than 0.5% by weight or the amount of activated magnesia is less than 0.2% by weight, it will take a long time to cure until the frame is removed after construction, and the strength will be poor, which is undesirable.

また、耐火物の作業性付与のために縮合燐酸アルカリ.
ポリカルボン酸ナトリウム等の分散剤や材料特性に影響
を与えない範囲の少量の粘土、更に短時間乾燥に対する
耐爆裂性改善のために少量の金属を添加することも差し
支えない。
In addition, alkali condensed phosphate is used to improve the workability of refractories.
It is also possible to add a dispersant such as sodium polycarboxylate, a small amount of clay within a range that does not affect the material properties, and a small amount of metal to improve explosion resistance against short-term drying.

〔実施例〕〔Example〕

第1表は本発明における耐火物混合物における高純度ア
ルミナ原料とマグネシアクリンカー微粉との混合割合を
変えたとき、及び高純度アルミナ際料の一部を0.21
mm以上のマグネシアクリン力一に置換したときの骨材
の特性を示す。
Table 1 shows the results when the mixing ratio of high-purity alumina raw material and magnesia clinker fine powder in the refractory mixture in the present invention was changed, and when a part of the high-purity alumina material was 0.21%
The characteristics of aggregate when replaced with magnesia with a curing force of 1 mm or more are shown.

粒度調整された焼結アルミナタリンカーと仮焼アルミナ
の混合物からなる高純度アルミナ原料に0.21闘未満
の海水マグネシアクリンカー微粉を混合し或形したサン
プルを1500℃×3時間加熱した後の残存膨張率及び
見掛け気孔率、または回転侵食法による侵食量とスラグ
浸潤量との関係を示したものである。
Remaining after heating a sample made by mixing fine powder of seawater magnesia clinker of less than 0.21 mm with a high-purity alumina raw material consisting of a mixture of sintered alumina talinker and calcined alumina whose particle size has been adjusted This figure shows the relationship between the expansion coefficient and apparent porosity, or the amount of erosion by the rotary erosion method and the amount of slag infiltration.

同表から、高純度アルミナ原料の侵食量とスラグ浸潤性
は0.21u未満のマグネシアクリンカーが略1〜10
重量%の場合に良好な結果を示すことが判る。
From the same table, the erosion amount and slag infiltration of high-purity alumina raw materials are approximately 1 to 10% for magnesia clinker less than 0.21 u.
It can be seen that good results are shown in the case of weight %.

第2表は、第1表の結果を基に粒度調整された高純度ア
ルミナ原料及び0.21+em以上のマグネシアクリン
力−15%と焼結スピネルクリンカー量比との関係につ
いて、0.21n未満の海水マグネシアクリンカー微粉
を5重量%、非晶質シリカl重量%及び硬化剤としてア
ルミナセメントを外掛け2重量%に所定の水を添加して
20℃で24時間養生し得たサンプルを用い、回転侵食
法により侵食量スラグ浸ailtとの関係を示したもの
である。
Table 2 shows the relationship between the high purity alumina raw material whose particle size has been adjusted based on the results in Table 1 and magnesia of 0.21+em or more and the clinking force of -15% and the sintered spinel clinker amount ratio of less than 0.21n. Using a sample obtained by adding a specified amount of water to 5% by weight of fine seawater magnesia clinker powder, 1% by weight of amorphous silica, and 2% by weight of alumina cement as a hardening agent and curing at 20°C for 24 hours, rotation was performed. This figure shows the relationship between the amount of erosion and slag immersion ailt using the erosion method.

第2表から、耐火材混合物中におけるスピネルクリンカ
ーの配合量は10〜30重量%の範囲内で良好な耐溶損
性を示すことが判る。
From Table 2, it can be seen that good erosion resistance is exhibited when the amount of spinel clinker blended in the refractory material mixture is within the range of 10 to 30% by weight.

第3表は非晶質シリカ壇と強度,耐溶損性の関係につい
て調査したものである。粒度調整された高純度アルミナ
原料60重量%,0.21+m以上のマグネシアクリン
力−10%,スビネルクリン力−25重壇%. 0.2
1u未満の海水マグネシアクリンカー微粉5重虫%と硬
化剤としてアルミナセントを2重q%外掛け添加した混
合物に対し、非晶質ンリカ量を外掛け添加したときの結
果を示す。
Table 3 shows an investigation into the relationship between amorphous silica matrix, strength, and erosion resistance. 60% by weight of high-purity alumina raw material with adjusted particle size, 0.21+m or more magnesia cleaning power - 10%, Subinel cleaning strength - 25% by weight. 0.2
The results are shown when an amount of amorphous phosphor was added to a mixture of 5% seawater magnesia clinker fine powder of less than 1 u and 2% q% of alumina cent as a hardening agent.

所定の水を添加して20℃で24時間養生し、硬化体サ
ンプルを得た。この硬化体サンプルの110℃乾燥後の
強度、1500℃で3時間焼成後の圧縮強度及び回転侵
食法により侵食量とスラグ浸潤量との関係を調査した。
A predetermined amount of water was added and cured at 20° C. for 24 hours to obtain a cured sample. The strength of this cured sample after drying at 110°C, the compressive strength after firing at 1500°C for 3 hours, and the relationship between the amount of erosion and the amount of slag infiltration were investigated using a rotary erosion method.

本発明の実施例であるテスト試料Nα21〜24は充分
な強度を有し、また高温焼或後の過焼結傾向もなく、か
つ侵食量,スラグ浸潤量及び亀裂に対しても良好な結果
を示す。
Test samples Nα21 to Nα24, which are examples of the present invention, have sufficient strength, do not have a tendency to oversinter after high-temperature sintering, and show good results in terms of the amount of erosion, amount of slag infiltration, and cracking. show.

第4表は、粒度調整された高純度アルミナ原料74重量
%、焼結スビネルクリンカ−20重遣%.海水マグネシ
アクリンカ−5重量%,非晶質シリカl重量%及び高純
度アルミナ原料の一部を0,21a+m以上のマグネシ
アクリンカーに置換した混合物に、硬化剤としてアルミ
ナセメントもしくは活性マグネシアを用い、その外掛け
量と20℃養生後の鋳込み体の硬化時間及び110℃乾
燥後の強度、1500℃焼成後の強度線変化率、回転侵
食テストによるスラグ侵食量、スラグ浸潤量及びスポー
ルによる亀裂程度との関係を示す。
Table 4 shows 74% by weight of high-purity alumina raw material whose particle size has been adjusted and 20% by weight of sintered Subinel clinker. A mixture in which 5% by weight of seawater magnesia clinker, 1% by weight of amorphous silica, and a part of the high-purity alumina raw material is replaced with magnesia clinker of 0.21a+m or more, using alumina cement or activated magnesia as a hardening agent, and other The relationship between the amount of application and the hardening time of the cast body after curing at 20°C, the strength after drying at 110°C, the rate of change in strength line after firing at 1500°C, the amount of slag erosion by rotary erosion test, the amount of slag infiltration, and the degree of cracking due to spalling. shows.

なお、鋳込み体は所定の水を添加した後に40×40 
X 15Qmmの形状に鋳込み、20℃で48時間養生
した後、110℃で24時間乾燥後、1500℃で3時
間焼威後の品質を測定した。
In addition, the cast body is made of 40×40 after adding the specified amount of water.
It was cast into a shape of x 15 Qmm, cured at 20°C for 48 hours, dried at 110°C for 24 hours, and burned at 1500°C for 3 hours, and then the quality was measured.

同表から、本発明の実施例として示すテスト試料Nll
L29〜34は、比較例であるテスト試$4Nc27.
 28及びNα35〜38と比較して、作業性において
も、乾燥後の圧縮強度においても、耐溶損性においても
これらの全てを総合して、優れた性質を有することが判
る。
From the same table, test sample Nll shown as an example of the present invention
L29-34 are comparative examples of test samples $4Nc27.
It can be seen that, in comparison with No. 28 and Nα35-38, it has excellent properties in terms of workability, compressive strength after drying, and erosion resistance.

く以下、この頁余白) 〔発明の効果〕 本発明の流し込み不定形耐火物によって以下の効果を奏
することができる。
(See below in the margins of this page) [Effects of the Invention] The cast monolithic refractories of the present invention can provide the following effects.

