JP2001270781A - Castable alumina-magnesia-based refractory using magnesium carbonate as magnesia source - Google Patents

Castable alumina-magnesia-based refractory using magnesium carbonate as magnesia source

Info

Publication number
JP2001270781A
JP2001270781A JP2000333430A JP2000333430A JP2001270781A JP 2001270781 A JP2001270781 A JP 2001270781A JP 2000333430 A JP2000333430 A JP 2000333430A JP 2000333430 A JP2000333430 A JP 2000333430A JP 2001270781 A JP2001270781 A JP 2001270781A
Authority
JP
Japan
Prior art keywords
magnesia
alumina
mass
magnesium carbonate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000333430A
Other languages
Japanese (ja)
Other versions
JP4408552B2 (en
Inventor
Tokuo Taki
徳雄 多喜
Kiyoshi Goto
潔 後藤
Shiyouichi Itose
彰一 糸瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2000333430A priority Critical patent/JP4408552B2/en
Publication of JP2001270781A publication Critical patent/JP2001270781A/en
Application granted granted Critical
Publication of JP4408552B2 publication Critical patent/JP4408552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a castable alumina-magnesia-based refractory excellent in slaking resistance, dimensional stability and high temperature deformability and having a long service life. SOLUTION: This castable alumina-magnesia-based refractory, in which magnesium carbonate is employed as the source of magnesia, is produced by compounding 68-98 mass % of an alumina raw material having an average particle diameter of <=5 mm with 1-30 mass % of magnesium carbonate expressed in terms of magnesia.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属精錬に用いら
れる溶融金属容器等の内張形成用アルミナ−マグネシア
質キャスタブル耐火物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-magnesia castable refractory for forming a lining such as a molten metal container used for metal refining.

【0002】[0002]

【従来の技術】従来から、溶融金属容器等の内張の流し
込み成形に使用されるキャスタブル耐火物として耐食
性、耐構造スポーリング性に優れているアルミナ−マグ
ネシア質キャスタブルが広く用いられてきた。ところ
で、アルミナ−マグネシア質キャスタブルは、使用中に
スピネル生成反応が急激に進み膨張する。この膨張によ
るせり割れを防ぐためにシリカ超微粉の添加によって高
温変形能を付与する事が一般的に行われているが、それ
でも寸法安定性を必要とする部位への適用は困難なのが
現状である。また、アルミナ−マグネシア質キャスタブ
ルは混錬時にマグネシアが水和して消化してしまうが、
その防止策としてもシリカ超微粉の添加が効果的であ
り、広く行われている。
2. Description of the Related Art Conventionally, alumina-magnesia castables having excellent corrosion resistance and structural spalling resistance have been widely used as castable refractories used for cast molding of linings of molten metal containers and the like. By the way, in the case of alumina-magnesia castables, the spinel formation reaction rapidly proceeds and expands during use. It is common practice to add high-temperature deformability by adding ultrafine silica powder to prevent the cracks caused by this expansion, but it is still difficult to apply it to parts that require dimensional stability. . Alumina-magnesia castables are also digested by hydration of magnesia during kneading,
As a preventive measure, addition of ultrafine silica powder is effective and widely used.

【0003】[0003]

【発明が解決しようとする課題】アルミナ−マグネシア
質キャスタブルは、前述の通り、スピネルが高温で生成
するため、急激に膨張してせり割れ等が起こることが懸
念される。また、マグネシアの消化によって、施工体の
品質にばらつきが出やすいという問題点がある。すなわ
ち、高温変形能(あるいは、寸法安定性)および耐消化
性に優れた材料の開発が求められている。
As described above, since the spinel is generated at a high temperature in the alumina-magnesia castable, there is a concern that the alumina-magnesia castable expands rapidly to cause cracks and the like. There is also a problem that the quality of the construction body tends to vary due to the digestion of magnesia. That is, the development of a material having excellent high-temperature deformability (or dimensional stability) and digestion resistance is required.

【0004】高温変形能の付与に関しては、シリカに変
わる添加剤は未だに見出されておらず、寸法安定性を高
める技術も確立されていない。シリカを用いても寸法変
化によるせり割れの危険性のあるような部分( 例えば溶
鋼取鍋の一般敷など) への適用技術も未確立である。耐
消化性の向上に関しては、マグネシア粒子を樹脂で被覆
する方法(特開平5−43279号公報)や水酸化マグ
ネシウム皮膜で被覆する方法(特開平7−187816
号公報)、疎水性皮膜で被覆した上にアルミナ超微粉を
固着させる方法(特開平8−183670号公報)、親
水性炭素粒子やカーボンブラックで被覆する方法(特開
平8−253368号公報)などが提案されている。
[0004] With respect to imparting high-temperature deformability, an additive instead of silica has not been found yet, and a technique for improving dimensional stability has not been established. Even when silica is used, the technology for application to parts where there is a risk of cracking due to dimensional change (eg, general floor of a molten steel ladle) has not been established. Regarding the improvement of digestion resistance, a method of coating magnesia particles with a resin (Japanese Patent Application Laid-Open No. 5-43279) or a method of coating magnesia particles with a magnesium hydroxide film (Japanese Patent Application Laid-Open No. 7-187816)
Japanese Patent Application Laid-Open No. 8-253670), a method in which alumina fine powder is fixed after coating with a hydrophobic film (Japanese Patent Application Laid-Open No. 8-183670), a method in which hydrophilic carbon particles and carbon black are coated (Japanese Patent Application Laid-Open No. 8-253368), Has been proposed.

【0005】本発明の目的は、耐消化性に優れたマグネ
シア源を適用することによって、優れた高温変形能や寸
法安定性を有するアルミナ−マグネシア質キャスタブル
を提供する事である。
An object of the present invention is to provide an alumina-magnesia castable having excellent high-temperature deformability and dimensional stability by applying a magnesia source having excellent digestion resistance.

【0006】[0006]

【課題を解決するための手段】この課題を解決すべく研
究を進め、本発明を得た。すなわち、本発明の要旨は下
記(1) 〜(6) のとおりである。 (1) 平均粒径10mm以下のアルミナ質原料68〜98質量%
と、炭酸マグネシウムをマグネシア換算で1 〜30質量%
を配合させた、炭酸マグネシウムをマグネシア源とする
アルミナ−マグネシア質キャスタブル耐火物。 (2) 平均粒径10mm以下のアルミナ質原料68〜98質量%
と、炭酸マグネシウムをマグネシア換算で1 〜30質量%
と、平均粒径1μm 以下の超微粉シリカを0.1 〜2質量%
を配合させた、炭酸マグネシウムをマグネシア源とす
るアルミナ−マグネシア質キャスタブル耐火物。 (3) 平均粒径10mm以下のアルミナ質原料68〜95質量%
と、マグネシア質原料1 〜30質量%と、炭酸マグネシウ
ムをマグネシア換算で1 〜30質量% を配合させた、炭酸
マグネシウムをマグネシア源とするアルミナ−マグネシ
ア質キャスタブル耐火物。 (4) 平均粒径10mm以下のアルミナ質原料68〜95質量%
と、マグネシア質原料1 〜30質量% と、炭酸マグネシウ
ムをマグネシア換算で1 〜30質量% と、平均粒径1μm
以下の超微粉シリカを0.1 〜2 質量% を配合させた、炭
酸マグネシウムをマグネシア源とするアルミナ−マグネ
シア質キャスタブル耐火物。 (5) 硬化材としてアルミナセメントを0.01〜20質量%添
加した、(1) から(4) のいずれか1項に記載のアルミナ
−マグネシア質キャスタブル耐火物。 (6) 粒径10μm以下のアルミナ超微粉を50質量%以上含
有し、残部ケイ酸ソーダ、シリカゾル、アルミナゾル、
リン酸アルミニウム、乳酸アルミニウム、水硬性アルミ
ナ、軽焼マグネシア、マグネシア微粉、粘土などから選
ばれる1種又は2種以上からなる非アルミナセメント系
硬化材を0.01〜20質量%添加した、(1) から(4) のいず
れか1項に記載のアルミナ−マグネシア質キャスタブル
耐火物。
Means for Solving the Problems Research has been made to solve this problem, and the present invention has been obtained. That is, the gist of the present invention is as follows (1) to (6). (1) Alumina raw material with an average particle size of 10 mm or less 68-98% by mass
And 1 to 30% by weight of magnesium carbonate in terms of magnesia
Alumina-magnesia castable refractory containing magnesium carbonate as a magnesia source. (2) Alumina raw material with an average particle size of 10 mm or less 68-98% by mass
And magnesium carbonate in an amount of 1 to 30% by mass in terms of magnesia
0.1 to 2% by mass of ultrafine silica having an average particle size of 1 μm or less.
Alumina-magnesia castable refractory containing magnesium carbonate as a magnesia source. (3) Alumina raw material with an average particle size of 10 mm or less 68-95% by mass
An alumina-magnesia castable refractory containing magnesium carbonate as a magnesia source, wherein 1 to 30% by mass of a magnesia raw material and 1 to 30% by mass of magnesium carbonate in terms of magnesia are blended. (4) Alumina raw material with an average particle size of 10 mm or less 68-95% by mass
1 to 30% by mass of magnesia raw material and 1 to 30% by mass of magnesium carbonate in terms of magnesia, and an average particle diameter of 1 μm
An alumina-magnesia castable refractory containing magnesium carbonate as a magnesia source, containing 0.1 to 2% by mass of the following ultrafine powdered silica. (5) The alumina-magnesia castable refractory according to any one of (1) to (4), wherein 0.01 to 20% by mass of alumina cement is added as a hardening material. (6) containing 50% by mass or more of ultrafine alumina powder having a particle size of 10 μm or less, with the balance being sodium silicate, silica sol, alumina sol,
(1) from 0.01 to 20% by mass of a non-alumina cement-based hardening material comprising one or more selected from aluminum phosphate, aluminum lactate, hydraulic alumina, light-burned magnesia, magnesia fine powder, clay and the like. The alumina-magnesia castable refractory according to any one of (4) and (4).

【0007】[0007]

【発明の実施の形態】本発明は、マグネシア源の一部ま
たは全部としての炭酸マグネシウムをアルミナ質骨材な
どとともに配合させたキャスタブル耐火物である。炭酸
マグネシウムは消化性がないため、これをマグネシア源
に用いる事で、消化防止と高温変形能付与のために添加
しているシリカ超微粉を必ずしも必要としなくなり、シ
リカ添加の副作用である過焼結と高温強度の低下を抑制
する事も期待出来る。また、さらに硬化材としてアルミ
ナセメントを使用しないと、アルミナセメントに含まれ
るCaO 成分がなくなることから、高温での液相生成量が
大幅に減少し、急激なスピネル生成を抑制できる。その
ため、残存線変化率が大幅に低下し、優れた寸法安定性
を示すことが期待出来る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a castable refractory in which magnesium carbonate as a part or all of a magnesia source is blended together with an alumina aggregate or the like. Magnesium carbonate is not digestible, so by using it as a magnesia source, silica fine powder added to prevent digestion and provide high-temperature deformability is not necessarily required, and oversintering is a side effect of adding silica. It can also be expected that the decrease in high-temperature strength is suppressed. Further, if alumina cement is not used as the hardening material, the CaO component contained in the alumina cement is eliminated, so that the amount of liquid phase generated at a high temperature is greatly reduced, and rapid spinel generation can be suppressed. Therefore, it can be expected that the residual linear change rate is significantly reduced and excellent dimensional stability is exhibited.

【0008】ここで使用されるアルミナ質骨材は均質な
施工体を得るために平均粒径が5mm以下のものを用い、
さらに良好な充填密度が得られるように粗粒(1〜5mm)、
中粒(0.075〜1mm)、微粉(0.075mm以下) にそれぞれ分け
て調整したものを用いる事が好ましい。本発明における
マグネシア源は、炭酸マグネシウムのみ( 前記発明(1)
(2)) 、あるいは炭酸マグネシウム微粉とマグネシア微
粉の混合物( 前記発明(3)(4)) である。用いる炭酸マグ
ネシウムは純度95質量% 以上の高純度マグネサイト鉱石
または合成炭酸マグネシウムを少なくとも粒径1mm 以下
としたものが好ましい。なお、マグネサイトは炭酸マグ
ネシウムからなる鉱物のことであり、炭酸マグネシウム
の化学式はMgCO3 である。
The alumina-based aggregate used here has an average particle size of 5 mm or less in order to obtain a uniform construction.
Coarse grains (1-5 mm) to obtain better packing density,
It is preferable to use those which are separately adjusted to medium grains (0.075 to 1 mm) and fine powders (0.075 mm or less). Magnesia source in the present invention, only magnesium carbonate (the invention (1)
(2)) or a mixture of magnesium carbonate fine powder and magnesia fine powder (the inventions (3) and (4)). The magnesium carbonate used is preferably a high-purity magnesite ore having a purity of 95% by mass or more or a synthetic magnesium carbonate having a particle size of at least 1 mm or less. Magnesite is a mineral composed of magnesium carbonate, and the chemical formula of magnesium carbonate is MgCO 3 .

【0009】本発明(1) 〜(6) において、アルミナ質原
料などともに上記マグネシア源をマグネシア換算で1 〜
30質量% を配合させる。これは、マグネシア成分が1 質
量%未満になるとスピネル生成量が少なすぎて耐食性、
耐スラグ浸潤性向上に対して効果が得られないためであ
る。一方、30質量% 超になると逆にスピネル生成量が多
くなりかなりの膨張を示すため、材料自身がせり割れに
よって崩壊してしまう。なお、この場合のマグネシア換
算とは、炭酸マグネシウムがすべてマグネシアになった
ものとしてそのマグネシアの重量を計算に用いることで
ある。すなわち(炭酸マグネシウム量)×0.478 =(マ
グネシア量)である。
In the present inventions (1) to (6), the above magnesia source is used together with the alumina raw material in the range of 1 to 1 in terms of magnesia.
30% by mass. This is because when the magnesia component is less than 1% by mass, the spinel production is too small and the corrosion resistance,
This is because no effect can be obtained on improving the slag infiltration resistance. On the other hand, when the content exceeds 30% by mass, the amount of spinel produced increases and the material expands considerably, so that the material itself collapses by cracking. In this case, magnesia conversion means that magnesium carbonate is assumed to be all magnesia and the weight of magnesia is used for calculation. That is, (magnesium carbonate amount) × 0.478 = (magnesia amount).

【0010】本発明(1) 〜(6) において使用されるアル
ミナ質原料とマグネシア質原料は、通常耐火物用に使用
されているもので差し支えない。すなわちアルミナ質原
料としては焼結アルミナ、電融アルミナ、仮焼アルミ
ナ、ボーキサイト、電融ボーキサイト、ばん土頁岩など
が使用できる。マグネシア質原料は焼結また電融品が使
用できる。分散剤としては、例えばトリポリリン酸ソー
ダ、ヘキサメタリン酸ソーダ、酸性ヘキサメタリン酸ソ
ーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ナフ
タレンスルホン酸ソーダ、リグニンスルホン酸ソーダ、
ウルトラポリリン酸ソーダ、炭酸ソーダ、ホウ酸ソー
ダ、クエン酸ソーダ、酒石酸塩、などから選ばれる1 種
または2 種以上を使用する。必要に応じて硬化調整剤を
添加することが出来るが、これには例えばホウ酸、シュ
ウ酸、クエン酸、グルコン酸、ホウ酸アンモニウム、ウ
ルトラポリリン酸ソーダ、炭酸リチウムなどから選ばれ
る1 種または2 種以上を使用することができる。
The alumina raw material and magnesia raw material used in the present invention (1) to (6) may be those usually used for refractories. That is, as the alumina raw material, sintered alumina, fused alumina, calcined alumina, bauxite, fused bauxite, sand shale and the like can be used. Sintered or electrofused magnesia materials can be used. Examples of the dispersant include sodium tripolyphosphate, sodium hexametaphosphate, sodium acid hexametaphosphate, sodium polyacrylate, sodium sulfonate, sodium naphthalene sulfonate, sodium lignin sulfonate,
Use one or more selected from sodium ultrapolyphosphate, sodium carbonate, sodium borate, sodium citrate, tartrate, and the like. If necessary, a curing modifier can be added, for example, one or two selected from boric acid, oxalic acid, citric acid, gluconic acid, ammonium borate, sodium ultrapolyphosphate, lithium carbonate and the like. More than one species can be used.

【0011】本発明(1) 〜(4) において使用される硬化
材はアルミナセメントが最も好ましいが、これに限ら
ず、例えばケイ酸ソーダ、シリカゾル、アルミナゾル、
リン酸アルミニウム、乳酸アルミニウム、水硬性アルミ
ナ、軽焼マグネシア、粘土などから選ばれる1 種または
2 種以上が使用できる。また、前記(5 )の発明におい
て、硬化材としてアルミナセメントを0.01〜20質量%添
加する。特にアルミナセメントの添加量が5 質量%より
少ない場合は十分な養生強度を得るためにその他の硬化
材を併用することが好ましい。その場合は粒径10μm以
下のアルミナ超微粉が最も適するが、ケイ酸ソーダ、シ
リカゾル、アルミナゾル、リン酸アルミニウム、乳酸ア
ルミニウム、水硬性アルミナ、軽焼マグネシア、粘土な
どから選ばれる1 種または2 種以上も使用できる。一
方、5 〜20質量%の範囲ではアルミナセメントだけで
十分な養生強度が得られるが、必要に応じてその他の硬
化材を添加しても構わない。なお、アルミナセメントの
添加量が20質量%を超えると耐食性が著しく低下するた
め、アルミナセメントの添加量は20質量% とする。
The hardening material used in the present inventions (1) to (4) is most preferably alumina cement, but is not limited thereto. For example, sodium silicate, silica sol, alumina sol,
One selected from aluminum phosphate, aluminum lactate, hydraulic alumina, light-burned magnesia, clay, etc. or
Two or more types can be used. Further, in the invention (5), 0.01 to 20% by mass of alumina cement is added as a hardening material. In particular, when the added amount of alumina cement is less than 5% by mass, it is preferable to use another hardening material in combination to obtain a sufficient curing strength. In this case, ultra-fine alumina powder having a particle size of 10 μm or less is most suitable, but one or more selected from sodium silicate, silica sol, alumina sol, aluminum phosphate, aluminum lactate, hydraulic alumina, light-burned magnesia, clay, etc. Can also be used. On the other hand, in the range of 5 to 20% by mass, sufficient curing strength can be obtained only with alumina cement, but other hardening materials may be added as necessary. If the added amount of the alumina cement exceeds 20% by mass, the corrosion resistance is remarkably reduced. Therefore, the added amount of the alumina cement is set to 20% by mass.

【0012】また、本発明(6) においては、粒径10μm
以下のアルミナ超微粉を50質量%以上含有し、残部ケイ
酸ソーダ、シリカゾル、アルミナゾル、リン酸アルミニ
ウム、乳酸アルミニウム、水硬性アルミナ、軽焼マグネ
シア、マグネシア微粉、粘土などから選ばれる1 種又は
2 種以上からなる非アルミナセメント系硬化材を合計で
0.01〜20質量%添加する。この硬化材は添加量が0.01質
量%より少ないと十分な養生強度が得られず施工が困難
となり、一方20質量%を超えると著しく流動性が悪化
し、やはり施工が困難となるため、上記の範囲に限定す
る。
In the present invention (6), the particle diameter is 10 μm
One or more selected from the group consisting of sodium silicate, silica sol, alumina sol, aluminum phosphate, aluminum lactate, hydraulic alumina, light-burned magnesia, magnesia fine powder, clay, etc.
A total of two or more non-alumina cement-based hardeners
Add 0.01 to 20% by mass. If the added amount of the hardening material is less than 0.01% by mass, sufficient curing strength cannot be obtained and the application becomes difficult, while if it exceeds 20% by mass, the fluidity is remarkably deteriorated, and the application is also difficult. Limit to the range.

【0013】アルミナ超微粉の粒径が10μmを超えると
安定した施工に必要な養生強度が得られないため、前記
の範囲に規定する。また、非アルミナセメント系硬化材
において、粒径10μm以下のアルミナ超微粉の含有量が
50質量%より少ないとやはり安定した施工に必要な養生
強度が得られないため、前記の範囲に規定する。本発明
(2) 、(4) 及び(5) 〜(6) の一部においてはシリカ超微
粉( 平均粒径1μm 以下) を添加する。この場合のシリ
カ超微粉には一般的な蒸発シリカの使用が好ましい。添
加量は0.1 質量% 未満ではマグネシア質原料の水和防止
効果が十分ではなく、他方2 質量% 超では耐食性や熱間
強度が大幅に低下してしまうため、0.1 〜2 質量% の範
囲内で添加することが好ましい。
If the particle size of the alumina ultrafine powder exceeds 10 μm, the curing strength required for stable construction cannot be obtained, so it is specified in the above range. In the non-alumina cement-based hardening material, the content of alumina ultrafine powder having a particle size of 10 μm or less is reduced.
If the amount is less than 50% by mass, the curing strength required for stable construction cannot be obtained, so the content is specified in the above range. The present invention
In (2), (4) and part of (5) to (6), ultrafine silica powder (average particle size of 1 μm or less) is added. In this case, it is preferable to use general evaporated silica for the ultrafine silica powder. If the addition amount is less than 0.1% by mass, the effect of preventing hydration of the magnesia raw material is not sufficient, while if it exceeds 2% by mass, the corrosion resistance and hot strength are significantly reduced. It is preferred to add.

【0014】また、以上に示した配合物以外にも、本発
明の効果を損なわない範囲において、他の耐火材( たと
えば珪石、ジルコン、ジルコニア、ろう石、粘土、シャ
モット、ムライト、シリマナイト族鉱物、クロム鉱、電
融マグクロ、ドロマイト、電融マグドロ、スピネル、黒
鉛、炭化けい素、ガラスなど) 、耐火粗大粒子、繊維
類、金属粉末、金属線、酸化防止剤、結合剤、硬化調整
剤などを添加しても良い。
In addition to the above-mentioned compounds, other refractory materials (for example, silica, zircon, zirconia, pyroxene, clay, chamotte, mullite, sillimanite minerals, etc.) as long as the effects of the present invention are not impaired. Chrome ore, electromagnet, dolomite, electromagnet, spinel, graphite, silicon carbide, glass, etc.), refractory coarse particles, fibers, metal powder, metal wire, antioxidant, binder, curing regulator, etc. It may be added.

【0015】施工は常法どおり、以上の配合組成に外掛
けで4 〜8 質量% 程度の水分を添加し、流し込み施工さ
れる。施工の際には充填性を向上させるため、一般には
型枠にバイブレータを取り付けるか、あるいは耐火物中
に棒状バイブレータを挿入して加震する。
The construction is carried out by adding about 4 to 8% by mass of water to the above composition in an external manner and pouring in the usual manner. At the time of construction, in order to improve the filling property, a vibrator is generally attached to the formwork, or a rod-shaped vibrator is inserted into the refractory to shake.

【0016】[0016]

【実施例】表1 に本発明の実施例と比較例、およびそれ
らの比較結果を示す。各例はいずれも配合組成に外掛け
で4 〜8 質量% の水分を添加し型枠内に振動鋳込み成形
し、常温で24h 養生した後に脱型し、110 ℃×24h で乾
燥後、さらに1000℃×3hの仮焼成を行った試料について
試験したものである。アルミナ原料としては焼結アルミ
ナと仮焼アルミナ、マグネシア原料としては焼結マグネ
シア、マグネサイト原料は天然の高純度品( 純度98質量
%)を使用した。実施例J,K,L は、粒径10μm以下のアル
ミナ超微粉95質量%と残部乳酸アルミニウムからなる非
アルミナセメント系硬化材を11質量%添加した。
EXAMPLES Table 1 shows examples of the present invention, comparative examples, and comparison results thereof. In each case, 4 to 8% by weight of water was externally added to the composition, vibration-molded into a mold, cured at room temperature for 24 hours, demolded, dried at 110 ° C x 24 hours, and further cooled to 1000 The test was performed on a sample that had been pre-baked at 3 ° C. × 3 hours. Sintered alumina and calcined alumina as the alumina raw material, sintered magnesia as the magnesia raw material, and natural high-purity magnesite raw material (purity 98 mass
%)It was used. In Examples J, K, and L, 11% by mass of a non-alumina cement-based hardening material composed of 95% by mass of ultrafine alumina powder having a particle size of 10 μm or less and the balance of aluminum lactate was added.

【0017】実施例A,C,F,H,J,K および比較例M は配合
組成に外掛けで30質量% のアルミナ大粗粒( 粒径10mm以
上) を添加した。弾性率は音速法により、110 ℃×24h
乾燥後と1600℃×24h 焼成後の試料について測定した。
残存線変化率は乾燥後の長さを基準に、1600℃×24h 焼
成に伴う長さの変化から算出した。溶損指数は誘導炉内
張法による侵食試験( 温度1600℃、スラグCaO/SiO2=3.8
( 重量) 、Al2O3=29質量% 、FeO=4 質量% 、MgO=5 質量
% 、MnO=3 質量%)による溶損深さを、比較例の試料M の
場合を100 として指数化した。値が少ないほど耐食性が
高いことを示す。
In Examples A, C, F, H, J, K and Comparative Example M, 30% by mass of large alumina coarse particles (having a particle diameter of 10 mm or more) were externally added to the composition. Elastic modulus is 110 ℃ × 24h by sound velocity method
The measurement was performed on the sample after drying and after firing at 1600 ° C. for 24 hours.
The residual line change rate was calculated from the change in length accompanying firing at 1600 ° C. for 24 hours based on the length after drying. The erosion index was determined by an erosion test using an induction furnace lining method (temperature 1600 ° C, slag CaO / SiO 2 = 3.8
(Weight), Al 2 O 3 = 29% by mass, FeO = 4% by mass, MgO = 5% by mass
%, MnO = 3% by mass), and the erosion depth was indexed with 100 for the sample M of the comparative example. The smaller the value, the higher the corrosion resistance.

【0018】実施例の試料A 〜L には、いずれも試料作
成中にマグネシアの水和に起因する亀裂の発生などは無
かった。なお比較例M およびN から超微粉シリカを除い
た試料についても試料を試作しようとしたが、養生後に
亀裂が生じ、それ以上の評価はできなかった。表1 に示
すように、本発明の実施例はいずれも荷重軟化点T1(JIS
R 2209)が低下しており、より低温度で塑性変形能を示
す事が分かる。従来から高温変形能の付与およびマグネ
シア微粉の消化防止のためにシリカ超微粉が添加されて
きたが、本発明品ではシリカ超微粉無添加あるいは微量
添加で十分な高温変形能が得られた。
Samples A to L of the examples did not have any cracks caused by magnesia hydration during the preparation of the samples. It was to be noted that a sample was also made as a test sample in which ultrafine silica was removed from Comparative Examples M and N. However, a crack occurred after curing, and further evaluation was not possible. As shown in Table 1, the examples of the present invention all have a softening point under load T 1 (JIS
R 2209), which indicates that it exhibits plastic deformability at lower temperatures. Conventionally, ultrafine silica powder has been added to impart high-temperature deformability and prevent digestion of magnesia fine powder. However, in the present invention, sufficient high-temperature deformability was obtained by adding no ultrafine silica powder or adding a small amount of silica.

【0019】一方、残存線変化率を見ると、アルミナセ
メントを使用し、かつ大粗粒を添加している実施例(A,
C,F,H) 、及び添加していない実施例(B,D,E,G) はそれ
ぞれにおいて、炭酸マグネシウムの添加量が増加するほ
ど低下した。アルミナセメントを使用しなかった場合も
同様であるが、アルミナセメントを使用した場合に比べ
て非常に低い値となり極めて優れた寸法安定性を示し
た。
On the other hand, looking at the residual linear change rate, it can be seen from the examples (A and A) that alumina cement was used and large coarse particles were added.
C, F, H) and Examples (B, D, E, G) in which no additive was added, decreased as the amount of magnesium carbonate added increased. The same applies when alumina cement was not used, but the value was much lower than when alumina cement was used, showing extremely excellent dimensional stability.

【0020】また、熱間曲げ強度は、炭酸マグネシウム
とマグネシアの両方を使用し、アルミナセメント、超微
粉シリカおよびアルミナ大粗粒のいずれも無添加の実施
例Lが最も高いが、次いで、マグネシア源として炭酸マ
グネシウムのみを使用し、アルミナセメントを使用し、
超微粉シリカおよびアルミナ大粗粒を無添加とした試料
B 、炭酸マグネシウムとマグネシアの両方を使用し、ア
ルミナセメントおよび超微粉シリカを無添加とし、アル
ミナ大粗粒を使用した試料K 、マグネシア源として炭酸
マグネシウムのみを使用し、超微粉シリカを無添加と
し、アルミナセメントおよびアルミナ大粗粒を使用した
試料A がこれに続いた。
The hot bending strength of Example L, which uses both magnesium carbonate and magnesia and does not contain any of alumina cement, ultrafine silica and large alumina coarse particles, is the highest. Using only magnesium carbonate, using alumina cement,
Sample without ultra-fine silica and alumina large coarse particles
B, using both magnesium carbonate and magnesia, no addition of alumina cement and ultrafine silica, sample K using alumina large coarse particles, using only magnesium carbonate as a source of magnesia, no addition of ultrafine silica This was followed by Sample A, using alumina cement and alumina coarse particles.

【0021】また、1600℃焼成後の弾性率は超微粉シリ
カを添加しなった実施例A,B,E,K,Lのいずれもが比較例
に比べて低下した。炭酸マグネシウムは消化性がないた
め、これをマグネシア源に用いる事で、消化防止と高温
変形能付与のために添加しているシリカ超微粉がほとん
ど不要となり、シリカ添加の副作用である過焼結と高温
強度の低下を抑制する事が可能となった。また、さらに
硬化材としてアルミナセメントを使用しないようにする
と、残存線変化率が大幅に低下し、優れた寸法安定性を
得ることが可能となった。
Further, the modulus of elasticity after firing at 1600 ° C. was lower in Examples A, B, E, K, and L in which no ultrafine silica was added, as compared with Comparative Examples. Since magnesium carbonate is indigestible, by using it as a magnesia source, silica ultrafine powder added to prevent digestion and impart high-temperature deformability is almost unnecessary, and oversintering which is a side effect of silica addition It has become possible to suppress a decrease in high-temperature strength. Further, when alumina cement was not used as a hardening material, the residual linear change rate was significantly reduced, and excellent dimensional stability could be obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明により耐消化性、寸法安定性およ
び高温変形能に優れたアルミナ−マグネシア質キャスタ
ブルが得られ、金属精錬窯炉の寿命を延長することがで
き、金属製品の安定的な製造とその製造コスト引き下げ
に貢献できる。
According to the present invention, an alumina-magnesia castable excellent in digestion resistance, dimensional stability and high-temperature deformability can be obtained, the life of the metal refining furnace can be extended, and the stable production of metal products can be achieved. It can contribute to the production and the reduction of the production cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 潔 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 糸瀬 彰一 福岡県北九州市八幡西区東浜町1番1号 黒崎播磨株式会社内 Fターム(参考) 4G033 AA02 AA03 AA06 AA24 AB01 AB02 AB03 AB04 AB05 AB06 AB07 AB21 BA01 4K051 AA06 AB03 BE03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Goto 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Shoichi Itose 1-1-1, Higashihama-machi, Yawatanishi-ku, Kitakyushu-shi, Fukuoka No. Kurosaki Harima Co., Ltd. F-term (reference) 4G033 AA02 AA03 AA06 AA24 AB01 AB02 AB03 AB04 AB05 AB06 AB07 AB21 BA01 4K051 AA06 AB03 BE03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径5mm 以下のアルミナ質原料68〜
98質量%と、炭酸マグネシウムをマグネシア換算で1 〜
30質量%を配合させた、炭酸マグネシウムをマグネシア
源とするアルミナ−マグネシア質キャスタブル耐火物。
An alumina raw material having an average particle size of 5 mm or less.
98% by mass, magnesium carbonate is 1 ~
An alumina-magnesia castable refractory containing 30% by mass of magnesium carbonate as a magnesia source.
【請求項2】 平均粒径5mm 以下のアルミナ質原料68〜
98質量% と、炭酸マグネシウムをマグネシア換算で1 〜
30質量% と、平均粒径1 μm 以下の超微粉シリカを0.1
〜2 質量% を配合させた、炭酸マグネシウムをマグネシ
ア源とするアルミナ−マグネシア質キャスタブル耐火
物。
2. An alumina raw material having an average particle size of 5 mm or less.
98% by mass, magnesium carbonate is 1 to
30% by mass and 0.1% of ultrafine silica having an average particle size of 1 μm or less
Alumina-magnesia castable refractory containing magnesium carbonate as a magnesia source, containing up to 2% by mass.
【請求項3】 平均粒径5mm 以下のアルミナ質原料68〜
95質量% と、マグネシア質原料1 〜30質量%と、炭酸マ
グネシウムをマグネシア換算で1 〜30質量%を配合させ
た、炭酸マグネシウムをマグネシア源とするアルミナ−
マグネシア質キャスタブル耐火物。
3. An alumina raw material having an average particle size of 5 mm or less.
95% by mass, 1-30% by mass of magnesia raw material, and 1-30% by mass of magnesium carbonate in terms of magnesia are mixed.
Magnesia castable refractory.
【請求項4】 平均粒径5mm 以下のアルミナ質原料68〜
95質量% と、マグネシア質原料1 〜30質量% と、炭酸マ
グネシウムをマグネシア換算で1 〜30質量%と、平均粒
径1 μm 以下の超微粉シリカを0.1 〜2 質量% を配合さ
せた、炭酸マグネシウムをマグネシア源とするアルミナ
−マグネシア質キャスタブル耐火物。
4. An alumina raw material having an average particle size of 5 mm or less.
95% by mass, 1-30% by mass of magnesia-based material, 1-30% by mass of magnesium carbonate in terms of magnesia, and 0.1-2% by mass of ultrafine silica having an average particle size of 1 μm or less. An alumina-magnesia castable refractory using magnesium as a magnesia source.
【請求項5】 硬化材としてアルミナセメントを0.01〜
20質量%添加した、請求項1 から4 のいずれか1項に記
載の炭酸マグネシウムをマグネシア源とするアルミナ−
マグネシア質キャスタブル耐火物。
5. An alumina cement as a hardening material of 0.01 to 0.01%.
An alumina containing magnesium carbonate as a magnesia source according to any one of claims 1 to 4, to which 20% by mass is added.
Magnesia castable refractory.
【請求項6】 粒径10μm以下のアルミナ超微粉を50質
量%以上含有し、残部ケイ酸ソーダ、シリカゾル、アル
ミナゾル、リン酸アルミニウム、乳酸アルミニウム、水
硬性アルミナ、軽焼マグネシア、マグネシア微粉、粘土
などから選ばれる1種又は2種以上からなる非アルミナ
セメント系硬化材を0.01〜20質量%添加した、請求項1
から4 のいずれか1項に記載の炭酸マグネシウムをマグ
ネシア源とするアルミナ−マグネシア質キャスタブル耐
火物。
6. An ultrafine alumina powder having a particle size of 10 μm or less is contained in an amount of 50% by mass or more. 2. A non-alumina cement-based hardener comprising at least one member selected from the group consisting of 0.01 to 20% by mass.
An alumina-magnesia castable refractory comprising the magnesium carbonate according to any one of claims 1 to 4 as a magnesia source.
JP2000333430A 2000-01-18 2000-10-31 Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source Expired - Fee Related JP4408552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000333430A JP4408552B2 (en) 2000-01-18 2000-10-31 Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-8679 2000-01-18
JP2000008679 2000-01-18
JP2000333430A JP4408552B2 (en) 2000-01-18 2000-10-31 Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source

Publications (2)

Publication Number Publication Date
JP2001270781A true JP2001270781A (en) 2001-10-02
JP4408552B2 JP4408552B2 (en) 2010-02-03

Family

ID=26583685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000333430A Expired - Fee Related JP4408552B2 (en) 2000-01-18 2000-10-31 Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source

Country Status (1)

Country Link
JP (1) JP4408552B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601291A (en) * 2015-12-21 2016-05-25 佛山市中科院环境与安全检测认证中心有限公司 Refractory material
JP2020059613A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
CN112898035A (en) * 2021-04-02 2021-06-04 郑州振东科技有限公司 Pouring material special for ladle cover of heat-preservation ladle and manufacturing method of ladle cover
JP7242788B1 (en) 2021-09-03 2023-03-20 株式会社ヨータイ castable refractories
CN116462521A (en) * 2023-05-04 2023-07-21 武汉科技大学 Method for preparing lightweight heat-insulating refractory castable from residues generated in production of magnesium hydroxide by bischofite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601291A (en) * 2015-12-21 2016-05-25 佛山市中科院环境与安全检测认证中心有限公司 Refractory material
JP2020059613A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
JP7135691B2 (en) 2018-10-04 2022-09-13 日本製鉄株式会社 Evaluation Method of Delamination Resistance of Alumina-Magnesia Castable Refractories
CN112898035A (en) * 2021-04-02 2021-06-04 郑州振东科技有限公司 Pouring material special for ladle cover of heat-preservation ladle and manufacturing method of ladle cover
JP7242788B1 (en) 2021-09-03 2023-03-20 株式会社ヨータイ castable refractories
JP2023043198A (en) * 2021-09-03 2023-03-29 株式会社ヨータイ Castable refractory
CN116462521A (en) * 2023-05-04 2023-07-21 武汉科技大学 Method for preparing lightweight heat-insulating refractory castable from residues generated in production of magnesium hydroxide by bischofite
CN116462521B (en) * 2023-05-04 2024-02-27 武汉科技大学 Method for preparing lightweight heat-insulating refractory castable from residues generated in production of magnesium hydroxide by bischofite

Also Published As

Publication number Publication date
JP4408552B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JPH0737344B2 (en) Irregular refractory with basic properties
JP5361795B2 (en) Lined casting material
JP2002241182A (en) Monolithic refractory composition
JP2015081225A (en) High-chromia-enriched castable refractory, precast block using the refractory and waste melting furnace lined with the refractory and/or the block
JPH07330447A (en) Flow-in refractory material
JP2001302364A (en) Alumina-magnesia-based castable refractory containing zirconium oxide and molten metal vessel for metal refining
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
Racher et al. Magnesium aluminate spinel raw materials for high performance refractories for steel ladles
JP2874831B2 (en) Refractory for pouring
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
RU2140407C1 (en) Refractory concrete mix
JPH08175877A (en) Castable refractory
JPH0633179B2 (en) Irregular refractory for pouring
JPH06345550A (en) Castable refractory
JPH026373A (en) Cast amorphous refractory
JP2004142957A (en) Low elastic modulus alumina-magnesia castable refractory, pre-cast block, and molten metal vessel
JPH0952169A (en) Refractory for tuyere of molten steel container
JP2002012911A (en) Castable brick-lining structure of molten steel ladle
JP3157310B2 (en) Refractory
JP2003171183A (en) Alumina-magnesia castable refractory having low elastic modulus, precast block, and vessel for molten metal
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JP2004307293A (en) Monolithic refractory composition
JPH07330450A (en) Flow-in refractory material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees