JPH05185202A - Monolithic refractorie for ladle - Google Patents

Monolithic refractorie for ladle

Info

Publication number
JPH05185202A
JPH05185202A JP3316557A JP31655791A JPH05185202A JP H05185202 A JPH05185202 A JP H05185202A JP 3316557 A JP3316557 A JP 3316557A JP 31655791 A JP31655791 A JP 31655791A JP H05185202 A JPH05185202 A JP H05185202A
Authority
JP
Japan
Prior art keywords
weight
alumina
amorphous
fine particles
silica fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3316557A
Other languages
Japanese (ja)
Other versions
JP2769400B2 (en
Inventor
Keita Koyago
啓太 古家後
Makio Ishihara
満喜雄 石原
Chiharu Nishikawa
千春 西川
Jun Oba
遵 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiko Refractories Co Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Taiko Refractories Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiko Refractories Co Ltd, Nisshin Steel Co Ltd filed Critical Taiko Refractories Co Ltd
Priority to JP3316557A priority Critical patent/JP2769400B2/en
Publication of JPH05185202A publication Critical patent/JPH05185202A/en
Application granted granted Critical
Publication of JP2769400B2 publication Critical patent/JP2769400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To greatly improve the service life of the monolithic refractories to be used for wetting parts by providing a proper load softening property at a high temp. of >=1400 deg.C to the refractories to substantially prevent arcing and peeling and improving corrosion resistance and hot wear resistance. CONSTITUTION:The refractories consist of 2 to 3wt.% amorphous silica particulates, 0.5 to 4wt.% high alumina cement and the balance alumina or 0.3 to 5wt.% amorphous silica particulates, 0.5 to 4wt.% high alumina cement, 2 to 6wt.% magnesia and spinel, 7 to 12wt.% equiv. MgO and the balance alumina.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶銑鍋、溶滓鍋、取
鍋、転炉、タンディッシュなど、溶銑、溶滓或いは溶鋼
を入れるための鍋に内張りされる不定形耐火物、ことに
溶鋼鍋の湯当り部用材料として用いるのに適した不定形
耐火物に関する。
FIELD OF THE INVENTION The present invention relates to an amorphous refractory material lined in a ladle for containing molten pig iron, molten slag or molten steel, such as a molten pig ladle, a slag ladle, a ladle, a converter and a tundish. The present invention relates to an amorphous refractory suitable for use as a material for a hot water contact part of a molten steel ladle.

【0002】[0002]

【従来の技術】溶鋼鍋を例にとっていえば、かゝる鍋で
は近年、操業条件の苛酷化やジルコン原料の価格高騰な
どに伴い、そのライニング材、ことにメタルライン用側
壁材は従来のセミジルコン質不定形耐火物や高アルミナ
質レンガから高純度アルミナを主体とし、これに耐蝕性
を高めるためにスピネルなどを配したキャスタブル耐火
物へと変化している。敷部や湯当たり部についても同様
で、同材質の材料が適用されるようになってきた。
2. Description of the Related Art Taking a molten steel ladle as an example, in such a ladle, the lining material, especially the side wall material for metal lines, is the same as that of conventional semi-zircon due to severe operating conditions and rising prices of zircon raw materials. Amorphous refractories and high-alumina bricks have been transformed into castable refractories mainly composed of high-purity alumina and spinel etc. arranged to enhance corrosion resistance. The same applies to the floor part and the hot water contact part, and the same material has come to be applied.

【0003】湯当り部については元来、受鋼時の溶湯の
落下による衝撃や流体摩耗によってことに局部損耗が起
り易いことから予め、一般敷部ライニングよりも大幅に
厚く形成されているが、湯当たり部は敷部の中心部に位
置する場合が多く、周囲からの熱間膨脹による拘束圧に
より迫り出しや剥離を起し易い。そのため従来の材料で
は、耐蝕性の大幅な劣化などを伴うにもかゝわらず、ス
ティールファイバーを添加することにより迫り出しや剥
離の防止を図っている。
Originally, the hot water contact portion is formed to be much thicker than the general floor lining because the local wear is likely to occur due to the impact and fluid wear caused by the drop of the molten metal at the time of receiving steel. In many cases, the hot water contact portion is located at the center of the floor portion, and it is easy for the hot water contact portion to be pushed out or peeled off due to the restraining pressure due to hot expansion from the surroundings. Therefore, although the conventional materials are accompanied by a significant deterioration in corrosion resistance, the addition of steel fibers is intended to prevent squeeze-out and peeling.

【0004】[0004]

【発明が解決使用とする課題】本発明は、不定形耐火
物、ことに湯当たり部に用いられる不定形耐火物の耐用
向上を図ろうとするものであるが、従来の材料では、上
述するような対策を施してもなお、十分な耐用を得るこ
とはできない。すなわち図1に示すように、耐用延長の
ため湯当たり部1の厚みを一般敷部ライニング2より厚
くしておいても、10〜20チャージ程度受鋼すると、
湯当たり部1が図2に示すように、周囲のライニングと
同程度の厚みまで全面剥離してしまう。こうした剥離を
防止するために耐火物中へスティールファイバーを添加
すると、これにより流動性が損なわれ、良好な施工性を
確保するために混練水量が増し、その結果、材料の圧縮
強度が低下し、それに伴って熱間摩耗抵抗性が劣化し、
湯当たり部の局部摩耗が増大する。しかも受鋼時には稼
働面の温度が1600゜C以上にも達するため、稼働面
近くのスティールファイバーが溶融、酸化、拡散し、耐
蝕性の劣化をもたらすようになる。
SUMMARY OF THE INVENTION The present invention is intended to improve the durability of irregular refractory materials, especially irregular refractory materials used in hot water contact parts. Even if all the measures are taken, it is not possible to obtain sufficient durability. That is, as shown in FIG. 1, even if the thickness of the hot water contact portion 1 is made thicker than that of the general floor lining 2 for extending the service life, if the steel is received for about 10 to 20 charges,
As shown in FIG. 2, the hot water contact portion 1 is entirely peeled off to the same thickness as the surrounding lining. When steel fiber is added to the refractory to prevent such peeling, the fluidity is impaired by this, the amount of kneading water increases to ensure good workability, and as a result, the compressive strength of the material decreases, Along with that, the hot wear resistance deteriorates,
The local wear of the hot water contact part increases. Moreover, since the temperature of the working surface reaches 1600 ° C. or higher during steel receiving, the steel fibers near the working surface are melted, oxidized and diffused, resulting in deterioration of corrosion resistance.

【0005】本発明は、湯当たり部に用いられる不定形
耐火物の耐用の大幅な向上を図るため種々検討を重ねた
結果なされたもので、剥離を起こし難く、しかも耐蝕性
や、熱間摩耗抵抗性に優れた不定形耐火物を提供するこ
とを目的とする。
The present invention has been made as a result of various investigations in order to significantly improve the durability of the amorphous refractory used for the hot water contact part, and it is difficult to cause peeling, and corrosion resistance and hot wear The object is to provide an amorphous refractory material having excellent resistance.