(1)  lJgoクリンカー、スピネルクリンカーの
併用に際し、非晶質シリカー硬化剤の使用を制約し、過
焼結防止からの耐スポーリング性が向上できた。
(1) When using lJgo clinker and spinel clinker together, the use of amorphous silica curing agent was restricted, and spalling resistance was improved by preventing oversintering.

(2)従来のアルミナ系骨材へのMgOの添加は耐食性
向上に有効であった反面、過度のスビネルの生戊膨張か
らの組織劣化とスラグ浸潤が厚いという問題があったが
、本発明の耐火物はアルミナセメントの配合量を制限し
、マグネシアクリンカー粒子の配合量を特定することに
よって上記の弊害は受けにくい。
(2) While the conventional addition of MgO to alumina-based aggregate was effective in improving corrosion resistance, there were problems of structural deterioration and thick slag infiltration due to excessive Svinel expansion. Refractories are less susceptible to the above disadvantages by limiting the amount of alumina cement mixed and specifying the amount of magnesia clinker particles.

(3)  上記(1)と(2)によってMg○の添加に
よる耐食性は大幅に向上する。
(3) Corrosion resistance due to the addition of Mg○ is significantly improved by the above (1) and (2).

(4)施工に際して適度な硬化と強度を示す。(4) Shows appropriate hardening and strength during construction.

Claims (2)

【特許請求の範囲】[Claims] 1.高純度アルミナ原料が少なくとも57重量%と、ス
ピネルクリンカーが10〜30重量%と、粒径0.21
mm未満のマグネシアクリンカーが1〜10重量%と、
非晶質シリカが0.2〜3重量%とからなる混合物に、
硬化剤としてアルミナセメントを外掛け0.5重量%以
上3重量%未満、または活性マグネシア外掛け0.2〜
5重量%を配合した流し込み用不定形耐火物。
1. At least 57% by weight of high-purity alumina raw material, 10-30% by weight of spinel clinker, and a particle size of 0.21%
1 to 10% by weight of magnesia clinker less than mm,
A mixture consisting of 0.2 to 3% by weight of amorphous silica,
External coating of alumina cement as a hardening agent of 0.5% to less than 3% by weight, or external coating of activated magnesia of 0.2 to 3%
A monolithic refractory for pouring containing 5% by weight.
2.高純度アルミナ原料が少なくとも37重量%と、ス
ピネルクリンカーが10〜30重量%と、粒径0.21
mm以上のマグネシアクリンカーが1〜20重量%と、
粒径0.21mm未満のマグネシアクリンカーが1〜1
0重量%と、非晶質シリカが0.2〜3重量%とからな
る混合物に、硬化剤としてアルミナセメントを外掛け0
.5重量%以上3重量%未満、または活性マグネシア外
掛け0.2〜5重量%を配合した流し込み用不定形耐火
物。
2. At least 37% by weight of high-purity alumina raw material, 10-30% by weight of spinel clinker, and a particle size of 0.21%
1 to 20% by weight of magnesia clinker of mm or more,
1 to 1 magnesia clinker with a particle size of less than 0.21 mm
Alumina cement is applied as a hardening agent to a mixture consisting of 0% by weight of amorphous silica and 0.2 to 3% by weight of amorphous silica.
.. A castable monolithic refractory containing 5% by weight or more and less than 3% by weight, or 0.2 to 5% by weight of activated magnesia.
JP1155003A 1989-06-17 1989-06-17 Irregular refractory for pouring Expired - Fee Related JPH0633179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155003A JPH0633179B2 (en) 1989-06-17 1989-06-17 Irregular refractory for pouring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155003A JPH0633179B2 (en) 1989-06-17 1989-06-17 Irregular refractory for pouring

Publications (2)

Publication Number Publication Date
JPH0323275A true JPH0323275A (en) 1991-01-31
JPH0633179B2 JPH0633179B2 (en) 1994-05-02

Family

ID=15596574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155003A Expired - Fee Related JPH0633179B2 (en) 1989-06-17 1989-06-17 Irregular refractory for pouring

Country Status (1)

Country Link
JP (1) JPH0633179B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185202A (en) * 1991-11-29 1993-07-27 Nisshin Steel Co Ltd Monolithic refractorie for ladle
JPH06172045A (en) * 1992-12-04 1994-06-21 Harima Ceramic Co Ltd Refractory for casting process
US5681786A (en) * 1996-10-28 1997-10-28 Krosaki Corporation Castable refractory rich with alumina coarse grains
US5681785A (en) * 1996-10-28 1997-10-28 Krosaki Corporation Castable refractory containing alumina coarse grains
KR100332903B1 (en) * 1997-10-06 2002-06-20 신현준 Dry charging refractory for induction furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585478A (en) * 1978-12-20 1980-06-27 Kurosaki Refractories Co Waterrsetting refractory composition
JPS59174578A (en) * 1983-03-18 1984-10-03 日本鋼管株式会社 Basic castable refractories
JPS6060986A (en) * 1983-09-08 1985-04-08 新日本製鐵株式会社 Spinel refractories for ladle lining
JPS61158872A (en) * 1984-12-28 1986-07-18 ハリマセラミック株式会社 Castable refractories
JPS6487577A (en) * 1987-08-29 1989-03-31 Harima Ceramic Co Ltd Monolithic alumina-spinel refractory
JPH01197371A (en) * 1988-01-29 1989-08-09 Daiichi Taika Renga Kk Monolithic refractory for lining of vessel of melted metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585478A (en) * 1978-12-20 1980-06-27 Kurosaki Refractories Co Waterrsetting refractory composition
JPS59174578A (en) * 1983-03-18 1984-10-03 日本鋼管株式会社 Basic castable refractories
JPS6060986A (en) * 1983-09-08 1985-04-08 新日本製鐵株式会社 Spinel refractories for ladle lining
JPS61158872A (en) * 1984-12-28 1986-07-18 ハリマセラミック株式会社 Castable refractories
JPS6487577A (en) * 1987-08-29 1989-03-31 Harima Ceramic Co Ltd Monolithic alumina-spinel refractory
JPH01197371A (en) * 1988-01-29 1989-08-09 Daiichi Taika Renga Kk Monolithic refractory for lining of vessel of melted metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185202A (en) * 1991-11-29 1993-07-27 Nisshin Steel Co Ltd Monolithic refractorie for ladle
JPH06172045A (en) * 1992-12-04 1994-06-21 Harima Ceramic Co Ltd Refractory for casting process
JP2604310B2 (en) * 1992-12-04 1997-04-30 ハリマセラミック株式会社 Pouring refractories
US5681786A (en) * 1996-10-28 1997-10-28 Krosaki Corporation Castable refractory rich with alumina coarse grains
US5681785A (en) * 1996-10-28 1997-10-28 Krosaki Corporation Castable refractory containing alumina coarse grains
KR100332903B1 (en) * 1997-10-06 2002-06-20 신현준 Dry charging refractory for induction furnace

Also Published As

Publication number Publication date
JPH0633179B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US4308067A (en) Unshaped refractory compositions useful as jointing and moulding compositions
US4039344A (en) Alumina-chrome refractory composition
JPH0737344B2 (en) Irregular refractory with basic properties
JP3514393B2 (en) Castable refractories for lining dip tubes or lance pipes used in molten metal processing
JPH0323275A (en) Monolithic refractory for casting
JPH0687667A (en) Zirconia-mullite containing castable refractory
JPH082975A (en) Refractory for casting application
JPH06345550A (en) Castable refractory
JPH026373A (en) Cast amorphous refractory
JPH10203862A (en) Magnesium-chromium brick fired at high temperature
JP2975849B2 (en) Refractories for steelmaking
JP3157310B2 (en) Refractory
JPH06144939A (en) Basic castable refractory
JPH04104965A (en) Amorphous refractory
JP2001270781A (en) Castable alumina-magnesia-based refractory using magnesium carbonate as magnesia source
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
JPH1025167A (en) Refractory for casting using magnesia-based coarse grain
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JP2747734B2 (en) Carbon containing refractories
JP2766624B2 (en) Alumina / Spinel amorphous refractories
JP2548085B2 (en) Irregular refractory composition
JPH06199575A (en) Alumina-spinel castable refractory
JPH06172044A (en) Castable refractory of alumina spinel
JP2736261B2 (en) Irregular refractories for pouring
JPH0477366A (en) Castable monolithic refractory

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees