JPH1025167A - Refractory for casting using magnesia-based coarse grain - Google Patents

Refractory for casting using magnesia-based coarse grain

Info

Publication number
JPH1025167A
JPH1025167A JP8178279A JP17827996A JPH1025167A JP H1025167 A JPH1025167 A JP H1025167A JP 8178279 A JP8178279 A JP 8178279A JP 17827996 A JP17827996 A JP 17827996A JP H1025167 A JPH1025167 A JP H1025167A
Authority
JP
Japan
Prior art keywords
weight
magnesia
alumina
spinel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8178279A
Other languages
Japanese (ja)
Inventor
Kazuhiro Furuta
和浩 古田
Yoshiaki Kawase
義明 川瀬
Sumio Sakaki
澄生 榊
Taijiro Matsui
泰次郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP8178279A priority Critical patent/JPH1025167A/en
Publication of JPH1025167A publication Critical patent/JPH1025167A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00887Ferrous metallurgy

Abstract

PROBLEM TO BE SOLVED: To prevent an alumina-magnesia-based or an alumina-spinel-magnesia- based refractory for casting from deteriorating in resistance to slag wetting property and spalling resistance and corrosion resistance in a part used under the severe conditions, e.g. slag line. SOLUTION: This refractory for casting is obtained by using magnesia-based coarse grains having 10-50 mm particle diameter in an amount of 40-100wt.% by outer percentage in addition to a mixed material of 3-20wt.% magnesia clinker having <0.21mm particle diameter and >=95% MgO content, 0.2-3wt.% amorphous silica, 3-15wt.% alumina cement as a binder and the balance of alumina or a combination of alumina with a spinel raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、取鍋内張り、DH
用又はRH用の浸漬管、タンディッシュ用母材等の、溶
銑あるいは溶鋼スラグと接触する部分に適用できる流し
込み施工用耐火物に関する。
TECHNICAL FIELD The present invention relates to a ladle lining, DH
The present invention relates to a refractory for pouring work applicable to a portion in contact with hot metal or molten steel slag, such as a dipping pipe for RH or RH, a base material for tundish, and the like.

【0002】[0002]

【従来の技術】近年、精錬技術の向上から、高級鋼種が
精錬されるようになり、溶鋼温度の上昇、さらに滞湯時
間の延長等により、処理条件は益々過酷になってきてお
り、従来の高アルミナ質、マグネシア質、ろう石−ジル
コン質等の材質では耐食性、耐スポーリング性、容積安
定性の点で対応できなくなり、スピネル質が適用される
ようになった。スピネルクリンカーの特性は、例えば、
熱膨張係数が小さいことやスラグ浸潤抵抗性の大きいこ
とであり、耐食性、耐スポーリング性及び容積安定性等
に優れ、その上、熱的スポーリング性やスラグ浸潤に起
因する亀裂や剥離を抑える点にも優れている。
2. Description of the Related Art In recent years, high-grade steel grades have been refined due to the improvement of refining technology, and the processing conditions have become more and more severe due to an increase in the temperature of molten steel and a prolonged residence time. Materials such as high alumina, magnesia, and pyroxene-zircon are inadequate in terms of corrosion resistance, spalling resistance, and volume stability, and spinel has been applied. The properties of spinel clinker are, for example,
Low thermal expansion coefficient and high slag infiltration resistance, excellent in corrosion resistance, spalling resistance, volume stability, etc., and also suppresses cracking and peeling caused by thermal spalling and slag infiltration The point is also excellent.

【0003】そのスピネルクリンカーを使用した例とし
て、特開昭60−60985号公報にある、スピネル−
アルミナ質の不定形耐火物、さらには、特開平3−23
275号公報に開示されるようなスピネル−アルミナ−
マグネシア質の流し込み用耐火物が知られている。
As an example of using the spinel clinker, Japanese Patent Application Laid-Open No. 60-60985 discloses a spinel clinker.
Alumina amorphous refractories, and furthermore, JP-A-3-23
No. 275, spinel-alumina-
Magnesia casting refractories are known.

【0004】[0004]

【発明が解決しようとする課題】しかし、前者において
は、操業条件が過酷な場合には、溶損量が極端に大きく
なる欠点がある。そこで、後者の場合、スピネルクリン
カーとマグネシアクリンカーを併用することで耐食性向
上の効果を耐スラグ浸潤性や耐スポーリング性を劣化さ
せることなく改善しようとするものであるが、スラグラ
イン等の更に過酷な条件の部位で使用されると、やはり
溶損量が大きくなる現象が見られた。
However, the former has a disadvantage that when the operating conditions are severe, the amount of erosion becomes extremely large. Therefore, in the latter case, the effect of improving the corrosion resistance is intended to be improved without deteriorating the slag infiltration resistance and the spalling resistance by using a spinel clinker and a magnesia clinker in combination, but the more severe conditions such as a slag line are considered. When used in a site under suitable conditions, a phenomenon was observed in which the amount of erosion also increased.

【0005】本発明は、耐スラグ浸潤性及び耐スポーリ
ング性並びにスラグライン等における過酷な条件部位で
の耐食性の劣化を防止することができるアルミナ−マグ
ネシア質又はアルミナ−スピネル−マグネシア質流し込
み施工用耐火物を提供するものである。
The present invention is directed to an alumina-magnesia or alumina-spinel-magnesia pouring method capable of preventing deterioration of slag infiltration resistance and spalling resistance and corrosion resistance in severe conditions such as slag lines. It provides refractories.

【0006】[0006]

【課題を解決するための手段】本発明の流し込み施工用
耐火物は、粒径0.21mm未満でMgO含有量95重
量%以上のマグネシアクリンカーを3〜20重量%と、
非晶質シリカ0.2〜3重量%と、結合剤としてアルミ
ナセメント3〜15重量%と、残部がアルミナ又はアル
ミナとスピネル原料との組合せである混合材料に対し、
粒径10〜50mmのマグネシア質粗粒を外掛けで40
〜100重量%用いる。
According to the present invention, there is provided a casting refractory having a particle size of less than 0.21 mm, a MgO content of 95% by weight or more, and 3 to 20% by weight of magnesia clinker.
0.2 to 3% by weight of amorphous silica, 3 to 15% by weight of alumina cement as a binder, and a mixed material whose balance is alumina or a combination of alumina and a spinel material,
A magnesia coarse particle having a particle size of 10 to 50 mm
Use up to 100% by weight.

【0007】アルミナ原料の使用はマグネシアクリンカ
ーと反応して正スピネルとなるために重要であり、前記
混合材料に対しマグネシア質粗粒を使用するのは、マグ
ネシア質であることによる高塩基性度スラグに対する耐
食性向上効果を生かし、粒度を粗くすることでマトリッ
クスとなる混合材料との反応を抑え、骨材としての耐食
性向上効果を得るためである。
The use of an alumina raw material is important for reacting with magnesia clinker to form a positive spinel, and the use of magnesia-based coarse particles in the above-mentioned mixed material is based on the fact that magnesia is used to form a highly basic slag. By making use of the effect of improving the corrosion resistance of the particles and making the particle size coarse, the reaction with the mixed material serving as the matrix is suppressed, and the effect of improving the corrosion resistance as the aggregate is obtained.

【0008】[0008]

【発明の実施の形態】本発明のマトリックス部をみる
と、マグネシアクリンカーのMgO含有量を95重量%
以上としたのは、フラックス成分の混入を極力少なく
し、低融物の生成を抑制するためである。粒径を0.2
1mm未満としたのは、0.21mm以上になると、ア
ルミナ原料と反応して生成するスピネル生成速度が小と
なること及び微細なスピネルを生成しないことから、耐
火物の緻密化効果が得られない。なお、マグネシアクリ
ンカーの粒度は0.075mmの粒度域であればより好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Referring to the matrix portion of the present invention, the MgO content of the magnesia clinker is 95% by weight.
The reason for this is to minimize the mixing of flux components and to suppress the production of low melt. 0.2 particle size
The reason why the diameter is set to less than 1 mm is that if it is 0.21 mm or more, the spinel generation rate generated by reacting with the alumina raw material becomes small and fine spinel is not generated, so that the refractory densification effect cannot be obtained. . It is more preferable that the magnesia clinker has a particle size range of 0.075 mm.

【0009】また、マグネシアクリンカーの使用量は、
3〜20重量%の範囲が好適である。これは、3重量%
より少ないとスピネル生成量が少ないために組織の緻密
化が図れないことから、耐食性、耐スラグ浸潤性の向上
効果が不十分であり、20重量%を越えるとスピネル生
成が過多となり、膨張による組織劣化を伴うこととな
る。
The amount of magnesia clinker used is
A range of 3 to 20% by weight is preferred. This is 3% by weight
If the amount is smaller, the structure cannot be densified because the amount of spinel generated is small. Therefore, the effect of improving corrosion resistance and slag infiltration resistance is insufficient. If the amount exceeds 20% by weight, spinel generation is excessive and the structure due to expansion is increased. It will be accompanied by deterioration.

【0010】非晶質シリカの使用は、液相生成によるス
ピネル生成反応速度の促進、及び耐消化性の改善にある
が、0.2重量%より少ないとその効果が十分に得られ
ず、3重量%を越えると、液相生成量が増大し、耐食性
等の耐火物特性を劣化させる。
The use of amorphous silica is intended to promote the reaction rate of spinel formation by the formation of a liquid phase and to improve the digestion resistance. However, if the amount is less than 0.2% by weight, the effect cannot be sufficiently obtained. If the amount exceeds 10% by weight, the amount of the liquid phase generated increases, and the refractory properties such as corrosion resistance deteriorate.

【0011】結合剤としてのアルミナセメントの使用量
は、3〜15重量%であり、3重量%より少ないと強度
発現が十分でなく、15重量%以内とするのは、液相生
成量が増大することを抑えるためである。
The amount of alumina cement used as a binder is 3 to 15% by weight. If the amount is less than 3% by weight, the strength is not sufficiently developed. This is to suppress that.

【0012】アルミナ原料として、焼結アルミナ、電融
アルミナ、仮焼アルミナ等のクリンカーでAl23含有
量が80重量%以上であるものが好ましい。なお、粒径
0.075mmの粒度域のものをアルミナ原料の量の3
0重量%以内で使用することが好ましく、正スピネル生
成に貢献する。
As the alumina raw material, a clinker having a content of Al 2 O 3 of 80% by weight or more such as sintered alumina, fused alumina, calcined alumina and the like is preferable. The particle size range of 0.075 mm was set to 3
It is preferably used within 0% by weight and contributes to the formation of positive spinel.

【0013】また、スピネル原料は、焼結スピネル、電
融スピネル等の不純物の少ないクリンカーをFeO含有
スラグに対する耐食性向上のために使用できる。なお、
スピネル原料中のMgO含有量はX線回折でスピネル成
分として検出されるもの全てを指しており、成分量的な
制約は特にない。
As the spinel raw material, a clinker having a small amount of impurities, such as a sintered spinel or an electrofused spinel, can be used for improving the corrosion resistance to the slag containing FeO. In addition,
The MgO content in the spinel raw material refers to all that is detected as a spinel component by X-ray diffraction, and there is no particular limitation on the component amount.

【0014】これらの原料は、93.8〜62重量%の
範囲内でアルミナ単独若しくはスピネルと組み合わせて
使用することができるが、この量が多すぎると他の材料
の特性が得られず、少ないと他の材料の使用量を増やす
ことになり低融点鉱物の生成が大となる。その中で、ス
ピネル原料の併用は耐食性が向上するものの、スラグ浸
潤が増大することから構造的スポーリングに劣るように
なることも考慮して、アルミナ原料1に対し1〜0.0
5の比率で含有させることができる。
These raw materials can be used alone or in combination with spinel in the range of 93.8 to 62% by weight. However, if the amount is too large, the characteristics of other materials cannot be obtained and the amount is small. In addition, the use of other materials increases, and the production of low melting point minerals increases. Among them, the combined use of the spinel raw material improves the corrosion resistance, but takes into account that the structural spalling becomes inferior because the slag infiltration increases, so that 1 to 0.01
It can be contained at a ratio of 5.

【0015】また、前記混合物のマトリックス部に対
し、外掛けで40〜100重量%のマグネシア質粗粒を
使用する。このマグネシア質粗粒の原料は、骨材として
の耐食性を得るために、MgO量を50重量%以上含有
する、焼結マグネシア、電融マグネシア、天然マグネシ
ア、マグネシアれんが屑等が使用でき、40重量%より
少ないと耐食性の向上効果がなく、100重量%を越え
ると、材料自体の流動性を得るために添加水分が増加
し、強度が低下する。そして、その粒径が10mmより
小さいと骨材として耐食性を向上させる効果がなく、5
0mmを越えると材料が大き過ぎるため流動性に問題が
生じる。なお、この粒度域で10〜30mmのものを使
用すると耐食性の点においてより効果的である。
Further, the magnesia-based coarse particles of 40 to 100% by weight are used on the basis of the matrix portion of the mixture. The raw material of the magnesia coarse particles can use sintered magnesia, electrofused magnesia, natural magnesia, magnesia brick waste and the like containing MgO amount of 50% by weight or more in order to obtain corrosion resistance as an aggregate. %, There is no effect of improving the corrosion resistance. If it exceeds 100% by weight, the added water increases to obtain the fluidity of the material itself, and the strength decreases. When the particle size is smaller than 10 mm, there is no effect of improving the corrosion resistance as an aggregate, and
If it exceeds 0 mm, the material is too large, causing a problem in fluidity. The use of a particle having a particle size of 10 to 30 mm is more effective in terms of corrosion resistance.

【0016】その他に、耐火物の作業性付与のため、縮
合リン酸アルカリ類、ポリカルボン酸、ナトリウム塩等
の分散剤や、材料特性に影響を与えない範囲で、少量の
粘土や、耐爆裂性改善のために金属粉を添加することが
できる。
In addition, a dispersant such as condensed alkali phosphates, polycarboxylic acids, sodium salts, etc., and a small amount of clay or explosion-resistant as long as the material properties are not affected, to impart workability to the refractory. Metal powder can be added to improve the properties.

【0017】[0017]

【実施例】表1に本発明の実施例、表2に比較例を示
す。
EXAMPLES Table 1 shows examples of the present invention, and Table 2 shows comparative examples.

【0018】各比較測定は以下の方法によって行った。Each comparative measurement was performed by the following method.

【0019】耐食性テストは、CaO/SiO2=3.
1、T.Fe=11.7%のスラグを使用し、80×1
00×230mmの試料を1650°Cの温度で1時間
保持し、それを8回繰り返しす回転侵食法により、侵食
量、スラグ浸潤量を測定した。
The corrosion resistance test was performed with CaO / SiO 2 = 3.
1, T. 80 × 1 using slag of Fe = 11.7%
The amount of erosion and the amount of slag infiltration were measured by a rotary erosion method in which a sample of 00 × 230 mm was held at a temperature of 1650 ° C. for 1 hour, and this was repeated eight times.

【0020】曲げ強さは、40×40×160mmの試
料を作成し、JIS−R2213の基準に従い、110
°Cで24時間乾燥後と、1500°Cで3時間焼成後
測定、また、同時にJIS−R2208によって線変化
率を測定した。
The bending strength of a sample having a size of 40 × 40 × 160 mm was measured in accordance with JIS-R2213.
After drying at 24 ° C. for 24 hours and after firing at 1500 ° C. for 3 hours, the linear change rate was measured according to JIS-R2208.

【0021】消化テストは、乾燥後の材料の亀裂の有無
を知るために、オートクレーブにより5atm×3時間
煮沸した後の重量増加率によって測定した。
The digestion test was carried out by measuring the rate of weight increase after boiling at 5 atm × 3 hours in an autoclave in order to know the presence or absence of cracks in the dried material.

【0022】[0022]

【表1】 実施例1及び2は、マトリックス部のマグネシアクリン
カーを10重量%、非晶質シリカ1重量%、アルミナセ
メント7重量%、残部がアルミナ原料に対し、マグネシ
ア質粗粒を外掛けでそれぞれ50重量%と70重量%使
用した。耐食性、耐スラグ浸潤性に優れ、乾燥及び焼成
後の強度も十分に発現しており、重量変化率も+0.1
%と+0.15%を示し耐消化性に優れている。
[Table 1] In Examples 1 and 2, the magnesia clinker in the matrix portion was 10% by weight, the amorphous silica was 1% by weight, the alumina cement was 7% by weight, and the balance was 50% by weight of the magnesia coarse particles with respect to the alumina raw material. And 70% by weight. Excellent corrosion resistance, slag infiltration resistance, sufficient strength after drying and firing, and a weight change rate of +0.1
% And + 0.15%, indicating excellent digestion resistance.

【0023】実施例3は実施例1のアルミナ原料の半量
をスピネル原料に置換した例であり、耐食性の向上が見
られた。以下の実施例4〜9も本実施例と同様にマグネ
シア質粗粒は外掛けで50重量%として、マトリックス
部の各材料の使用量を規制数値に合わせて変化させたも
のである。
Example 3 is an example in which half of the alumina raw material of Example 1 was replaced with a spinel raw material, and improvement in corrosion resistance was observed. Also in the following Examples 4 to 9, the magnesia coarse particles were set to 50% by weight on the outside in the same manner as in the present Example, and the usage of each material in the matrix portion was changed according to the regulated value.

【0024】実施例4及び5は、マグネシアクリンカー
の量を5重量%と20重量%にした例で、耐食性はマグ
ネシア使用量が増えるとよくなるもののあまり差はない
が、1500°Cにおける強度はやや低下する。
Examples 4 and 5 are examples in which the amount of magnesia clinker is 5% by weight and 20% by weight. The corrosion resistance improves as the amount of magnesia used increases, but there is not much difference, but the strength at 1500 ° C. is slightly higher. descend.

【0025】実施例6は、非晶質シリカを0.5重量%
に減らした例であり、110°C×24時間後の強度は
若干低下するものの、耐食性、耐スラグ浸潤性は良好で
あった。
In Example 6, 0.5% by weight of amorphous silica was used.
The strength after 110 ° C. for 24 hours was slightly reduced, but the corrosion resistance and the slag infiltration resistance were good.

【0026】実施例7は、非晶質シリカを3重量%に増
量した例であり、耐食性、耐スラグ浸潤性の劣化は少な
く、強度、耐消化性が向上する。
Example 7 is an example in which the amount of amorphous silica was increased to 3% by weight, the corrosion resistance and the slag infiltration resistance were less deteriorated, and the strength and digestion resistance were improved.

【0027】実施例8は、アルミナセメントを3重量%
使用した例であり、実施例6と同様に110°C×24
時間後の強度が若干低下するが、耐食性、耐スラグ浸潤
性に優れる。
In Example 8, 3% by weight of alumina cement was used.
This is an example in which 110 ° C. × 24 is used in the same manner as in Example 6.
Although the strength after time decreases slightly, it is excellent in corrosion resistance and slag infiltration resistance.

【0028】実施例9は、アルミナセメントを15重量
%使用した例であり、耐食性、耐スラグ浸潤性の劣化は
少ない。
Example 9 is an example in which 15% by weight of alumina cement was used, and there was little deterioration in corrosion resistance and slag infiltration resistance.

【0029】実施例10、11は、マトリックス部のマ
グネシアクリンカーを15重量%、アルミナ原料は60
重量%で、非晶質シリカを0.2重量%まで少なくし、
アルミナセメントを14.8重量%と多めに、スピネル
原料を10重量%に、マグネシア質粗粒を100重量%
と40重量%使用した例であり、耐食性、耐スラグ浸潤
性に優れ、乾燥および焼成後の強度も十分に発現してお
り、重量増加率も問題のない範囲であり、耐消化性も優
れている。
In Examples 10 and 11, the magnesia clinker in the matrix portion was 15% by weight, and the alumina raw material was 60%.
By weight, reduce amorphous silica to 0.2% by weight,
14.8% by weight of alumina cement, 10% by weight of spinel material, and 100% by weight of magnesia coarse particles
It is an example of using 40% by weight, and has excellent corrosion resistance and slag infiltration resistance, has sufficiently developed strength after drying and firing, has a weight increase rate within a range in which there is no problem, and has excellent digestion resistance. I have.

【0030】実施例12は、マトリックス部の非晶質シ
リカを0.2重量%、アルミナセメントを3重量%、マ
グネシアクリンカーを3重量%まで少なくし、スピネル
原料を5重量%に、マグネシア質粗粒を60重量%使用
した例であり、耐食性、耐スラグ湿潤性に優れ、乾燥及
び焼成後の強度も十分に発現しており、重量増加も問題
ない範囲であり、耐消化性にも優れている。
In Example 12, the amount of the amorphous silica was reduced to 0.2% by weight, the amount of the alumina cement was reduced to 3% by weight, the amount of the magnesia clinker was reduced to 3% by weight, the spinel material was reduced to 5% by weight, and This is an example of using 60% by weight of grains, and has excellent corrosion resistance, slag wet resistance, sufficient strength after drying and firing, a range in which weight increase is not a problem, and excellent digestion resistance. I have.

【0031】[0031]

【表2】 比較例1は、実施例1の混合物にマグネシア質粗粒を使
用しなかった例であり、耐食性において劣っている。
[Table 2] Comparative Example 1 is an example in which magnesia-based coarse particles were not used in the mixture of Example 1, and was inferior in corrosion resistance.

【0032】比較例2及び3は、比較例1をベースにそ
れぞれ20重量%と140重量%使用した例であり、比
較例2では耐食性の向上は見られず、使用量が過多の比
較例3では、スラグ浸潤量が厚くなる傾向があり、ま
た、110°C×24時間での強度低下が著しく、残存
線変化率も大きくなり、耐消化性も劣っている。
Comparative Examples 2 and 3 are examples in which 20% by weight and 140% by weight were used based on Comparative Example 1, respectively. In Comparative Example 2, no improvement in corrosion resistance was observed, and Comparative Example 3 used excessively. In this case, the amount of slag infiltration tends to be large, the strength is significantly reduced at 110 ° C. for 24 hours, the residual linear change rate is large, and the digestion resistance is poor.

【0033】比較例4は、マトリックス部のマグネシア
クリンカーを2重量%使用した例であり、微粉のMgO
成分が少ないためスピネル生成量の不足により、耐食性
は悪く、また、1500°C×3時間後の残存線変化率
も小さい。
Comparative Example 4 is an example in which 2% by weight of the magnesia clinker in the matrix portion was used.
Since there are few components, the corrosion resistance is poor due to the insufficient amount of spinel produced, and the residual linear change rate after 1500 ° C. × 3 hours is small.

【0034】比較例5は、マグネシアクリンカーを30
重量%使用したが、スピネル生成量が過多となり、スラ
グ侵食により耐食性が一段と低下した。
In Comparative Example 5, the magnesia clinker was 30
However, the amount of spinel generated was excessive, and the corrosion resistance was further reduced due to slag erosion.

【0035】比較例6及び7は、非晶質シリカをそれぞ
れ0.1と5重量%使用した例であり、比較例6の耐食
性及びスラグ浸潤性は特に問題ないが、1500°C×
3時間後の強度劣化と、重量増加率が上がり、耐消化性
にも問題がある。比較例7は非晶質シリカが多いため、
Al23−MgO−SiO2系の低融物の増大によりス
ラグ侵食による耐食性が低下した。
Comparative Examples 6 and 7 are examples in which amorphous silica was used in an amount of 0.1 and 5% by weight, respectively.
Deterioration in strength after 3 hours, increase in weight increase, and problems in digestion resistance. Comparative Example 7 contains a large amount of amorphous silica.
Corrosion resistance slag erosion was reduced by the increase in Al 2 O 3 -MgO-SiO 2 system TeiTorubutsu of.

【0036】比較例8及び9は、アルミナセメントの量
を1と20重量%にした例である。比較例8は耐食性,
スラグ浸潤性には問題はないが強度が弱くなる結果を示
した。また、比較例9は強度的には問題はないが、スラ
グ侵食が大きく耐食性に低下が見られた。
Comparative Examples 8 and 9 are examples in which the amount of alumina cement was 1 and 20% by weight. Comparative Example 8 has corrosion resistance,
Although there was no problem with the slag infiltration properties, the results showed that the strength was weak. In Comparative Example 9, although there was no problem in strength, slag erosion was large and corrosion resistance was lowered.

【0037】比較例10は、スピネル原料を60重量%
使用した例である。浸食量は小さいものの、スラグ浸潤
量が大きく、トータル溶損量は大きくなる傾向を示して
いる。
In Comparative Example 10, 60% by weight of the spinel material was used.
This is an example used. Although the erosion amount is small, the slag infiltration amount is large, and the total erosion amount tends to increase.

【0038】なお、重量増加率が+0.30を越える場
合には、材料中に亀裂が発生する場合が多い。
When the rate of weight increase exceeds +0.30, cracks often occur in the material.

【0039】[0039]

【発明の効果】本発明の流し込み施工用耐火物は、アル
ミナ−マグネシア質又はアルミナ−スピネル−マグネシ
ア質材料とマグネシア質粗粒とを組み合わせることによ
り、スラグライン等における過酷な条件部位での耐食性
が大幅に向上した。また、マグネシアクリンカーの粒度
と各原料の使用量を調整することにより耐スラグ浸潤
性,耐スポーリング性が向上した。更に、施工強度も向
上した。
The refractory for casting according to the present invention has a high corrosion resistance in severe conditions such as a slag line by combining alumina-magnesia or alumina-spinel-magnesia material and magnesia coarse particles. Significantly improved. The slag infiltration resistance and spalling resistance were improved by adjusting the particle size of the magnesia clinker and the amount of each raw material used. Furthermore, the construction strength has been improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21C 7/10 C21C 7/10 C (72)発明者 川瀬 義明 福岡県北九州市八幡西区東浜町1番1号 黒崎窯業株式会社不定形事業部八幡不定形 工場内 (72)発明者 榊 澄生 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 松井 泰次郎 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C21C 7/10 C21C 7/10 C (72) Inventor Yoshiaki Kawase 1 Higashihama-machi, Yawatanishi-ku, Kitakyushu-shi, Fukuoka Prefecture No. 1 Kurosaki Ceramics Co., Ltd.Amorphous Division Yawata Irregular Plant (72) Inventor Sumio Sakaki 1-1 Niwahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (72) Inventor Yasujiro Matsui 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒径0.21mm未満でMgO含有量9
5重量%以上のマグネシアクリンカーを3〜20重量%
と、非晶質シリカ0.2〜3重量%と、アルミナセメン
ト3〜15重量%と、残部がアルミナ原料である混合材
料に対し、粒径10〜50mmのマグネシア質粗粒を外
掛けで40〜100重量%用いた流し込み施工用耐火
物。
Claims: 1. A particle size of less than 0.21 mm and an MgO content of 9
3-20% by weight of magnesia clinker of 5% by weight or more
And a mixture of amorphous silica 0.2 to 3% by weight, alumina cement 3 to 15% by weight, and a balance of alumina raw material, and a magnesia coarse particle having a particle size of 10 to 50 mm being externally applied to the mixed material. Refractory for pouring using up to 100% by weight.
【請求項2】 粒径0.21mm未満でMgO含有量9
5重量%以上のマグネシアクリンカーを3〜20重量%
と、非晶質シリカ0.2〜3重量%と、アルミナセメン
ト3〜15重量%と、残部はアルミナ原料1に対しスピ
ネル原料の比率が1〜0.05で構成した混合材料に対
し、粒径10〜50mmのマグネシア質粗粒を外掛けで
40〜100重量%用いた流し込み施工用耐火物。
2. A powder having a particle size of less than 0.21 mm and an MgO content of 9
3-20% by weight of magnesia clinker of 5% by weight or more
0.2 to 3% by weight of amorphous silica, 3 to 15% by weight of alumina cement, and the balance being the particle size of the mixed material in which the ratio of the spinel material to the alumina material 1 is 1 to 0.05. A refractory for casting in which magnesia coarse particles having a diameter of 10 to 50 mm are externally used in an amount of 40 to 100% by weight.
JP8178279A 1996-07-08 1996-07-08 Refractory for casting using magnesia-based coarse grain Withdrawn JPH1025167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8178279A JPH1025167A (en) 1996-07-08 1996-07-08 Refractory for casting using magnesia-based coarse grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8178279A JPH1025167A (en) 1996-07-08 1996-07-08 Refractory for casting using magnesia-based coarse grain

Publications (1)

Publication Number Publication Date
JPH1025167A true JPH1025167A (en) 1998-01-27

Family

ID=16045698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8178279A Withdrawn JPH1025167A (en) 1996-07-08 1996-07-08 Refractory for casting using magnesia-based coarse grain

Country Status (1)

Country Link
JP (1) JPH1025167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018127A1 (en) * 2002-08-22 2004-03-04 Krosakiharima Corporation Method for continuous casting of molten steel for thin sheet
KR100417706B1 (en) * 1998-12-29 2004-03-24 주식회사 포스코 Refractory Composition of Magnesia Dam Block
KR101066574B1 (en) 2004-09-13 2011-09-22 재단법인 포항산업과학연구원 Castable for ladle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417706B1 (en) * 1998-12-29 2004-03-24 주식회사 포스코 Refractory Composition of Magnesia Dam Block
WO2004018127A1 (en) * 2002-08-22 2004-03-04 Krosakiharima Corporation Method for continuous casting of molten steel for thin sheet
CN1319676C (en) * 2002-08-22 2007-06-06 黑崎播磨株式会社 Method for continuous casting of molten steel for thin sheet
KR101066574B1 (en) 2004-09-13 2011-09-22 재단법인 포항산업과학연구원 Castable for ladle

Similar Documents

Publication Publication Date Title
JP2549450B2 (en) Novel refractory compositions containing monoclinic zirconia and articles formed from the compositions exhibiting improved high temperature mechanical strength and improved thermal shock resistance
JPH0737344B2 (en) Irregular refractory with basic properties
EP0535233B1 (en) Unshaped alumina spinel refractory
JP3514393B2 (en) Castable refractories for lining dip tubes or lance pipes used in molten metal processing
JPH1025167A (en) Refractory for casting using magnesia-based coarse grain
JPH082975A (en) Refractory for casting application
JP2000335978A (en) Castable refractory material
JPH0687667A (en) Zirconia-mullite containing castable refractory
JPH0323275A (en) Monolithic refractory for casting
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP2562767B2 (en) Pouring refractories
KR100264980B1 (en) Castable refractory material
JPH06345550A (en) Castable refractory
JPH06256064A (en) Dense castable refractory low in water content and capable of being cast
JPH08175877A (en) Castable refractory
JPH06144939A (en) Basic castable refractory
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JP2747734B2 (en) Carbon containing refractories
JPH04104965A (en) Amorphous refractory
JP3157310B2 (en) Refractory
JP2002029858A (en) Castable for lining tundish
JP2004059390A (en) Castable refractory for blast furnace trough
JP2023165768A (en) Castable refractories and molten steel ladle using the same
JPH06172044A (en) Castable refractory of alumina spinel
JPH0748167A (en) Magnesia refractory raw material and refractory

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007