【0006】[0006]

【課題の解決手段及び作用】本発明の不定形耐火物は、
非晶質シリカ微粒子が0.3〜5重量%、高アルミナセ
メントが0.5〜4重量%、残部がアルミナからなる
か、或いは非晶質シリカ微粒子が0.3〜3重量%、高
アルミナセメントが0.5〜4重量%、スピネル若しく
はマグネシアがMg O組成に換算して2〜15重量%、
残部がアルミナからなるもので、非晶質シリカ微粒子と
高アルミナセメントとの適正な組合わせによって、アル
ミナ質不定形耐火物に1400℃以上の高温下において
適度の荷重軟化性を付与せしめるとともに、全ゆる温度
域における組織の強化をもたらすようにしたことを特徴
とするものである。
The amorphous refractory material of the present invention is
Amorphous silica fine particles are 0.3 to 5% by weight, high alumina cement is 0.5 to 4% by weight, and the balance is alumina, or amorphous silica fine particles are 0.3 to 3% by weight, high alumina. 0.5 to 4% by weight of cement, 2 to 15% by weight of spinel or magnesia converted into MgO composition,
The balance consists of alumina, and the proper combination of amorphous silica fine particles and high-alumina cement gives the alumina-amorphous refractory a moderate load softening property at high temperatures of 1400 ° C or higher. It is characterized in that the tissue is strengthened in a loose temperature range.

【0007】湯当たり部に置かれた本発明に係る不定形
耐火物構造体によれば、その周囲に施工される材料の熱
間膨脹によって受ける拘束圧を適度の荷重軟化性によっ
て吸収することができ、迫り出しや剥離を防止すること
ができるほか、組織の強化によって湯当たり時に受ける
機械的衝撃に対する抵抗力を高めることができるように
なる。以下にその詳細を説明する。
According to the irregular shaped refractory structure according to the present invention placed in the hot water contact portion, the restraining pressure received by the hot expansion of the material around it can be absorbed by the moderate load softening property. In addition to being able to prevent squeeze-out and peeling, strengthening of the structure makes it possible to increase the resistance to mechanical shock received during hot water contact. The details will be described below.

【0008】高アルミナセメントは、耐蝕性の点から少
ない程望ましいが、一方では受鋼時の機械的衝撃や流体
摩耗に耐えられるような機械的強度が要求されることか
ら、0.5 %以下の配合量では充分な強度が得られな
くなり好ましくない。また配合量が4%以上となり、そ
の量が増すほど耐蝕性の劣化が増大するうえ、アルミナ
セメントクリンカー鉱物のCa O・Al23 がAl23
と高温下で反応してなるCa O・6Al23 の生成量が
多くなり、このCa O・6Al23 がシリカと共存する
と、その粒成長が促進され、材料に異常膨脹をもたらす
ようになるため、剥離がむしろ助長され好ましくない。
Higher alumina cement is more desirable in terms of corrosion resistance, but on the other hand, it is required to have mechanical strength capable of withstanding mechanical shock and fluid abrasion when receiving steel. With the compounding amount of, sufficient strength cannot be obtained, which is not preferable. In addition, the amount of compounding is 4% or more, and as the amount increases, the deterioration of corrosion resistance increases, and the alumina cement clinker mineral Ca 2 O 3 Al 2 O 3 becomes Al 2 O 3
When CaO · 6Al 2 O 3 coexists with silica, the amount of CaO · 6Al 2 O 3 formed by reacting with it increases at a high temperature. Therefore, peeling is rather promoted, which is not preferable.

【0009】次に非晶質微粒子について説明する。非晶
質微粒子の効果に関しては、スピネルやマグネシアのよ
うなMg O源の有無によって高温下における挙動に違い
がある。そこで先ず、スピネルやマグネシアを含まない
場合について説明する。図3は、高アルミナセメントを
2%配合したアルミナ質キャスタブルに非晶質シリカ微
粒子を0〜6%加えた場合の熱間曲げ強度を示すもの
で、図から見られるように、1200℃での熱間曲げ強
度は非晶質シリカ微粒子の添加量を増す程高くなるが、
1450℃では挙動が異なってくる。すなわち非晶質シ
リカ微粒子の添加量が5%以下においては、高温下で液
相を生成するため熱間曲げ強度が低下するが、5%を越
えると、シリカはアルミナと反応してムライトを生成
し、液相が消滅するため熱間曲げ強度も高くなる。
Next, the amorphous fine particles will be described. Regarding the effect of the amorphous fine particles, there is a difference in behavior at high temperature depending on the presence or absence of a MgO source such as spinel or magnesia. Therefore, first, the case where spinel and magnesia are not included will be described. FIG. 3 shows the hot bending strength when 0 to 6% of amorphous silica fine particles are added to an alumina castable containing 2% of high-alumina cement. As shown in FIG. The hot bending strength increases as the amount of amorphous silica particles added increases,
The behavior is different at 1450 ° C. That is, when the amount of the amorphous silica fine particles added is 5% or less, the liquid phase is generated at a high temperature, so that the hot bending strength is lowered, but when it exceeds 5%, the silica reacts with alumina to form mullite. However, since the liquid phase disappears, the hot bending strength also increases.

【0010】以上のように、1450℃の高温下では非
晶質シリカ微粒子の添加量が5%であると、液相を生成
し荷重軟化性を示すが、5%を越えると、ムライト生成
が促進されて液相生成量が減少し、荷重軟化性を示さな
くなる。次にスピネルやマグネシアを含む系における非
晶質シリカ微粒子の効果について説明する。
As described above, at a high temperature of 1450 ° C., when the addition amount of the amorphous silica fine particles is 5%, a liquid phase is formed and the softening property under load is exhibited, but when it exceeds 5%, mullite is formed. As a result, the amount of liquid phase produced is reduced and the softening property under load is not exhibited. Next, the effect of amorphous silica fine particles in a system containing spinel and magnesia will be described.

【0011】図4は、表4の比較例7を基本配合とした
アルミナ−スピネル−マグネシア質キャスタブルの熱間
曲げ強度に対する非晶質シリカ微粉粒子添加の効果を表
わすもので、1450℃の高温下では非晶質シリカ微粒
子の添加量が増す程、液相生成量が増大し、熱間曲げ強
度が大きく低下する。非晶質シリカ微粒子の配合量が3
%を越えると、液相生成量が急増するため、荷重軟化性
を示す図5に見られるように、荷重を解放しても軟化し
ゞけるようになり、高温加熱後、過度の収縮が起こるよ
うになる。
FIG. 4 shows the effect of adding fine particles of amorphous silica on the hot bending strength of alumina-spinel-magnesia castables based on Comparative Example 7 of Table 4 at a high temperature of 1450 ° C. However, as the addition amount of the amorphous silica fine particles increases, the liquid phase production amount increases, and the hot bending strength largely decreases. Amount of amorphous silica particles is 3
%, The amount of liquid phase generated increases sharply, and as shown in FIG. 5 showing the load softening property, it becomes soft even when the load is released, and excessive shrinkage occurs after heating at high temperature. Like

【0012】なお、図5に示す荷重軟化性のテストは、
後述する実施例6(非晶質シリカ微粒子配合量1.5
%)、比較例1(同0%)、比較例7(同4%)のアル
ミナ質不定形耐火物のそれぞれについて、1500℃に
達するまで5℃/min の昇温速度で加熱し、1500℃
に暫時持続させたのち加熱を停止する間、加熱を停止す
るまでは2kg/cm2 、加熱停止後は0.3kg/cm2
の載荷荷重を掛けてその間の線変化率%を測定した結果
である。
The load softening test shown in FIG.
Example 6 described later (amorphous silica fine particle content of 1.5)
%), Comparative Example 1 (0%) and Comparative Example 7 (4%), and heated at a heating rate of 5 ° C./min until reaching 1500 ° C. and 1500 ° C., respectively.
2kg / cm 2 until the heating is stopped and 0.3kg / cm 2 after the heating is stopped.
Is the result of measuring the line change rate% during that time by applying the load.

【0013】以上のように、非晶質シリカ微粒子を適量
配合することにより1400℃以上の高温下において少
量の液相が生成され、適度の荷重軟化性を示すようにな
る。湯当たり部に用いた場合でも、適度な荷重軟化性に
よって周囲の材料の熱間膨脹によって受ける拘束圧を吸
収できるようになり、全面剥離を起こさなくなる。非晶
質シリカ微粒子の添加にはこのほか、機械的強度の向上
効果もある。特に600〜1200℃付近の温度域での
冷・熱間強度の向上効果が大きく、その結果として熱間
摩耗抵抗性も向上する。
As described above, by mixing a proper amount of the amorphous silica fine particles, a small amount of liquid phase is produced at a high temperature of 1400 ° C. or higher, and a proper load softening property is exhibited. Even when it is used in the hot water contact part, it becomes possible to absorb the restraining pressure received by the hot expansion of the surrounding material due to the appropriate load softening property, and the whole surface peeling does not occur. In addition to this, the addition of the amorphous silica fine particles has the effect of improving the mechanical strength. In particular, the effect of improving the cold / hot strength in the temperature range around 600 to 1200 ° C. is great, and as a result, the resistance to hot abrasion is also improved.

【0014】溶鋼の湯当たりによる機械的衝撃に耐える
には、全ゆる温度域で十分な強度を有していなければな
らず(因に受鋼直前のライニング材の温度は1000℃
程度の与熱温度以下である)、また受鋼時の衝撃は内部
まで伝播されるため内部組織も強固でなければならな
い。非晶質シリカ微粒子の配合は、全ゆる温度域におけ
る組織強化をもたらし、熱間摩耗抵抗性の向上に寄与す
るが、0.3%以下の配合量では充分な機械的強度の向
上効果が得られない。
In order to withstand the mechanical impact of molten steel hitting the molten steel, it must have sufficient strength in all temperature ranges (the temperature of the lining material immediately before steel receiving is 1000 ° C.).
The internal structure must be strong because the impact at the time of steel receiving is propagated to the inside. The compounding of amorphous silica fine particles brings about the strengthening of the structure in all temperature ranges and contributes to the improvement of the hot abrasion resistance. However, the compounding amount of 0.3% or less gives a sufficient effect of improving the mechanical strength. I can't.

【0015】不定形耐火物に要求されることにはまた、
耐蝕性に優れていることが挙げられ、この点、高純度ア
ルミナ質不定形耐火物は溶鋼取鍋スラグや転炉スラグな
ど高塩基度スラグに対し、良好な耐蝕性を示すが、スラ
グが浸透し易い欠点を有している。非晶質シリカ微粒子
は、その添加量によってはアルミナ質不定形耐火物への
スラグの浸透を抑制する効果もある。図6は、非晶質シ
リカ微粒子を添加した高純度アルミナ質不定形耐火物構
造体を誘導炉内(1700℃)に設置し、転炉スラグの
浸蝕度合についてテストした結果を示すもので、非晶質
シリカ微粒子を添加しないときの浸蝕指数を100とし
てある。図から見られるように、非晶質シリカ微粒子を
2〜3%配合した場合には、スラグの浸透を抑制する効
果があり、結果として耐蝕性の向上効果が認られるが、
添加量が6%を越えると、耐蝕性の劣化が顕著となり好
ましくない。また、とくにFe Oを多く含む高塩基度ス
ラグに対しては、スピネルやマグネシアの添加が耐蝕性
向上に有効である。スピネル系不定形耐火物の耐蝕性は
Mg O組成源がスピネル、マグネシアいづれであっても
Mg O組成に換算して6〜12%程度の領域が最も優れ
ている(図7参照)。Mg O組成源が2%以下では耐蝕
性の効果が薄く、15%を越えると、耐蝕性の劣化のみ
ならず、スラグの浸透が顕著に増大し、構造スポールの
原因となるため好ましくない。
The requirements for amorphous refractories also include:
It is said that it has excellent corrosion resistance.In this respect, high purity alumina amorphous refractory shows good corrosion resistance to high basicity slag such as molten steel ladle slag and converter slag, but slag penetrates It has a drawback that it is easy to do. The amorphous silica fine particles also have the effect of suppressing the penetration of slag into the alumina amorphous refractory material depending on the amount added. FIG. 6 shows the results of testing a high-purity amorphous alumina refractory structure containing amorphous silica fine particles in an induction furnace (1700 ° C.) and testing the erosion degree of converter slag. The erosion index when the crystalline silica fine particles are not added is 100. As can be seen from the figure, when 2 to 3% of amorphous silica fine particles are blended, it has an effect of suppressing the penetration of slag, and as a result, an effect of improving corrosion resistance is recognized,
If the addition amount exceeds 6%, the corrosion resistance is significantly deteriorated, which is not preferable. Further, especially for high basicity slag containing a large amount of Fe 2 O 3, addition of spinel or magnesia is effective for improving the corrosion resistance. Corrosion resistance of spinel type amorphous refractory is best in the range of about 6 to 12% in terms of MgO composition, regardless of whether the MgO composition source is spinel or magnesia (see FIG. 7). If the MgO composition source is less than 2%, the effect of corrosion resistance is weak, and if it exceeds 15%, not only the corrosion resistance deteriorates but also the penetration of slag remarkably increases, which causes structural spalls, which is not preferable.

【0016】図7は、換算Mg O組成源がないときの浸
蝕指数を100とした換算Mg O組成の浸蝕指数を示す
もので、図6の非晶質シリカ微粒子と同様の方法によっ
て得られたものである。Mg O組成源を配合しない場合
及びMg O組成源としてスピネルのみを配合した場合
は、1500℃にて焼成した場合の残存収縮性を示す。
一般敷部の材料は一般に、残存膨脹性のものを用いてい
るため、湯当たり部用の材料のある程度の伸縮性は、周
囲の膨脹によって相殺されるが、過度の収縮は収縮亀裂
の原因となり、地金差しなどが懸念されるようになる。
この収縮を防止するにはマグネシアの微粉を2%以上配
合するとよいが、一方ではマグネシアとアルミナとの高
温下でのスピネル生成反応が大きな体積膨脹を伴うた
め、マグネシアを6%以上配合すると、過度の膨脹によ
る迫り出し及び剥離が問題となってきて好ましくない。
過度の膨脹を抑制しつゝマグネシアの増量を図るにはマ
グネシアの一部を粗粒化するとよい。
FIG. 7 shows the erosion index of the converted MgO composition with the erosion index in the absence of the converted MgO composition source as 100, and was obtained by the same method as the amorphous silica fine particles of FIG. It is a thing. When the MgO composition source is not blended and when only spinel is blended as the MgO composition source, the residual shrinkage when fired at 1500 ° C. is exhibited.
Since the material of the general flooring material generally uses a residual expandable material, some stretchability of the material for the hot water contact part is offset by the expansion of the surroundings, but excessive shrinkage causes shrinkage cracks. , There is a concern about bullion insertion.
In order to prevent this shrinkage, it is advisable to add 2% or more of fine powder of magnesia, but on the other hand, since the spinel formation reaction between magnesia and alumina at high temperature causes a large volume expansion, if 6% or more of magnesia is added, it becomes excessive. The swelling and peeling due to the expansion of the resin becomes a problem, which is not preferable.
In order to suppress excessive expansion and increase the amount of magnesia, it is advisable to coarsen a part of magnesia.

【0017】非晶質シリカ微粒子としては、例えば日本
アエロジル社製OX−50などの気相法生成非晶質無水
シリカ、シオノギ社製カーブレックスなどの湿式法生成
非晶質含水シリカ等を用いることができ、このほかシリ
カフラワーなどの副製品、シリカゾル等を用いることが
できるが、シリカゾルをマグネシアと併用する場合に
は、ゲル化反応が急速に起こるため、混練から施工迄の
時間的制約を受ける。
As the amorphous silica fine particles, for example, vapor-phase-method produced amorphous anhydrous silica such as OX-50 manufactured by Nippon Aerosil Co., Ltd., wet-process produced amorphous hydrous silica such as Curvex manufactured by Shionogi, etc. are used. In addition to this, by-products such as silica flour, silica sol, etc. can be used, but when silica sol is used in combination with magnesia, the gelation reaction occurs rapidly, so there is a time restriction from kneading to construction. ..

【0018】珪石粉などの結晶質シリカ微粒子は、高温
下における荷重軟化性の付与には効果があるが、強度向
上効果は1200℃以上のより高い温度でなければなら
ず、低い温度域では結晶の相転移により強度の低下をも
たらすため好ましくない。
The crystalline silica fine particles such as silica stone powder have an effect of imparting load softening property at high temperature, but the strength improving effect must be at a higher temperature of 1200 ° C. or higher, and the crystal can be crystallized in a low temperature range. This is not preferable because it causes a decrease in strength due to the phase transition.

【0019】[0019]

【実施例】【Example】

【0020】[0020]

【実施例1】 非晶質シリカ微粒子1.0重量%、高ア
ルミナセメント2.0重量%、残部がアルミナからなる
不定形耐火物に水5.5重量%を加えて混練し、ブロッ
ク状に形成して乾燥させた不定形耐火物構造体につい
て、1000℃及び1500℃で焼成後の残存線変化、
1000℃での圧縮強度、熱間摩耗量、荷重軟化性、誘
導炉浸蝕テスト結果及び実炉損耗速度を計測した。その
結果を表1に示す。
Example 1 Amorphous refractory composed of 1.0% by weight of amorphous silica fine particles, 2.0% by weight of high-alumina cement, and the balance of alumina was added with 5.5% by weight of water and kneaded to form a block. The change in residual line after firing at 1000 ° C and 1500 ° C for the formed and dried amorphous refractory structure,
The compressive strength at 1000 ° C., the amount of hot wear, the load softening property, the induction furnace erosion test result, and the actual furnace wear rate were measured. The results are shown in Table 1.

【0021】なお、熱間摩耗量の計測は次のようにして
行った。予め炉5内を1600℃に加熱し、この中に不
定形耐火物構造体である供試体6をセットし、バーナー
7で加熱した(図8)。そして供試体表面温度が160
0℃になってから20分間保持したのちバーナー7を素
早く抜取り、サンドブラストノズル8をセットして粒径
5〜3mm、重さ4.600gの電融アルミナ粒子9を供
試体6に叩き付けた(図9)。その後、炉5より取出し
た供試体6を最損耗箇所で切断し、損耗した断面積cm2
を求めた。
The amount of hot wear was measured as follows. The inside of the furnace 5 was heated to 1600 ° C. in advance, the specimen 6 which was an amorphous refractory structure was set in the furnace, and it was heated by the burner 7 (FIG. 8). And the surface temperature of the specimen is 160
After holding the temperature for 20 minutes at 0 ° C., the burner 7 was quickly removed, the sandblast nozzle 8 was set, and the fused alumina particles 9 having a particle diameter of 5 to 3 mm and a weight of 4.600 g were struck on the specimen 6 (FIG. 9). After that, the specimen 6 taken out of the furnace 5 was cut at the most worn portion, and the worn cross-sectional area cm 2
I asked.

【0022】[0022]

【実施例2】 高アルミナセメント2.0重量%、非晶
質シリカ微粒子2.0重量%、残部がアルミナからなる
材料に水を5.3重量%加えて不定形耐火物構造体を
得、実施例1と同様な各種テストを行った。その結果を
表1に示す。
Example 2 Water was added to a material containing 2.0% by weight of high-alumina cement, 2.0% by weight of amorphous silica fine particles, and the balance being alumina to obtain 5.3% by weight of water to obtain an amorphous refractory structure. Various tests similar to those in Example 1 were conducted. The results are shown in Table 1.

【0023】[0023]

【実施例3】 高アルミナセメント2.0重量%、非非
晶質シリカ微粒子4.0重量%、残部がアルミナからな
る材料に水を5.0重量%加えて不定形耐火物構造体を
得、実施例1と同様な各種テストを行った。その結果を
表1に示す。
Example 3 Amorphous refractory structure was obtained by adding 5.0% by weight of water to a material containing 2.0% by weight of high alumina cement, 4.0% by weight of non-amorphous silica fine particles and the balance being alumina. Various tests similar to those in Example 1 were performed. The results are shown in Table 1.

【0024】[0024]

【実施例4】 非晶質シリカ微粒子を2.0重量%、高
アルミナセメントを4.0重量%とし、水の添加量を
5.6重量%とする以外は実施例3と同様にして不定形
耐火物構造体を得て、実施例3と同様な各種テストを行
った。その結果を表1に示す。
Example 4 The procedure of Example 3 was repeated except that the amorphous silica fine particles were 2.0% by weight, the high alumina cement was 4.0% by weight, and the amount of water added was 5.6% by weight. A standard refractory structure was obtained and various tests similar to those in Example 3 were performed. The results are shown in Table 1.

【0025】[0025]

【実施例5】 粒径0.074mm以下のスピネル25重
量%、非晶質シリカ微粒子0.5重量%、高アルミナセ
メント4.0重量%、残部がアルミナからなる不定形耐
火物に水5.8重量%を加えて実施例1と同様にして不
定形耐火物構造体を得、実施例1と同様な各種テストを
行った。その結果を表1に示す。
Example 5 25% by weight of spinel having a particle size of 0.074 mm or less, 0.5% by weight of amorphous silica fine particles, 4.0% by weight of high-alumina cement, and the balance of alumina was water. An amorphous refractory structure was obtained in the same manner as in Example 1 by adding 8% by weight, and various tests similar to those in Example 1 were conducted. The results are shown in Table 1.

【0026】[0026]

【実施例6】 粒径0.074mm以下のスピネル20重
量%、粒径0.074mm以下のマグネシア3.0重量
%、非晶質シリカ微粒子1.5重量%、高アルミナセメ
ント2.0重量%、残部がアルミナからなる不定形耐火
物に水5.6重量%を加えて実施例1と同様にして不定
形耐火物構造体を得、実施例1と同様な各種テストを行
った。その結果を表2に示す。
Example 6 20% by weight of spinel having a particle size of 0.074 mm or less, 3.0% by weight of magnesia having a particle size of 0.074 mm or less, 1.5% by weight of amorphous silica fine particles, 2.0% by weight of high alumina cement. An amorphous refractory structure was obtained in the same manner as in Example 1 except that 5.6% by weight of water was added to the amorphous refractory having the balance being alumina, and various tests similar to those in Example 1 were conducted. The results are shown in Table 2.

【0027】[0027]

【実施例7】 粒径0.074mm以下のスピネル20重
量%、粒径0.074mm以下のマグネシア3.0重量
%、非晶質シリカ微粒子3.0重量%、高アルミナセメ
ント2.0重量%、残部がアルミナからなる材料に水
5.3重量%を加えて不定形耐火物構造体を得、実施例
1と同様な各種テストを行った。その結果を表2に示
す。
Example 7 20% by weight of spinel having a particle size of 0.074 mm or less, 3.0% by weight of magnesia having a particle size of 0.074 mm or less, 3.0% by weight of amorphous silica fine particles, 2.0% by weight of high alumina cement Then, 5.3% by weight of water was added to a material whose balance was alumina to obtain an amorphous refractory structure, and various tests similar to those in Example 1 were conducted. The results are shown in Table 2.

【実施例8】 粒径0.074mm以下のスピネル20重
量%、粒径3〜0.074mmのマグネシア4.0重量
%、粒径0.074mm以下のマグネシア3.0重量%、
非晶質シリカ微粒子1.5重量%、高アルミナセメント
2.0重量%、残部がアルミナからなる材料に水5.6
重量%を加えて不定形耐火物構造体を得、実施例1と同
様な各種テストを行った。その結果を表2に示す。
Example 8 20% by weight of spinel having a particle size of 0.074 mm or less, 4.0% by weight of magnesia having a particle size of 3 to 0.074 mm, 3.0% by weight of magnesia having a particle size of 0.074 mm or less,
1.5% by weight of amorphous silica fine particles, 2.0% by weight of high-alumina cement, the balance consisting of alumina is water 5.6.
The amorphous refractory structure was obtained by adding wt%, and various tests similar to those in Example 1 were performed. The results are shown in Table 2.

【実施例9】 粒径0.074mm以下のスピネル20重
量%、粒径0.074mm以下のマグネシア3.0重量
%、非晶質シリカ微粒子1.5重量%、高アルミナセメ
ント2.0重量%、残部がアルミナからなる不定形耐火
物に水5.6重量%を加えて実施例1と同様にして不定
形耐火物構造体を得、実施例1と同様な各種テストを行
った。その結果を表2に示す。
[Example 9] Spinel having a particle size of 0.074 mm or less 20% by weight, magnesia having a particle size of 0.074 mm or less 3.0% by weight, amorphous silica fine particles 1.5% by weight, high alumina cement 2.0% by weight An amorphous refractory structure was obtained in the same manner as in Example 1 except that 5.6% by weight of water was added to the amorphous refractory having the balance being alumina, and various tests similar to those in Example 1 were conducted. The results are shown in Table 2.

【0028】[0028]

【比較例1】 高アルミナセメントを2.0重量%、残
部をアルミナとする不定形耐火物に水6.1重量%を加
え、混練して得たブロック状の不定形耐火物構造体につ
いて、上述の各種テストを行った。結果を表2に示す。
この例では、非晶質シリカ微粒子が無添加のため強度が
低いうえ、荷重軟化性が小さく、しかも熱間摩耗量も大
であった。
Comparative Example 1 A block-shaped amorphous refractory structure obtained by adding 6.1% by weight of water to an amorphous refractory containing 2.0% by weight of high-alumina cement and the balance alumina, and kneading the mixture. The various tests described above were performed. The results are shown in Table 2.
In this example, since the amorphous silica fine particles were not added, the strength was low, the load softening property was small, and the hot wear amount was large.

【0029】[0029]

【比較例2】 非晶質シリカ微粒子6.0重量%、高ア
ルミナセメント2.0重量%残部がアルミナよりなる材
料に水を4.9重量%加え混練して得たブロック状の不
定形耐火物構造体について、前記した各種テストを行っ
た。結果を表3に示す。この例では、非晶質シリカ微粒
子が6.0重量%と過剰のため耐蝕性の劣化が著しく、
1500°C焼成後の残存収縮が大きく、かつ荷重軟化
性も小さい。
Comparative Example 2 Amorphous silica fine particles 6.0% by weight, high-alumina cement 2.0% by weight A block-shaped amorphous fireproof obtained by kneading 4.9% by weight of water with a material consisting of the balance alumina. The various tests described above were performed on the object structure. The results are shown in Table 3. In this example, the amorphous silica fine particles are in excess of 6.0% by weight, so that the corrosion resistance is significantly deteriorated,
The residual shrinkage after firing at 1500 ° C is large and the softening property under load is small.

【0030】[0030]

【比較例3】 非晶質シリカ微粒子1.0重量%、高ア
ルミナセメント5.0重量%残部がアルミナよりなる材
料に水を6.1重量%加え混練して得たブロック状の不
定形耐火物構造体について、前記した各種テストを行っ
た。結果を表3に示す。この例では、高アルミナセメン
ト量が過剰なため耐蝕性の劣化が著しい。
Comparative Example 3 Amorphous silica fine particles 1.0% by weight, high-alumina cement 5.0% by weight Block-shaped amorphous fireproof obtained by kneading by adding 6.1% by weight of water to a material whose balance is alumina. The various tests described above were performed on the object structure. The results are shown in Table 3. In this example, since the amount of high alumina cement is excessive, the corrosion resistance is significantly deteriorated.

【0031】[0031]

【比較例4】 スピネル20重量%、高アルミナセメン
ト2.0重量%、残部がアルミナからなる材料に水6.
1重量%を加え、実施例1と同様にして不定形耐火物構
造体を得、上述と同じテストを行った。結果を表3に示
す。この例では、非晶質シリカ微粒子無添加のため強度
が低く、荷重軟化性が小さく、かつ熱間摩耗量も大であ
る。
COMPARATIVE EXAMPLE 4 Spinel 20% by weight, high alumina cement 2.0% by weight, the balance consisting of alumina was mixed with water 6.
1% by weight was added to obtain an amorphous refractory structure in the same manner as in Example 1, and the same test as described above was performed. The results are shown in Table 3. In this example, since the amorphous silica fine particles are not added, the strength is low, the load softening property is small, and the hot wear amount is large.

【0032】[0032]

【比較例5】 粒径0.074mm以下のスピネル20
重量%、粒径0.074mm以下のマグネシア3.0重
量%、高アルミナセメント2.0重量%、残部がアルミ
ナよりなる材料に、水を6.2重量%加え混練して得た
ブロック状の不定形耐火物構造体について、前記した各
種テストを行った。結果を表3に示す。この例では、非
晶質シリカ微粒子無添加のため強度が低く、荷重軟化性
が小さいうえ、熱間摩耗量も大である。これを実炉に供
したところ損耗速度が大きいうえ全面剥離が生じた。
Comparative Example 5 Spinel 20 having a particle size of 0.074 mm or less
% Of magnesia having a particle size of 0.074 mm or less, 2.0% by weight of high-alumina cement, and the balance of alumina, and 6.2% by weight of water. The above-mentioned various tests were conducted on the amorphous refractory structure. The results are shown in Table 3. In this example, since the amorphous silica fine particles are not added, the strength is low, the load softening property is small, and the hot wear amount is large. When this was put into an actual furnace, the wear rate was high and the entire surface was peeled off.

【0033】[0033]

【比較例6】 スティールファイバーを3.0重量%添
加し、水の添加量を6.5重量%とする以外は比較例5
と同様にして不定形耐火物構造体を得て上述と同じテス
トを行った。結果を表3に示す。この例では、スティー
ルファイバー添加により荷重軟化性は改善されて適度に
大きくなるが、耐蝕性や熱間摩耗量が著しく増大する。
Comparative Example 6 Comparative Example 5 except that 3.0% by weight of steel fiber was added and the amount of water added was 6.5% by weight.
An amorphous refractory structure was obtained in the same manner as above and the same test as described above was performed. The results are shown in Table 3. In this example, the addition of steel fiber improves the load softening property and increases it moderately, but the corrosion resistance and the amount of hot wear remarkably increase.

【0034】[0034]

【比較例7】 粒径0.074mm以下のスピネル20
重量%、粒径0.074mm以下のマグネシア3.0重
量%、非晶質シリカ微粒子4.0重量%、高アルミナセ
メント2.0重量%、残部がアルミナよりなる材料に、
水を5.1重量%加え混練して得たブロック状の不定形
耐火物構造体について、前記した各種テストを行った。
結果を表4に示す。この例では、非晶質シリカ微粒子が
4.0重量%と過剰添加となり、高温下での液相生成量
の増大に伴い荷重軟化性が過度なものとなっている。し
かも1500°Cでの収縮量も大きい。
Comparative Example 7 Spinel 20 having a particle size of 0.074 mm or less
% By weight, 3.0% by weight of magnesia having a particle size of 0.074 mm or less, 4.0% by weight of amorphous silica fine particles, 2.0% by weight of high-alumina cement, and the balance being alumina.
The above-mentioned various tests were performed on the block-shaped amorphous refractory structure obtained by adding 5.1% by weight of water and kneading.
The results are shown in Table 4. In this example, the amorphous silica fine particles were added in an excessive amount of 4.0% by weight, and the load softening property became excessive as the amount of liquid phase produced increased at high temperature. Moreover, the amount of shrinkage at 1500 ° C is also large.

【0035】[0035]

【比較例8】 スピネル25重量%、高アルミナセメン
ト7.0重量%、残部がアルミナからなる不定形耐火物
に水6.4%を加え、実施例1と同様にして不定形耐火
物構造体を得て上述と同じテストを行った。結果を表4
に示す。この例では、非晶質シリカ微粒子無添加のため
荷重軟化性が小さい。これを実炉に供したところ全面剥
離を生じた。
[Comparative Example 8] An amorphous refractory structure was prepared in the same manner as in Example 1 except that 6.4% of water was added to an amorphous refractory consisting of spinel 25% by weight, high alumina cement 7.0% by weight, and the balance being alumina. Then, the same test as described above was performed. The results are shown in Table 4.
Shown in. In this example, since the amorphous silica fine particles are not added, the softening property under load is small. When this was put into an actual furnace, the entire surface was peeled off.

【0036】[0036]

【比較例9】 粒径0.074mm以下のスピネル25
重量%、非晶質シリカ微粒子0.5重量%、高アルミナ
セメント7.0重量%、残部がアルミナよりなる材料
に、水を6.3重量%加え混練して得たブロック状の不
定形耐火物構造体について、前記の各種テストを行っ
た。結果を表4に示す。この例では、アルミナセメント
が過剰に含まれているため、非晶質シリカ微粒子を添加
すると、荷重軟化性は大きくなるが、1500°Cでの
残存膨張量が著しく増大するため迫り出し剥離が発生し
やすくなる。
Comparative Example 9 Spinel 25 with a particle size of 0.074 mm or less
Wt%, amorphous silica fine particles 0.5 wt%, high-alumina cement 7.0 wt%, balance 6.3 wt% to a material consisting of alumina, and block-shaped amorphous fire resistance obtained by kneading The various tests described above were performed on the object structure. The results are shown in Table 4. In this example, since the alumina cement is excessively contained, the addition of the amorphous silica fine particles increases the load softening property, but the residual expansion amount at 1500 ° C remarkably increases, so that the exfoliation occurs. Easier to do.

【0037】[0037]

【比較例10】 粒径0.074mm以下のスピネル1
0重量%、粒径0.074mm以下のマグネシア7.0
重量%、非晶質シリカ微粒子1.5重量%、高アルミナ
セメント2.0重量%、残部がアルミナよりなる材料
に、水を5.7重量%加え混練して得たブロック状の不
定形耐火物構造体について、前記した各種テストを行っ
た。結果を表4に示す。この例では、マグネシア微粉の
添加量が多いため、1500°Cでの残存膨張量が著し
く増大するため迫り出しや、剥離が発生しやすくなる。
Comparative Example 10 Spinel 1 having a particle size of 0.074 mm or less
Magnesia 7.0 with 0% by weight and a particle size of 0.074 mm or less
Wt%, amorphous silica fine particles 1.5 wt%, high-alumina cement 2.0 wt%, the balance consisting of alumina, and 5.7 wt% of water and kneaded to obtain block-shaped amorphous fire resistance The various tests described above were performed on the object structure. The results are shown in Table 4. In this example, since the magnesia fine powder is added in a large amount, the residual expansion amount at 1500 ° C. remarkably increases, so that the protrusion and the peeling are likely to occur.

【0038】[0038]

【比較例11】 スピネル27.5重量%、粒径3〜
0.074mmのマグネシア10重量%、粒径0.07
4mm以下のマグネシア2.0重量%、非晶質シリカ微
粒子1.5重量%、高アルミナセメント2.0重量%、
残部がアルミナからなる不定形耐火物に水5.7%を加
えて実施例1と同様にして不定形耐火物構造体を得て上
述と同じテストを行った。結果を表4に示す。
Comparative Example 11 Spinel 27.5% by weight, particle size 3 to
0.074 mm magnesia 10% by weight, particle size 0.07
2.0% by weight of magnesia of 4 mm or less, 1.5% by weight of amorphous silica fine particles, 2.0% by weight of high alumina cement,
Water 5.7% was added to an amorphous refractory having the balance being alumina, and an irregular refractory structure was obtained in the same manner as in Example 1, and the same test as above was conducted. The results are shown in Table 4.

【0039】この例では、MgO含有量が過多のため、
スラグの浸透量が非常に多く、構造スポールを起こし易
い。
In this example, since the MgO content is excessive,
The penetration amount of slag is so large that structural spalls easily occur.

【0040】以上述べた各実施の例不定形耐火物構造体
によれば、いずれも耐蝕性が良好で、熱間摩耗量も少な
く、1400°C以上の高温下で過度の荷重軟化性を示
す。特に実施例1及び実施例9を実炉に供したところ、
全面剥離することもなく、損耗速度が大幅に向上した。
上記実施例により得られた材料は、以下の比較例に示し
た材料のみならず、従来使用していたAl2 3 −Mg
O−C質(実炉損耗速度3.8mm/ch)と比較して
も倍以上の優れた耐用を示した。なおこの材料は湯当た
り部用として用いるのに適するが、実施例5や実施例6
のように適度の残存膨張性を備えたものは、各種鍋の一
般敷部や側壁にも適用可能である。
According to the irregular refractory structures of the respective examples described above, all of them have good corrosion resistance and a small amount of hot wear, and exhibit excessive softening under load at a temperature of 1400 ° C. or higher. .. In particular, when Example 1 and Example 9 were subjected to an actual furnace,
The wear rate was greatly improved without peeling off the entire surface.
The materials obtained by the above examples are not only the materials shown in the following comparative examples, but also Al 2 O 3 --Mg which has been conventionally used.
Even when compared with the O-C quality (real furnace wear rate 3.8 mm / ch), it showed more than double the excellent durability. Although this material is suitable for use as a hot water contact part,
Those having a suitable residual expansivity as described above can be applied to general floors and side walls of various pots.

【0041】[0041]

【発明の効果】本発明の不定形耐火物は以上のように、
1400℃以上の高温下で適度な荷重軟化性を示すこと
により湯当たり部に用いた場合、その周囲に施工された
材料の熱間膨脹によって受ける拘束圧を吸収することが
できるため、迫り出しや剥離が生じにくゝなり、しかも
熱間摩耗抵抗性に優れるため、湯当たり部として用いた
場合に局部摩耗が抑制され、耐用を大幅に向上させるこ
とができる。
As described above, the amorphous refractory material of the present invention has
When it is used in the hot water contact part by exhibiting an appropriate load softening property at a high temperature of 1400 ° C or higher, it can absorb the binding pressure received by the hot expansion of the material constructed around it, so that it can be pushed out. Since peeling is less likely to occur and the hot-wear resistance is excellent, local wear is suppressed when used as a hot water contact part, and durability can be greatly improved.

【0042】Mg O組成源を配合しない不定形耐火物に
添加されるシリカ微粒子は2〜3重量%にすれば、耐蝕
性を向上させることができる。Mg O組成源を配合した
不定形耐火物においては、Mg O組成源を6〜12重量
%にした場合、耐蝕性に最も優れ、またマグネシアを2
〜6重量%配合すると過度の収縮を防止することができ
る。
Corrosion resistance can be improved if the silica fine particles added to the amorphous refractory containing no MgO composition source is 2 to 3% by weight. In the case of the amorphous refractory containing the MgO composition source, when the MgO composition source is 6 to 12% by weight, the corrosion resistance is the best and the magnesia content is 2%.
When it is mixed in an amount of ˜6% by weight, excessive shrinkage can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 溶鋼取鍋の断面図。FIG. 1 is a sectional view of a molten steel ladle.

【図2】 湯当たり部が全面剥離した状態を示す図。FIG. 2 is a view showing a state in which a hot water contact portion is entirely peeled off.

【図3】 アルミナ質キャスタブルにおける非晶質シリ
カ微粒子の添加量と熱間曲げ強度の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the addition amount of amorphous silica fine particles in alumina castable and hot bending strength.

【図4】 アルミナースピネルーマグネシア質キャスタ
ブルにおける非晶質シリカ微粒子の添加量と、熱間曲げ
強度の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the amount of amorphous silica fine particles added to alumina-spinel-magnesia castables and hot bending strength.

【図5】 荷重軟化テスト結果を示すグラフ。FIG. 5 is a graph showing the results of a load softening test.

【図6】 非晶質シリカ微粒子の添加量と浸蝕指数を示
すグラフ。
FIG. 6 is a graph showing the addition amount of amorphous silica fine particles and the erosion index.

【図7】 換算Mg O組成と浸蝕指数の関係を示すグラ
フ。
FIG. 7 is a graph showing the relationship between the converted Mg 2 O composition and the erosion index.

【図8】 熱間摩耗テストに用いる炉体をセットした状
態を示す断面図。
FIG. 8 is a sectional view showing a state in which a furnace body used for a hot wear test is set.

【図9】 同テストにおいて電融アルミナ粒子を叩き付
けるときの状態を示す図。
FIG. 9 is a view showing a state in which the fused alumina particles are struck in the same test.

【符合の説明】[Explanation of sign]

1・・・湯当たり部 2・・・一
般敷部ライニング 5・・・炉 6・・・供
試体 7・・・バーナ 8・・・サ
ンドブラストノズル 9・・・電融アルミナ粒子
1 ... Hot water contact area 2 ... General floor lining 5 ... Furnace 6 ... Specimen 7 ... Burner 8 ... Sandblast nozzle 9 ... Electrofused alumina particles

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 注 荷重軟化性の判定基準は、図5において1500℃での
載荷荷重を2kg/cm2 から0.3kg/cm2 に減らしても
収縮を続けるものを特大、載荷荷重を軽減すると、収縮
しなくなるものを大、1500℃に保っても軟化を示さ
ないものを小とした。実炉損耗速度において、( )内
の数値は全面剥離を起こす前までの損耗速度を示す。
[Table 4] Note: The criterion for load softening is that the shrinkage is oversized when the load at 1500 ° C in Fig. 5 is reduced from 2kg / cm 2 to 0.3kg / cm 2 , and it does not shrink when the load is reduced. The large ones were designated as small, and those not showing softening even at 1500 ° C. were designated as small. In the actual furnace wear rate, the values in parentheses indicate the wear rate before the entire surface is peeled off.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 千春 福岡県北九州市戸畑区牧山新町1番1号 大光炉材株式会社内 (72)発明者 大場 遵 福岡県北九州市戸畑区牧山新町1番1号 大光炉材株式会社内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Chiharu Nishikawa 1-1, Makiyama Shinmachi, Tobata-ku, Kitakyushu, Fukuoka Daiko Furnace Co., Ltd. No. 1 Daiko Furnace Material Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非晶質シリカ微粒子が0.3〜5重量
%、高アルミナセメントが0.5〜4重量%、残部がア
ルミナからなる鍋用不定形耐火物。
1. An amorphous refractory for a pot, which comprises 0.3 to 5% by weight of amorphous silica fine particles, 0.5 to 4% by weight of high alumina cement, and the balance being alumina.
【請求項2】 非晶質シリカ微粒子は2〜3重量%であ
る請求項1記載の鍋用不定形耐火物。
2. The amorphous refractory material for a pot according to claim 1, wherein the amorphous silica fine particles are 2 to 3% by weight.
【請求項3】 非晶質シリカ微粒子が0.3〜3重量
%、高アルミナセメントが0.5〜4重量%、スピネル
若しくはマグネシアがMg O組成に換算して2〜15重
量%、残部がアルミナからなる鍋用不定形耐火物。
3. Amorphous silica fine particles are 0.3 to 3% by weight, high alumina cement is 0.5 to 4% by weight, spinel or magnesia is 2 to 15% by weight in terms of MgO composition, and the balance is Amorphous refractory made of alumina for pots.
【請求項4】 スピネル若しくはマグネシアはMg O組
成に換算して6〜12重量%である請求項3記載の鍋用
不定形耐火物。
4. The amorphous refractory for a pot according to claim 3, wherein the spinel or magnesia is 6 to 12% by weight in terms of MgO composition.
【請求項5】 マグネシアは2〜6重量%である請求項
3記載の鍋用不定形耐火物。
5. The amorphous refractory material for a pot according to claim 3, wherein the magnesia content is 2 to 6% by weight.
【請求項6】 湯当り部に用いられる請求項1から請求
項5のいづれかの請求項に記載の鍋用不定形耐火物。
6. The irregular refractory material for a pot according to claim 1, which is used in a hot water contact part.
JP3316557A 1991-11-29 1991-11-29 Irregular refractories for hot metal parts Expired - Fee Related JP2769400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3316557A JP2769400B2 (en) 1991-11-29 1991-11-29 Irregular refractories for hot metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316557A JP2769400B2 (en) 1991-11-29 1991-11-29 Irregular refractories for hot metal parts

Publications (2)

Publication Number Publication Date
JPH05185202A true JPH05185202A (en) 1993-07-27
JP2769400B2 JP2769400B2 (en) 1998-06-25

Family

ID=18078428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316557A Expired - Fee Related JP2769400B2 (en) 1991-11-29 1991-11-29 Irregular refractories for hot metal parts

Country Status (1)

Country Link
JP (1) JP2769400B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972102A (en) * 1996-10-29 1999-10-26 North American Refractories Co. Hydraulically-bonded monolithic refractories containing a calcium oxide-free binder comprised of a hydratable alumina source and magnesium oxide
JP2015166290A (en) * 2014-03-03 2015-09-24 黒崎播磨株式会社 Monolithic refractory for tundish lining
JP2018177570A (en) * 2017-04-10 2018-11-15 新日鐵住金株式会社 Anchor brick
JP2020059613A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
JP2020059612A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
JP2021513498A (en) * 2018-02-09 2021-05-27 ベスビウス ユーエスエー コーポレイション Refractory composition and oxidation-resistant barrier layer formed during use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123306A (en) * 1976-04-09 1977-10-17 Nippon Steel Corp Repairing method for refractory lining of fireproof vessel
JPS5496506A (en) * 1978-01-17 1979-07-31 Nippon Steel Corp End overlapping repair using nonshaped refractory
JPH02274371A (en) * 1989-04-17 1990-11-08 Nippon Steel Corp Structure of bedding part of ladle for receiving molten metal
JPH0323275A (en) * 1989-06-17 1991-01-31 Kurosaki Refract Co Ltd Monolithic refractory for casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123306A (en) * 1976-04-09 1977-10-17 Nippon Steel Corp Repairing method for refractory lining of fireproof vessel
JPS5496506A (en) * 1978-01-17 1979-07-31 Nippon Steel Corp End overlapping repair using nonshaped refractory
JPH02274371A (en) * 1989-04-17 1990-11-08 Nippon Steel Corp Structure of bedding part of ladle for receiving molten metal
JPH0323275A (en) * 1989-06-17 1991-01-31 Kurosaki Refract Co Ltd Monolithic refractory for casting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972102A (en) * 1996-10-29 1999-10-26 North American Refractories Co. Hydraulically-bonded monolithic refractories containing a calcium oxide-free binder comprised of a hydratable alumina source and magnesium oxide
JP2015166290A (en) * 2014-03-03 2015-09-24 黒崎播磨株式会社 Monolithic refractory for tundish lining
JP2018177570A (en) * 2017-04-10 2018-11-15 新日鐵住金株式会社 Anchor brick
JP2021513498A (en) * 2018-02-09 2021-05-27 ベスビウス ユーエスエー コーポレイション Refractory composition and oxidation-resistant barrier layer formed during use
US11746053B2 (en) 2018-02-09 2023-09-05 Vesuvius Usa Corporation Refractory compositions and in situ anti-oxidation barrier layers
JP2020059613A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
JP2020059612A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory

Also Published As

Publication number Publication date
JP2769400B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JPH0420871B2 (en)
JP2002241182A (en) Monolithic refractory composition
JPH05185202A (en) Monolithic refractorie for ladle
US5506181A (en) Refractory for use in casting operations
JPH0348156B2 (en)
JPH06345550A (en) Castable refractory
JPS59137368A (en) Refractories for repairment
JPH0976056A (en) Ladle for molten steel and its repairing method
JPH06144939A (en) Basic castable refractory
JPH01282143A (en) Refractory mortar composition
JP2552987B2 (en) Refractory for casting
JPH06172044A (en) Castable refractory of alumina spinel
JPH1017373A (en) Monolithic refractory of lance for preliminary treatment of molten pig-iron
JPH02141480A (en) Castable refractory
JPH06199575A (en) Alumina-spinel castable refractory
JPH0912375A (en) Lining monolithic refractory of molten metal vessel
JP2953293B2 (en) Gas injection tuyere structure for steelmaking furnace
JPH11100280A (en) Monolitihic refractory for tundish lining
JPH03205367A (en) Amorphous refractory for casting
JP2004307293A (en) Monolithic refractory composition
JPH0670244B2 (en) Lance pipe for molten metal processing
JPH03205368A (en) Castable alumina-spinel refractory
JPH01308865A (en) Unburned alumina magnesia brick and lining thereof
JPS6212675A (en) Heat insulating refractories
JPS5992975A (en) Basic indefinite form refractories for molten metal vessel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980331

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees