KR100481883B1 - PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK - Google Patents

PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK Download PDF

Info

Publication number
KR100481883B1
KR100481883B1 KR10-1999-0036325A KR19990036325A KR100481883B1 KR 100481883 B1 KR100481883 B1 KR 100481883B1 KR 19990036325 A KR19990036325 A KR 19990036325A KR 100481883 B1 KR100481883 B1 KR 100481883B1
Authority
KR
South Korea
Prior art keywords
weight
waste
lead
amount
phosphate
Prior art date
Application number
KR10-1999-0036325A
Other languages
Korean (ko)
Other versions
KR20010019749A (en
Inventor
정두화
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-1999-0036325A priority Critical patent/KR100481883B1/en
Publication of KR20010019749A publication Critical patent/KR20010019749A/en
Application granted granted Critical
Publication of KR100481883B1 publication Critical patent/KR100481883B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 폐 마그크로 연와를 이용한 인산염 결합 부정형 내화물에 관한 것으로, 본 발명에서는 1-5 mm의 입도를 가지는 폐 마그크로 연와 분쇄물을 45-50 중량%, 순도가 98% 이상인 마그네시아 클링커를 28-35 중량%, 알루미나 분말을 5-10 중량%, 알루미나 시멘트를 3-6 중량%, 헥사메타인산 소다를 3-6 중량%, 탄산칼슘을 헥사메타인산의 사용량에 대해 1:1의 중량비로 사용하여 인산염 결합 부정형 내화물을 제조함으로써, 다량으로 발생하는 폐 마그크로 연와를 내화 골재로 재활용함으로써 폐기시 드는 비용을 절감함과 동시에 자원의 활용성을 높이는 효과가 있으며, 헥사메타인산소다를 통상적으로 부정형 내화물에서 분산제로 사용하는 양보다 훨씬 많이 사용하여 인산염이 결합된 부정형 내화물을 제조함으로써, 강도를 증진시키는 효과가 있다. The present invention relates to a phosphate-bonded amorphous refractory material using waste magnesia lead. In the present invention, 45-50% by weight of waste magcro lead and ground powder having a particle size of 1-5 mm and a magnesia clinker having a purity of 98% or more are used. -35% by weight, 5-10% by weight of alumina powder, 3-6% by weight of alumina cement, 3-6% by weight of hexametaphosphate, and calcium carbonate in a weight ratio of 1: 1 based on the amount of hexametaphosphate used By manufacturing phosphate-bonded amorphous refractory materials, recycling large amounts of waste macrowax to refractory aggregates can reduce the cost of disposal and increase the utilization of resources. By using a much larger amount than the amount used as the dispersant in the amorphous refractory to produce an amorphous refractory to which the phosphate is bound, there is an effect of increasing the strength.

Description

폐 마그크로 연와를 이용한 인산염 결합 부정형 내화물{PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK}Phosphate COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK}

본 발명은 폐 마그크로 연와를 이용한 인산염 결합 부정형 내화물에 관한 것으로, 더욱 상세하게는 알에이치(RH : Ruhrstahl Hereaus, 이하 RH라 한다) 설비 등의 내장 내화물로 사용한 마그크로 내화벽돌을 분쇄하여 만든 폐 마그크로 연와 분쇄물을 재활용하여 50 중량% 이하로 하고, 그 외 마그네시아 클링커 골재, 알루미나 분말, 알루미나 시멘트, 탄산칼슘 및 헥사메타인산소다를 사용하여 제조된 인산염 결합 부정형 내화물에 관한 것이다.The present invention relates to a phosphate-bonded amorphous refractory using waste Magro lead, and more specifically, to a waste made by crushing a refractory brick used as a built-in refractory such as RH (Ruh: Ruhrstahl Hereaus, RH) equipment It is related to phosphate-bonded amorphous refractory materials prepared by recycling magnesium lead and pulverized product to 50% by weight or less and using magnesia clinker aggregate, alumina powder, alumina cement, calcium carbonate and sodium hexamethaphosphate.

일반적으로 제강공정에서는 전로, 래들, RH 설비 등의 내장내화물로서 마그네시아(MgO)계 연와, 마그네시아-카본(MgO-C)계 연와, 마그네시아-크롬(MgO-Cr2O3)계 연와 등 각종의 내화물을 사용한다. 그 중에서 마그네시아-크롬계 연와는 마그네시아 연와 및 크롬 연와의 결점을 보완하기 위해 마그네시아 클링커에 크롬광석을 혼합하여 제조된 벽돌로서, 그 혼합비율에 따라서 마그네시아의 함량이 50% 이상이면 마그네시아-크롬 연와(보통 마그크로 연와라 부른다)라 하고, 50% 미만의 것을 크롬-마그네시아 연와(보통 크로마그 연와라 부른다)로 구별한다.In general, the steelmaking process includes magnesia (MgO) -based lead, magnesia-carbon (MgO-C) -based lead, magnesia-chromium (MgO-Cr 2 O 3 ) -based lead as internal refractories such as converters, ladles, and RH facilities. Use refractory Among them, magnesia-chromium lead is a brick manufactured by mixing chromium ore with magnesia clinker to compensate for the defects of magnesia lead and chrome lead. It is usually referred to as magcro lead) and less than 50% is distinguished from chromium-magnesia lead (usually called chromag lead).

마그크로 연와는 제강공정의 RH 설비, 스테인레스강의 브이오디(VOD : vacuum oxygen decarburization) 래들(ladle), 석회소성로, 시멘트 공정의 로타리 킬른 (rotary kiln) 등에 사용되며, 일정기간 사용한 후에는 신품의 마그크로 연와로 교체해야 하기 때문에 그 교체과정에서 다량의 폐 마그크로 연와가 발생한다. 폐 마그크로 연와의 대부분은 매립장에 매립하여 처리하는데, 이것은 환경을 오염시키는 문제가 있으며 매립지에도 한계가 있다. 따라서, 폐 마그크로 연와의 재활용이 요구되며, 특히 폐 마그크로 연와를 본래의 용도인 내화물로 재활용할 수 있다면 높은 내화물의 제조원가를 낮출 수 있다는 점에서 더욱 바람직하다.Magcro lead is used for RH facilities in steelmaking process, vacuum oxygen decarburization (VOD) ladles, lime kilns, rotary kilns for cement processes, etc. Since it needs to be replaced with croissant, a large amount of waste macrocrops are generated during the replacement process. Most of the waste makrowawa landfill is disposed of in landfill, which has a problem of environmental pollution and landfill has a limit. Therefore, the recycling of the waste Magro lead is required, and in particular, if the waste Magro lead can be recycled to the original use of the refractory, it is more preferable in that the manufacturing cost of the high refractory can be lowered.

본 발명자는 한국출원 제95-28915호에서 마그네시아 클링커, 알루미나 시멘트, 헥사메타인산소다 및 탄산칼슘을 사용하여 제조한 턴디쉬용 염기성 댐블럭의 부정형 내화물을 개시한 바 있다. 그러나 여기서는 주원료로서 마그네시아 클링커만을 사용하였으며 폐 마그크로 연와를 전혀 사용하지 않았다. The present inventor has disclosed in Korean Application No. 95-28915 an amorphous refractory of a basic dam block for tundish prepared using magnesia clinker, alumina cement, hexametaphosphate and calcium carbonate. However, only magnesia clinker was used here as the main raw material, and no lung muffler was used.

또한, 일본 특허공개 소62-148354호에서는 마그네시아를 내화 골재로 사용하고, 알루미나 미분, 알루미나 시멘트 및 트리폴리인산알루미늄을 첨가하여 제조된 염기성 유입성형재가 개시되어 있다. 그러나 여기서도 마그네시아 대신 폐 마그크로 연와를 재활용하여 사용한 것은 없다.In addition, Japanese Patent Application Laid-Open No. 62-148354 discloses a basic inflow molding material prepared by using magnesia as a refractory aggregate and adding alumina fine powder, alumina cement and aluminum tripolyphosphate. However, there is no recycling of used methane with waste magnesia instead of magnesia.

본 발명은 상기한 바와 같은 문제점을 해결하기 위해 안출된 것으로, 그 목적은 다량으로 발생하는 폐 마그크로 연와를 부정형 내화물의 내화 골재로 재활용함으로써 폐기시 드는 비용을 절감함과 동시에 자원의 활용성을 높이는 효과가 있는 폐 마그크로 연와를 이용한 인산염 결합 부정형 내화물을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its purpose is to recycle waste Magcro lead generated in large quantities into refractory aggregates of amorphous refractory materials, reducing the cost of disposal and at the same time utilizing the resources. It is to provide a phosphate-binding amorphous refractory using waste Magro yeonwawa to increase the effect.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에서는 1-5 mm의 입도를 가지는 폐 마그크로 연와 분쇄물을 45-50 중량%, 순도가 98% 이상인 마그네시아 클링커를 28-35 중량%, 알루미나 분말을 5-10 중량%, 알루미나 시멘트를 3-6 중량%, 헥사메타인산 소다를 3-6 중량%, 탄산칼슘을 헥사메타인산의 사용량에 대해 1:1의 중량비로 사용하여 인산염 결합 부정형 내화물을 제조한다. In order to achieve the above object, in the present invention, 45-50% by weight of waste magcro lead and ground product having a particle size of 1-5 mm, 28-35% by weight of magnesia clinker having a purity of 98% or more, and alumina powder 5-10% by weight of alumina cement, 3-6% by weight of alumina cement, 3-6% by weight of hexametaphosphate, calcium carbonate in a weight ratio of 1: 1 to the amount of hexametaphosphate used, Manufacture.

이 때, 상기 마그네시아 클링커는 1 mm급의 체를 통과한 것과 0.074 mm급의 체를 통과한 것을 혼합하여 사용하는 것이 바람직하다.At this time, the magnesia clinker is preferably used by mixing the one passed through a 1 mm sieve and the 0.074 mm sieve.

이하, 본 발명에 따른 폐 마그크로 연와를 이용한 인산염 결합 부정형 내화물에 대해 상세히 설명한다.Hereinafter, the phosphate-bonded amorphous refractory material using waste magnesia lead according to the present invention will be described in detail.

제강공정의 RH 설비에서 발생된 폐 마그크로 연와의 가동부에는 슬래그나 지금과 같은 불순물이 부착되어 있고 열작용에 의해 약간 변질된 상태이지만, 내화 골재로서는 충분히 사용할 수 있는 상태이다. 즉, 노벽 해체시 잔존하고 있는 연와의 가동부에 슬래그 성분, 구체적으로는 SiO2, Fe2O3, CaO 등의 함량 증가가 확인되었지만 전체적으로 사용 전의 연와와 큰 차이가 없기 때문에 이러한 폐 마그크로 연와를 분쇄하여 캐스타블이나 압입재와 같은 부정형 내화물의 내화 골재용으로 활용할 수 있다.Although the slag or the like impurities are attached to the movable part of the waste magnet produced by the RH facility of the steelmaking process and are slightly deteriorated by thermal action, it is a state which can be used sufficiently as a refractory aggregate. In other words, the increase in the content of slag components, specifically SiO 2 , Fe 2 O 3 , CaO, etc. in the moving part of the remaining yeonwawa when dismantling the furnace wall was confirmed that there is no significant difference with the yeonwa before use such a waste Magro yeonwa It can be pulverized and used for refractory aggregates of amorphous refractory materials such as castables or indents.

본 발명에서는 내화 골재로서 사용하는 마그네시아 클링커의 일부를 폐 마그크로 연와의 분쇄물로 대체하여 사용한다. 폐 마그크로 연와 분쇄물은 1-5 mm의 입도를 가지는 것으로 전체 내화물에 대해 45-50 중량% 사용한다. 만약 폐 마그크로 연와 분쇄물을 50 중량%를 초과하여 사용하면 내식성 및 시공성이 저하되기 때문에 사용량을 50 중량% 이하로 제한하는 것이다.In the present invention, a part of the magnesia clinker used as the refractory aggregate is used in place of a pulverized product with waste magnesia. Waste Magcro lead and grind have a particle size of 1-5 mm and use 45-50% by weight of the total refractory. If the use amount of the waste macro lead and pulverized in excess of 50% by weight is to reduce the corrosion resistance and workability is to limit the amount to 50% by weight or less.

마그네시아 클링커는 순도가 98% 이상인 것으로 28-35 중량% 사용하며, 이 때 입도 1 mm이하의 입자가 걸러지는 체를 통과한 것과 입도 0.074 mm이하의 입자가 걸러지는 체를 통과한 것에 대해 그 첨가량을 구분하여 사용한다. The magnesia clinker has a purity of 98% or more and is used at 28-35% by weight, with the addition amount being passed through a sieve through which sieves with a particle size of less than 1 mm are filtered and through a sieve with particles with a particle size of 0.074 mm or less. Use separately.

부원료로서는 알루미나 분말을 5-10 중량%, 알루미나 시멘트를 3-6 중량%, 탄산칼슘을 3-6 중량%, 헥사메타인산 소다를 3-6 중량% 사용하며, 이 때 탄산칼슘과 헥사메타인산 소다는 첨가량을 동일하게 즉 1:1의 비율로 한다.As a by-product, 5-10% by weight of alumina powder, 3-6% by weight of alumina cement, 3-6% by weight of calcium carbonate, and 3-6% by weight of hexametaphosphate, wherein calcium carbonate and hexamethic acid Soda makes the addition amount the same, that is, the ratio of 1: 1.

마그네시아 클링커의 사용량은 폐 마그크로 연와 분쇄물과 부원료들의 사용량을 제외한 함량으로 결정되며, 그 결과 앞에서 언급한 마그네시아 클링커의 사용량인 28-35 중량%에 해당되는 것이다. The amount of magnesia clinker used is determined by excluding the amount of waste magnesia lead, crushed powder and by-products, and the result is 28-35 wt% of the amount of magnesia clinker mentioned above.

알루미나 분말은 5 ㎛ 이하 입도의 초미분을 사용한다. 초미분의 알루미나를 사용하면 캐스타블 등으로 사용시 유동성을 높여주는 동시에 열간에서 사용시 마그네시아와 반응하여 MgO·Al2O3 스피넬이 생성되고, 생성된 스피넬에 의해 용강이나 슬래그의 침윤을 억제되며 열간강도 역시 증진된다. 만약 이러한 알루미나 분말을 5 중량% 미만으로 사용하면 열간강도가 저하되고, 10 중량%를 초과하여 사용하면 과량의 스피넬이 생성되어 열간에서 사용시 과도하게 팽창되어 붕괴될 가능성이 있다. 또한, 과량의 스피넬이 생성된 내화물은 조직이 느슨하게 되어 슬래그의 침윤 억제 효과도 감소된다. 따라서, 알루미나 분말의 바람직한 사용량은 5-10 중량%이다.As the alumina powder, an ultrafine powder having a particle size of 5 µm or less is used. The use of ultra-fine alumina improves fluidity when used as castables, and reacts with magnesia when used in the heat to form MgO · Al 2 O 3 spinels, and inhibits infiltration of molten steel or slag by the generated spinel. Strength is also enhanced. If the alumina powder is used in an amount less than 5% by weight, the hot strength is lowered. If the alumina powder is used in an amount of more than 10% by weight, an excessive amount of spinel may be generated, resulting in excessive expansion and decay. In addition, the refractory material in which an excess of spinel is produced loosens tissue, thereby reducing the effect of inhibiting slag infiltration. Thus, the preferred amount of alumina powder is 5-10% by weight.

알루미나 시멘트는 경화제 및 결합제 역할을 하는 것으로 통상 알루미나의 ??량 70%급의 알루미나 시멘트를 사용한다. 만약 알루미나 시멘트의 첨가량이 3 중량% 미만이면 경화제 및 결합제로서의 기능이 미약하고 경화시간이 길 뿐만 아니라 건조강도가 부족해진다. 6 중량%를 초과하여 사용하면 내침식성 및 용적안정성이 저하된다. 따라서, 알루미나 시멘트는 3-6 중량% 사용하는 것이 바람직하다.Alumina cement acts as a curing agent and a binder, and alumina cement of 70% grade of alumina is usually used. If the addition amount of the alumina cement is less than 3% by weight, the function as a curing agent and a binder is weak, the curing time is long, and the drying strength is insufficient. When used in excess of 6% by weight, corrosion resistance and volume stability are lowered. Therefore, it is preferable to use 3-6% by weight of alumina cement.

헥사메타인산소다는 시판되고 있는 통상의 공업용 분말을 사용하며, 캐스타블 등으로 사용시 유동성을 부여하는 동시에 상온 및 고온에서 결합제로서 강도를 발현시키는 역할을 한다. 염기성 부정형 내화물에 사용시 저온에서는 알루미나 시멘트 및 마그네시아에 대해 경화제로서 작용하기 때문에 건조강도를 향상시키고, 중간온도 범위에서는 알루미나시멘트의 강도저하를 보강해준다. 또한 고온에서는 탄산칼슘의 CaO 성분과 반응하여 고온에서 안정한 물질인 Na2O·2CaO·P2O5를 생성하여 열간강도를 부여한다. 이러한 헥사메타인산소다를 3 중량% 미만으로 사용하면 수분 소요량이 많아지고 경화가 너무 빨리 진행되어 시공하기가 어려우며 블록이 제조되더라도 댐 블록을 건조할 때 건조체에 균열이나 휨이 발생하여 댐으로서 부적합하며 건조강도 역시 낮다. 반면에 헥사메타인산소다를 6 중량%를 초과하여 사용하면 열간강도 및 소성강도가 저하되며 내침식성도 저하된다. 따라서, 헥사메타인산소다의 적당한 사용량은 3-6 중량%이다.Sodium hexametaphosphate uses commercially available commercial industrial powders, and imparts fluidity when used in castables and the like and expresses strength as a binder at room temperature and high temperature. When used in basic amorphous refractories, it acts as a curing agent for alumina cement and magnesia at low temperatures, improving dry strength, and reinforcing a decrease in strength of alumina cement at intermediate temperatures. In addition, at high temperatures, it reacts with the CaO component of calcium carbonate to produce Na 2 O · 2CaO · P 2 O 5 , which is a stable substance at high temperatures, to impart hot strength. If the hexametaphosphate is used at less than 3% by weight, the water consumption is high and the curing proceeds too fast, making it difficult to install. Even when the block is manufactured, it is not suitable as a dam because cracks or warpage occur in the drying body when the dam block is dried. Dry strength is also low. On the other hand, the use of more than 6% by weight of hexametaphosphate decreases the hot and plastic strength and also the erosion resistance. Therefore, a suitable amount of sodium hexametaphosphate is 3-6% by weight.

통상적으로 부정형 내화물에서 사용되는 헥사메타인산소다는 분산제로서의 역할을 할 뿐으로 그 사용량이 0.1 중량% 정도이나, 본 발명에서는 이보다 훨씬 많은 양인 3-6 중량%를 사용한다. 이로 인해 앞에서 언급한 바와 같이 강도를 증진시키는 Na2O·2CaO·P2O5를 형성함으로써 인산염이 결합된 부정형 내화물을 제조하는 것이 본 발명의 특징 중 하나이다.Usually, hexamethaphosphate used in amorphous refractory serves only as a dispersant and its amount is about 0.1% by weight, but the present invention uses much higher amounts of 3-6% by weight. For this reason, it is one of the characteristics of the present invention to prepare an amorphous refractory to which phosphate is bound by forming Na 2 O. 2 CaO. P 2 O 5 which enhances the strength as mentioned above.

탄산칼슘은 헥사메타인산소다와 중량 %로 1:1이 되도록 첨가한다. 만약 탄산칼슘과 헥사메타인산소다의 중량비가 1:1이 되지 않을 경우, 즉 탄산칼슘의 첨가량이 헥사메타인산소다의 첨가량보다 적으면 고온에서 헥사메탄인산소다의 휘발이 일어나며 고온강도와 소성강도가 저하된다. 또한 탄산칼슘의 첨가량이 더 많으면 과량의 탄산칼슘이 알루미나와 반응하여 칼슘알루미네이트계(C12A7,CA)의 저융점 물질을 생성하므로 염기성 부정형 내화물의 물성에 악영향을 끼친다.Calcium carbonate is added at a weight percent of 1: 1 with sodium hexametaphosphate. If the weight ratio of calcium carbonate to sodium hexametaphosphate is not 1: 1, that is, if the amount of calcium carbonate is less than the amount of sodium hexamethane phosphate, volatilization of sodium hexamethane phosphate occurs at high temperature, and the high temperature strength and plastic strength are high. Degrades. In addition, when the amount of added calcium carbonate is higher, excess calcium carbonate reacts with alumina to produce calcium aluminate-based (C12A7, CA) low melting point material, which adversely affects the properties of basic amorphous refractory materials.

이하, 실시예를 통해 본 발명에 따른 폐 마그크로 연와를 이용한 인산염 결합 부정형 내화물을 상세히 설명한다.Hereinafter, the phosphate-binding amorphous refractory material using the waste macropharo according to the present invention will be described in detail through examples.

표 1은 본 발명의 실시예 1-3의 조성(중량%)을 비교예 1-10의 조성과 함께 나타낸 것이다.Table 1 shows the composition (weight%) of Examples 1-3 of the present invention together with the compositions of Comparative Examples 1-10.

실시예Example 비교예Comparative example 1One 22 33 1One 22 33 44 55 66 77 88 99 1010 폐 마그크로 연와 분쇄물Waste Magcro Lead And Grind 4545 5050 4545 6060 4545 4545 4545 4545 4545 4545 4545 4545 4545 마그네시아 클링커(1mm)Magnesia Clinker (1mm) 1515 1010 1515 00 1515 1515 1515 1515 1515 1515 1515 1515 15*15 * 마그네시아 클링커(0.074mm)Magnesia Clinker (0.074mm) 1818 1818 2020 1818 2222 1313 2121 1616 1616 1717 2020 1515 18*18 * 알루미나 분말Alumina powder 77 77 77 77 33 1212 77 77 77 77 77 77 77 알루미나 시멘트Alumina cement 55 55 33 55 55 55 22 77 55 55 55 44 55 헥사메타인산소다Hexametaphosphate 55 55 55 55 55 55 55 55 33 66 55 77 55 탄산칼슘Calcium carbonate 55 55 55 55 55 55 55 55 55 55 33 77 55

* 표시는 마그네시아 크링커의 순도가 95%인 것임.* Indicates that the purity of magnesia clinker is 95%.

표 1에 나타난 바와 같은 조성으로 각 원료를 배합한 캐스타블에 수분을 7.5% 첨가하고 혼련한 후 시편을 성형하고, 양생, 건조하여 내화물을 제조하였다. 이러한 방법으로 제조된 내화물의 여러 물성을 측정하였으며, 그 중에서 열간강도는 40×40×160 mm 의 크기로 제작한 시편에 대해 1400℃의 온도에서 측정하였다. 침식시험은 회전침식시험법으로 수행하였으며, 이 때 침식제로는 래들에서 발생된 슬래그를 사용하였고, 침식시험 온도는 1650℃로 하였다. 표 1에 나타난 실시예 1-3 및 비교예 1-8에 따라 제조된 내화물의 물성 측정 결과는 다음의 표2와 같다.7.5% water was added to the castable blended with each raw material with the composition as shown in Table 1, and then kneaded, and the specimens were cured and dried to prepare refractory materials. Various physical properties of the refractory material prepared in this way were measured, among which hot strength was measured at a temperature of 1400 ° C. for specimens produced in the size of 40 × 40 × 160 mm. Erosion test was carried out by the rotary erosion test method, the slag generated in the ladle was used as the erosion agent, the erosion test temperature was 1650 ℃. The measurement results of the physical properties of the refractory prepared according to Examples 1-3 and Comparative Examples 1-8 shown in Table 1 are as Table 2 below.

실시예Example 비교예Comparative example 1One 22 33 1One 22 33 44 55 66 77 88 99 1010 건조 곡강도Dry bending strength 152152 140140 147147 7070 140140 145145 120120 110110 6060 7070 8080 155155 150150 소성강도(1500℃×3시간)Plastic strength (1500 ℃ x 3 hours) 6565 6565 6767 6060 5050 8080 7070 6565 5050 5050 8080 5050 6060 열간강도(1400℃)Hot strength (1400 ℃) 2525 1818 2020 88 55 1515 55 55 33 44 55 44 1515 열간 선팽창율(%,1000℃)Hot linear expansion rate (%, 1000 ℃) 1.11.1 1.11.1 1.31.3 1.01.0 0.80.8 1.71.7 1.11.1 0.90.9 1.11.1 1.01.0 1.11.1 1.01.0 1.11.1 침식지수Erosion Index 9595 7575 8080 130130 7070 8080 8080 120120 7070 7575 100100 110110 100100

표 2에 나타난 바와 같이 본 발명의 실시예 1-3에 따른 폐 마그크로 연와를 이용한 인산염 결합 부정형 내화물은 내식성과 열간강도 등이 우수함을 확인할 수 있었다. As shown in Table 2, it was confirmed that the phosphate-bonded amorphous refractory material using the waste mcropatite according to Examples 1-3 of the present invention had excellent corrosion resistance and hot strength.

이러한 실시예 1-3의 결과에 반해, 비교예 1-8의 결과는 다음과 같다.In contrast to the results of Examples 1-3, the results of Comparative Examples 1-8 are as follows.

비교예 1은 폐 마그크로 연와 분쇄물을 과도하게 많이 첨가한 것으로, 그 결과 강도가 저하되고 슬래그에 대한 내침식성이 저하되었다. 이것은 폐 마그크로 연와 분쇄물의 사용량이 많아짐에 따라 내화물 구성입도에 불균형을 초래하고 폐 마그크로 연와 분쇄물의 표면에 부착된 슬래그의 혼입량이 많아지기 때문으로 생각된다.In Comparative Example 1, excessive amounts of lead and pulverized powder were added to the waste magnes, and as a result, the strength was lowered and the erosion resistance to slag was lowered. This is considered to be due to the imbalance in the refractories of the refractories as the amount of waste magnesite lead and pulverized products increases, and the amount of slag adhering to the surface of the waste magnesite lead and pulverized products increases.

비교예 2 및 3은 각각 캐스타블 조성에서 알루미나 분말의 첨가량이 지나치게 작거나 많은 경우로서, 비교예 2에서는 열간강도가 저하되었으며, 비교예 3에서는 열간에서의 팽창율이 높아서 문제가 되었다.Comparative Examples 2 and 3 are cases where the addition amount of alumina powder is too small or too large in the castable composition, respectively, in the comparative example 2, the hot strength is lowered, and in the comparative example 3, the expansion ratio in the hot is high, which is a problem.

비교예 4 및 5는 각각 알루미나 시멘트의 첨가량이 지나치게 작거나 많은 경우로서, 비교예 4에서는 건조강도가 낮으며, 비교예 5에서는 과다한 액상생성에 의해 열간강도가 저하되었다.In Comparative Examples 4 and 5, respectively, the amount of alumina cement added was too small or too large. In Comparative Example 4, the dry strength was low. In Comparative Example 5, the hot strength was lowered due to excessive liquid production.

비교예 6-9는 헥사메타인산소다의 첨가량과 탄산칼슘의 첨가량이 동일하지 않거나 과도하게 많은 경우로서, 모든 경우에서 열간강도가 매우 낮음을 나타내었다.In Comparative Example 6-9, the amount of added hexamethaphosphate and the amount of added calcium carbonate were not the same or were excessively high, indicating that the hot strength was very low in all cases.

비교예 10은 마그네시아 클링커를 순도 95%인 것을 사용한 경우로서, 열간강도가 낮았다. In Comparative Example 10, a magnesia clinker having a purity of 95% was used, and the hot strength was low.

상기한 실시예 1-3 및 비교예 1-10의 결과로부터, 본 발명에 따라 폐 마그크로 연와 분쇄물을 골재로 사용하고 그 외에는 통상의 마그네시아질 캐스타블에서 사용하는 것과 동일하게 사용함으로써 슬래그에 대한 내침식성과 열간강도 등이 우수한 캐스타블을 제조할 수 있었다.From the results of Examples 1-3 and Comparative Examples 1-10 described above, the slag is used according to the present invention by using waste magcro lead and ground powder as aggregate, and otherwise using the same as used in conventional magnesia castables. The castable with excellent corrosion resistance and hot strength could be manufactured.

상기한 바와 같이 본 발명에서는 다량으로 발생하는 폐 마그크로 연와를 부정형 내화물의 내화 골재로 재활용함으로써 폐기시 드는 비용을 절감함과 동시에 자원의 활용성을 높이는 효과가 있다.As described above, the present invention has the effect of reducing the cost of disposal and increasing the utilization of resources by recycling waste Magcro lead generated in a large amount into refractory aggregates of amorphous refractory materials.

특히, 본 발명에서는 헥사메타인산소다를 통상적으로 부정형 내화물에서 분산제로 사용하는 양보다 훨씬 많이 사용하여 인산염이 결합된 부정형 내화물을 제조함으로써, 강도를 증진시키는 효과가 있다. In particular, in the present invention, by using a much larger amount of sodium hexametaphosphate than the amount usually used as a dispersant in the amorphous refractory, by producing a refractory-bonded amorphous refractory, there is an effect to enhance the strength.

Claims (2)

1-5 mm의 입도를 가지는 폐 마그크로 연와 분쇄물을 45-50 중량%, 순도가 98% 이상이고 1 mm급의 체를 통과한 것과 0.074 mm급의 체를 통과한 것을 혼합한 마그네시아 클링커를 28-35 중량%, 알루미나 분말을 5-10 중량%, 알루미나 시멘트를 3-6 중량%, 헥사메타인산 소다를 3-6 중량%, 탄산칼슘을 헥사메타인산의 사용량에 대해 1:1의 중량비로 사용하고 잔부로 마그네시아 클링커를 사용하여 제조된 인산염 결합 부정형 내화물. Magnesia clinker is a mixture of 45-50% by weight of waste Magcro lead and ground powder with a particle size of 1-5 mm, a purity of 98% or more, and a 1 mm sieve and a 0.074 mm sieve. 28-35% by weight, 5-10% by weight of alumina powder, 3-6% by weight of alumina cement, 3-6% by weight of hexamethic acid soda, 1: 1 ratio of calcium carbonate to hexametaphosphate usage Phosphate-bonded amorphous refractory prepared using magnesia clinker as a balance. 삭제delete
KR10-1999-0036325A 1999-08-30 1999-08-30 PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK KR100481883B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0036325A KR100481883B1 (en) 1999-08-30 1999-08-30 PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0036325A KR100481883B1 (en) 1999-08-30 1999-08-30 PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK

Publications (2)

Publication Number Publication Date
KR20010019749A KR20010019749A (en) 2001-03-15
KR100481883B1 true KR100481883B1 (en) 2005-04-11

Family

ID=19609245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0036325A KR100481883B1 (en) 1999-08-30 1999-08-30 PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK

Country Status (1)

Country Link
KR (1) KR100481883B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910529B1 (en) 2002-12-24 2009-07-31 주식회사 포스코 A batch composition of gunning material using waste Mg-Cr brick

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908855B1 (en) * 2007-07-06 2009-07-22 한국세라믹기술원 METHOD FOR MANUFACTURING MAGNESIUM PHOSPHATE COMPOUND FROM Wasted Magnesium Carbon Refractory
KR101705231B1 (en) * 2010-12-27 2017-02-09 재단법인 포항산업과학연구원 REFRACTORY COMPOSITIONS OF HIGH STRENGTH PLUG FOR TAP HOLE OF CONVERTER USING BY WASTE Mg-Cr BRICK
KR101705230B1 (en) * 2010-12-27 2017-02-09 재단법인 포항산업과학연구원 REFRACTORY COMPOSITIONS OF PLUG FOR TAP HOLE OF CONVERTER USING BY WASTE Mg-Cr BRICK

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046150A (en) * 1990-04-20 1992-01-10 Kawasaki Refract Co Ltd Magnesia-chrome refractories
JPH0477366A (en) * 1990-07-20 1992-03-11 Kawasaki Refract Co Ltd Castable monolithic refractory
JPH05339615A (en) * 1992-06-10 1993-12-21 Daido Steel Co Ltd Effective utilization method of waste brick for steel making
JPH08259313A (en) * 1995-03-28 1996-10-08 Nippon Steel Corp Production of magnesia-chrome-based refractory brick
KR100213313B1 (en) * 1995-09-05 1999-08-02 이구택 Refractory material
KR20000039555A (en) * 1998-12-14 2000-07-05 이구택 Ladle filling material for vacuum refining

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046150A (en) * 1990-04-20 1992-01-10 Kawasaki Refract Co Ltd Magnesia-chrome refractories
JPH0477366A (en) * 1990-07-20 1992-03-11 Kawasaki Refract Co Ltd Castable monolithic refractory
JPH05339615A (en) * 1992-06-10 1993-12-21 Daido Steel Co Ltd Effective utilization method of waste brick for steel making
JPH08259313A (en) * 1995-03-28 1996-10-08 Nippon Steel Corp Production of magnesia-chrome-based refractory brick
KR100213313B1 (en) * 1995-09-05 1999-08-02 이구택 Refractory material
KR20000039555A (en) * 1998-12-14 2000-07-05 이구택 Ladle filling material for vacuum refining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910529B1 (en) 2002-12-24 2009-07-31 주식회사 포스코 A batch composition of gunning material using waste Mg-Cr brick

Also Published As

Publication number Publication date
KR20010019749A (en) 2001-03-15

Similar Documents

Publication Publication Date Title
Lee et al. Evolution of in situ refractories in the 20th century
US4039344A (en) Alumina-chrome refractory composition
CA1037503A (en) Carbon composition and shaped article made therefrom
KR100481882B1 (en) MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
KR100481883B1 (en) PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
JPH08198649A (en) Calcium aluminate, cement composition and prepared unshaped refractory containing the same
CN1202039C (en) Heat resistance substance for refractory moulding body and its fabricated moulding body
KR20050113633A (en) Chromium-free monothilic refractory for melting furnace for waste and melting furnace for waste lined with the same
JP2000335978A (en) Castable refractory material
KR20100049386A (en) Environmentally-friendly waterless-monolithic lining material
ITMI950206A1 (en) REFRACTORY CERAMIC MASS AND ITS USE
RU2140407C1 (en) Refractory concrete mix
JP2562767B2 (en) Pouring refractories
Pilli Study on the alumina-silicon carbide-carbon based trough castable
Msibi et al. Effect of recycled bauxite grog addition on andalusite-containing refractory castables for tundish applications
JP3027593B2 (en) Manufacturing method of special cement
JP3833800B2 (en) Standard refractory
KR100276310B1 (en) Refractory material of magnesia castable block
JP7277712B2 (en) Magnesia-spinel refractory bricks
JPH11147758A (en) Production of refractory material
KR100373702B1 (en) Block Molding Using Alumina-Spinel Waste Castable
KR100723129B1 (en) Basic castables for tundish dam block
KR100317307B1 (en) Monolithic Basic Refractories Having High Durability
JP3157310B2 (en) Refractory
JPH11130548A (en) Basic monolithic refractory material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130205

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140325

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180314

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee