JP7277712B2 - Magnesia-spinel refractory bricks - Google Patents

Magnesia-spinel refractory bricks Download PDF

Info

Publication number
JP7277712B2
JP7277712B2 JP2019026247A JP2019026247A JP7277712B2 JP 7277712 B2 JP7277712 B2 JP 7277712B2 JP 2019026247 A JP2019026247 A JP 2019026247A JP 2019026247 A JP2019026247 A JP 2019026247A JP 7277712 B2 JP7277712 B2 JP 7277712B2
Authority
JP
Japan
Prior art keywords
sio
magnesia
spinel
mass
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026247A
Other languages
Japanese (ja)
Other versions
JP2020132459A (en
Inventor
公一 伊賀棒
一成 竹村
雄斗 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2019026247A priority Critical patent/JP7277712B2/en
Publication of JP2020132459A publication Critical patent/JP2020132459A/en
Application granted granted Critical
Publication of JP7277712B2 publication Critical patent/JP7277712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、製鋼用精錬炉やセメントロータリーキルン、石灰キルン等各種窯炉に用いられるマグネシア・スピネル質耐火れんがに関する。 The present invention relates to magnesia-spinel refractory bricks used in various kilns such as steelmaking refining furnaces, cement rotary kilns, and lime kilns.

マグネシア・スピネル質耐火れんがは耐スポール性、容積安定性に優れており、セメントロータリーキルン等の各種窯炉に使用されている(特許文献1参照)。特許文献1のマグネシア・スピネル質耐火れんがは、高温での耐食性を低下させることなく熱間強度を高め、耐スポーリング性を向上することができる。しかし時として予想外に損耗が増大する場合があるが、その原因は明らかになっていなかった。 Magnesia-spinel refractory bricks are excellent in spall resistance and volumetric stability, and are used in various kilns such as cement rotary kilns (see Patent Document 1). The magnesia-spinel refractory brick of Patent Document 1 can increase the hot strength and improve the spalling resistance without reducing the corrosion resistance at high temperatures. However, sometimes the wear increases unexpectedly, but the cause has not been clarified.

特開2017-137205号公報JP 2017-137205 A

予想外に損耗が増大したマグネシア・スピネル質耐火れんがを回収し詳細に検証した。その結果、浸潤したスラグ成分と耐火物中のCaOとSiO2が反応して生成したCa2SiO4が、相変態に伴って体積変化を生じることで粉化崩壊する、いわゆるダスティングを起こしたことが原因であると結論付けた。 A magnesia-spinel refractory brick with unexpectedly increased wear was collected and examined in detail. As a result, the infiltrated slag component reacted with CaO and SiO 2 in the refractory to cause Ca 2 SiO 4 to pulverize and collapse due to the volume change accompanying the phase transformation, causing so-called dusting. concluded that this was the cause.

浸潤したスラグ成分と耐火物中のCaOやSiO2は焼結中にあるいは使用中にいくつかの鉱物を形成する。その中でもCa2SiO4は温度変化にともなってα相、β相、γ相などの多くの状態を呈し、高温からの冷却時に発生するβ相からγ相への転移は急激な体積膨張を伴う。このβ相からγ相への転移を抑制するには急冷することが有効であるが、耐火物を含む窯炉を急冷すると耐火物にスポールによる損傷が発生するので現実的な対応ではない。 The infiltrated slag constituents and CaO and SiO2 in the refractories form some minerals during sintering or during use. Among them, Ca 2 SiO 4 exhibits many states such as α phase, β phase, and γ phase with temperature change, and the transition from β phase to γ phase that occurs when cooling from high temperature is accompanied by rapid volume expansion. . Rapid cooling is effective in suppressing the transition from the β phase to the γ phase, but rapid cooling of the kiln containing the refractory causes damage due to spalling of the refractory, which is not a realistic countermeasure.

本発明は上記従来の事情に鑑みて提案されたものであって、れんがの組成を適正化することによってCa2SiO4の析出を阻害し、ダスティングを抑制し、損耗を低減したマグネシア・スピネル質耐火れんがを提供することを目的とする。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and is a magnesia spinel that inhibits the precipitation of Ca 2 SiO 4 by optimizing the composition of the brick, suppresses dusting, and reduces wear. The purpose is to provide quality refractory bricks.

本発明は、マグネシア・スピネル質焼成れんがであって、主要鉱物相がペリクレースとアルミン酸マグネシウムスピネルであり、化学組成がAl;5~22質量%、CaO;2.5質量%未満(ゼロを含まず)、SiO;1~5質量%残部にMgOと不可避不純物を含み、CaOとSiOの質量比(CaO/SiO)が0.44以上0.6未満である。
あるいは、本発明は、マグネシア・スピネル質焼成れんがであって、主要鉱物相がペリクレースとアルミン酸マグネシウムスピネルであり、化学組成がAl ;5~22質量%、CaO;1.0以上2.5質量%未満、SiO ;1~5質量%で、残部にMgOと不可避不純物を含み、CaOとSiO の質量比(CaO/SiO )が0.6未満とすることもできる。
更に、本発明は、マグネシア・スピネル質焼成れんがであって、主要鉱物相がペリクレースとアルミン酸マグネシウムスピネルであり、化学組成がAl ;5~22質量%、CaO;2.5質量%未満(ゼロを含まず)、SiO ;3.1~5質量%で、残部にMgOと不可避不純物を含み、CaOとSiO の質量比(CaO/SiO )が0.6未満とすることもできる。
The present invention is a calcined magnesia-spinel brick, the main mineral phases of which are periclase and magnesium aluminate spinel, and the chemical composition is Al 2 O 3 : 5 to 22% by mass, CaO: less than 2.5% by mass ( SiO 2 : 1 to 5% by mass; the balance contains MgO and inevitable impurities, and the mass ratio of CaO to SiO 2 (CaO/SiO 2 ) is 0.44 or more and less than 0.6.
Alternatively, the present invention is a calcined magnesia-spinel brick, the main mineral phases of which are periclase and magnesium aluminate spinel, and the chemical composition is Al 2 O 3 : 5 to 22% by mass, CaO: 1.0 or more 2 Less than .5% by mass, SiO 2 : 1 to 5% by mass, the balance containing MgO and unavoidable impurities, and the mass ratio of CaO to SiO 2 (CaO/SiO 2 ) can be less than 0.6.
Further, the present invention provides a calcined magnesia-spinel brick, the main mineral phases of which are periclase and magnesium aluminate spinel, and the chemical composition is Al 2 O 3 : 5 to 22% by mass, CaO: 2.5 % by mass . Less than (not including zero), SiO 2 : 3.1 to 5% by mass, the balance containing MgO and inevitable impurities, and the mass ratio of CaO to SiO 2 (CaO/SiO 2 ) being less than 0.6 can also

上記組成よりなる耐火原料を1400℃~2000℃で焼成することによって、マグネシア・スピネル質焼成れんがとすることができる。 By firing the refractory raw material having the above composition at 1400° C. to 2000° C., a fired magnesia-spinel brick can be obtained.

本発明によれば、マグネシア・スピネル質れんが中に浸潤した液相成分からのCa2SiO4の析出を阻害し、ダスティングを抑制することによってマグネシア・スピネル質耐火れんがの損耗を低減することができる。 According to the present invention, the precipitation of Ca 2 SiO 4 from the liquid phase component infiltrated into the magnesia-spinel brick is inhibited, and the dusting is suppressed, thereby reducing the wear of the magnesia-spinel refractory brick. can.

<原理>
マグネシア・スピネル質耐火れんがに浸潤したスラグによってれんが成分が溶解するとスラグ成分は浸潤してきた時点から変化する。当該浸潤によるスラグ成分と耐火物成分の反応によるCa2SiO4の析出を阻害するためには浸潤したスラグ成分の組成をCa2SiO4の生成領域から変化させればよい。
<Principle>
When the slag infiltrated into the magnesia-spinel refractory brick dissolves the brick component, the slag component changes from the point of infiltration. In order to inhibit the precipitation of Ca 2 SiO 4 due to the reaction between the slag component and the refractory component due to the infiltration, the composition of the infiltrated slag component should be changed from the Ca 2 SiO 4 generation region.

すなわち、マグネシア・スピネル質耐火れんが中のSiO2がスラグに溶解すると浸潤スラグのCaO/SiO2比率が低下して、Ca2SiO4生成領域から外れ、Ca2SiO4の析出を阻害する。 That is, when the SiO 2 in the magnesia-spinel refractory brick dissolves in the slag, the CaO/SiO 2 ratio of the infiltrated slag is lowered, leaving the Ca 2 SiO 4 formation region and inhibiting the precipitation of Ca 2 SiO 4 .

具体的には、れんがの組成を特定の範囲に制御するとともに、れんが中のCaO/SiO2比率を質量比で0.6未満とすることで、れんがからのSiO2の溶出によって浸潤したスラグの組成がCaSiOの生成領域から外れ、ダスティングが大幅に抑制できることになる。 Specifically, by controlling the composition of the brick within a specific range and setting the CaO/SiO 2 ratio in the brick to less than 0.6 in mass ratio, the slag infiltrated by the elution of SiO 2 from the brick is removed. The composition is out of the Ca 2 SiO 4 formation region, and dusting can be greatly suppressed.

[マグネシア原料]
前記マグネシア原料は市販されている天然マグネシア、焼結マグネシア、電融マグネシア等のマグネシアを主体としたものでMgO含有量が90質量%以上であればいずれを使用してもかまわない。その中でも、特に純度95質量%以上のものを使用することが好ましい。
[Magnesia raw material]
The magnesia raw material is mainly composed of magnesia such as commercially available natural magnesia, sintered magnesia, and electrofused magnesia. Among them, it is particularly preferable to use one having a purity of 95% by mass or more.

[スピネル原料]
前記スピネル原料はMgOとAl23の合量が90質量%以上、かつAl23を40質量%以上含んでいれば焼結品、電融品共に使用可能である。MgOとAl23の合量が98質量%以上、かつAl23が40質量%以上がより好ましい。
[Spinel raw material]
If the spinel raw material contains 90% by mass or more of MgO and Al 2 O 3 in total and 40% by mass or more of Al 2 O 3 , it can be used as both a sintered product and an electrofused product. More preferably, the total amount of MgO and Al 2 O 3 is 98% by mass or more, and the content of Al 2 O 3 is 40% by mass or more.

マグネシア・スピネルれんが中のAl23の含有量は5質量%~22質量%で好ましくは7~17質量%の範囲内である。Al23の含有量が5質量%未満では耐熱スポーリング性が低下するAl23の含有量が22質量%より多くなると耐食性が低下する。 The content of Al 2 O 3 in the magnesia-spinel brick is 5-22% by weight, preferably 7-17% by weight. When the content of Al 2 O 3 is less than 5% by mass, the heat spalling resistance is lowered. When the content of Al 2 O 3 is more than 22% by mass, the corrosion resistance is lowered.

マグネシア・スピネルれんが中のAl23はスピネル原料から供給されるが、それ以外のAl23を含有する原料からも供給されてもかまわない。スピネル原料の他、アルミナ原料やSiO2の供給源にもなる合成ムライトや耐火粘土なども用いることができる。 Al 2 O 3 in the magnesia-spinel brick is supplied from the spinel raw material, but it may be supplied from other raw materials containing Al 2 O 3 . In addition to spinel raw materials, alumina raw materials, synthetic mullite and refractory clay, which are sources of SiO 2 , can also be used.

[CaO]
マグネシア・スピネルれんが中のCaOは上記原料中に不純物や化合物として含まれる場合や焼結助剤として供給される添加物中に含まれる場合を含む。CaOの含有量は2.5質量%未満(ゼロを含まず)であることが好ましい。より好ましくは2質量%以下である。2.5質量%以上では焼結が進行してしまい、耐熱スポーリング性の低下が起きるため好ましくない。
[CaO]
CaO in the magnesia-spinel brick includes cases where it is contained as an impurity or compound in the above raw materials, and cases where it is contained in additives supplied as sintering aids. The content of CaO is preferably less than 2.5 mass % (not including zero). More preferably, it is 2% by mass or less. If it is 2.5% by mass or more, sintering proceeds and heat spalling resistance is lowered, which is not preferable.

[SiO2
マグネシア・スピネルれんが中のSiO2は既に示した原料中の不純物や化合物に加え珪砂、珪石、シリカフラワー等を使用して調整できる。SiO2の含有量は1~5質量%未満で好ましくは1~4質量%未満である。5質量%以上では耐食性が低下する。また1質量%未満ではスラグ中に溶出するSiO2量が不足しダスティング抑制の効果が得られない。
[ SiO2 ]
SiO 2 in the magnesia-spinel brick can be adjusted by using silica sand, silica stone, silica flour, etc. in addition to the impurities and compounds in the raw materials already shown. The content of SiO 2 is from 1 to less than 5% by weight, preferably from 1 to less than 4% by weight. If it is 5% by mass or more, the corrosion resistance is lowered. On the other hand, if it is less than 1% by mass, the amount of SiO 2 eluted into the slag is insufficient, and the effect of suppressing dusting cannot be obtained.

[CaO/SiO2]
マグネシア・スピネルれんが中のCaOとSiO2は質量比(CaO/SiO2)は0.6未満、好ましくは0.5未満である。0.6以上ではSiO2と同時に溶出するCaOが多くなるため、浸潤スラグのCaO/SiO2比が十分に低下せず、ダスティング抑制の効果が得られない。
[CaO/SiO2]
The mass ratio (CaO/SiO 2 ) of CaO and SiO 2 in the magnesia-spinel brick is less than 0.6, preferably less than 0.5. If it is 0.6 or more, the amount of CaO that elutes simultaneously with SiO 2 increases, so that the CaO/SiO 2 ratio of the infiltrating slag is not sufficiently lowered, and the effect of suppressing dusting cannot be obtained.

[バインダー]
本発明のバインダーには有機バインダー又は無機バインダーを配合できる。有機バインダーとしては、ピッチやフェノール樹脂、糖蜜、パルプ廃液、デキストリン、メチルセルロース類、ポリビニルアルコール等種々のバインダーを使用できる。
[binder]
An organic binder or an inorganic binder can be blended in the binder of the present invention. As the organic binder, various binders such as pitch, phenolic resin, molasses, pulp waste liquid, dextrin, methyl celluloses, and polyvinyl alcohol can be used.

[混練]
製造方法については、上述化学成分の含有量となるように配合された原料配合物を一括あるいは分割して、更に、必要に応じて水を添加して混合機又は混練機により混合及び混練する。混合もしくは混練時間は原料の種類、配合量、バインダーの種類、温度(室温、原料やバインダー)、混合機もしくは混練機の種類や大きさによって異なるが、通常数分から数時間である。
[Kneading]
As for the manufacturing method, the raw material mixture that has been blended so as to have the above-described chemical component content is batched or divided, and if necessary, water is added and mixed and kneaded with a mixer or kneader. The mixing or kneading time varies depending on the kind of raw materials, the amount of mixture, the kind of binder, the temperature (room temperature, raw materials and binder), and the kind and size of the mixer or kneader, but it is usually several minutes to several hours.

[成形]
混練物はプレス成形機等でれんがに成形される。プレス成形機による成形圧力や締め回数は成形されるれんがの大きさ原料の種類、配合量、バインダーの種類、温度(室温、原料やバインダー)、成形機の種類や大きさによって異なる。
[Molding]
The kneaded material is molded into a brick using a press molding machine or the like. The molding pressure and the number of times of tightening by the press molding machine vary depending on the size of the brick to be molded, the type of raw material, the blending amount, the type of binder, the temperature (room temperature, raw material and binder), and the type and size of the molding machine.

[焼成]
SiO2をれんが全体に拡散させるために焼成は1400℃以上2000℃以下が望ましく、より好ましくは1500℃以上1900℃未満である。1400℃以下ではSiO2が均一に拡散しないためダスティング抑制の効果が低下し。2000℃より高い温度で焼成すると焼成中にれんがの変形が起こるなどの問題が発生するため好ましくない。
[Firing]
In order to diffuse SiO 2 throughout the brick, the firing temperature is desirably 1400°C or higher and 2000°C or lower, more preferably 1500°C or higher and lower than 1900°C. At 1400° C. or less, the effect of suppressing dusting is reduced because SiO2 does not diffuse uniformly. Firing at a temperature higher than 2000° C. is not preferable because problems such as brick deformation occur during firing.

上記のように焼成は1400℃以上で行われる必要があるが、焼結装置、方式は温度が十分に調節可能で均質加熱ができる加熱炉であればどのような形式でも使用できる。 As described above, sintering must be performed at 1400° C. or higher, but any type of sintering apparatus and method can be used as long as it is a heating furnace capable of sufficiently adjusting the temperature and uniformly heating.

<試験片の作成>
以下に実施例、比較例を示し、本発明の効果を詳細に説明する。表1は実施例、表2は比較例、表3は使用した原料の化学組成を示したものである。
<Preparation of test piece>
EXAMPLES Examples and comparative examples are shown below to describe the effects of the present invention in detail. Table 1 shows examples, Table 2 shows comparative examples, and Table 3 shows chemical compositions of raw materials used.

表1、表2に示す所定の配合割合に従い、各種原料を配合した。フェノール樹脂を合計原料重量の外掛で3質量%添加して練土を得た。フェノール樹脂は、樹脂分60%のノボラック型フェノール樹脂溶液である。練土は油圧プレスにて118MPa、打回数20回の条件で115mm×65mm×80mmの試料を成形した。試料はいずれも200℃で24h乾燥後、電気加熱式の箱型電気炉を用いて所定温度まで5℃/minで昇温、所定温度に到達後10h保持、その後5℃/minで500℃まで冷却した後自然放冷した。 Various raw materials were blended according to the predetermined blending ratios shown in Tables 1 and 2. A kneaded clay was obtained by adding 3% by mass of phenolic resin to the total raw material weight. The phenolic resin is a novolak-type phenolic resin solution with a resin content of 60%. The kneaded clay was molded into a sample of 115 mm×65 mm×80 mm under conditions of 118 MPa and 20 strokes in a hydraulic press. Each sample was dried at 200°C for 24 hours, heated to a predetermined temperature at 5°C/min using an electrically heated box-type electric furnace, held for 10 hours after reaching the predetermined temperature, and then heated at 5°C/min to 500°C. After cooling, it was allowed to cool naturally.

<粉化と耐食性試験>
粉化と耐食性試験は、酸素-プロパン加熱による回転ドラム侵食試験にて評価した。侵食剤として市販のワラストナイトと炭酸カルシウムを用いてCaOとSiO2が質量比で2:1となるように調整し、箱型電気炉にて1000℃で3h仮焼したものを用いた。試験温度は1700℃、試験時間は5hで侵食剤は1h毎に入れ替えた。試験後の試料は外観で粉化の判断を行い、粉化しなかったものを〇、一部粉化していたものを△、著しく粉化したものを×で表記した。未粉化の試料については長手方向に中央で切断し、侵食量を測定し実施例1を100とした溶損指数で表した。値が小さいほど耐食性が高いことを意味している。
<Pulverization and corrosion resistance test>
Pulverization and corrosion resistance tests were evaluated by a rotating drum erosion test with oxygen-propane heating. Using commercially available wollastonite and calcium carbonate as corrosion agents, CaO and SiO 2 were adjusted to a mass ratio of 2:1, and calcined at 1000° C. for 3 hours in a box type electric furnace. The test temperature was 1700° C., the test time was 5 hours, and the erosion agent was replaced every 1 hour. Powdering of the samples after the test was judged based on their appearance, and ◯ indicates no powdering, Δ indicates partial powdering, and X indicates significant powdering. The non-powdered sample was cut at the center in the longitudinal direction, and the amount of erosion was measured and expressed as an erosion index with Example 1 set to 100. A smaller value means a higher corrosion resistance.

<耐熱スポーリング性>
耐熱スポーリング性は一辺が50mmの立方体に切り出した試料を箱型電気炉にて1300℃で15min加熱後、電気炉から取り出し常温で15min冷却する工程を繰り返し、亀裂が入るまでの回数で評価した。試験回数は最大20回繰り返し、20回でも亀裂が入らない試料の評価は20回以上として評価した。
<Heat spalling resistance>
The heat spalling resistance was evaluated by repeating the process of heating a sample cut into a cube with a side of 50 mm at 1300°C for 15 minutes in a box-shaped electric furnace at 1300°C, removing it from the electric furnace and cooling it at room temperature for 15 minutes, and counting the number of times until cracking occurred. . The number of tests was repeated up to 20 times, and samples that did not crack even after 20 times were evaluated as 20 times or more.

<評価結果>
実施例はいずれも試験後試料に粉化は見られず、耐食性も耐熱スポーリング性も良好である。
<Evaluation results>
In all of the examples, no pulverization was observed in the samples after the test, and both corrosion resistance and heat spalling resistance were good.

比較例1、2はCaO/SiO2質量比が本発明範囲を超えるものであり、粉化が見られた。比較例3はれんが中のAl23の量が本発明範囲を下回るものであり、耐スポーリング性が低下した。比較例4はれんが中のAl23の量が本発明範囲を超えるものであり、耐食性が低下した。 In Comparative Examples 1 and 2, the CaO/SiO 2 mass ratio exceeded the range of the present invention, and pulverization was observed. In Comparative Example 3, the amount of Al 2 O 3 in the brick was below the range of the present invention, and the spalling resistance was lowered. In Comparative Example 4, the amount of Al 2 O 3 in the brick exceeded the range of the present invention, and the corrosion resistance was lowered.

比較例5はれんが中のCaOの量が本発明範囲を超えるものであり、耐スポーリング性が低下した。比較例6はれんが中のSiO2の量が本発明範囲を下回るものであり、粉化が見られた。比較例7はれんが中のSiO2の量が本発明範囲を超えるものであり、耐食性が低下した。比較例8は焼成温度が本発明の範囲を下回るものであり、若干粉化がみられた。 In Comparative Example 5, the amount of CaO in the brick exceeded the range of the present invention, and the spalling resistance was lowered. In Comparative Example 6, the amount of SiO 2 in the brick was below the range of the present invention, and pulverization was observed. In Comparative Example 7, the amount of SiO 2 in the brick exceeded the range of the present invention, and the corrosion resistance was lowered. In Comparative Example 8, the firing temperature was lower than the range of the present invention, and some powdering was observed.

Figure 0007277712000001
Figure 0007277712000001

Figure 0007277712000002
Figure 0007277712000002

Figure 0007277712000003
Figure 0007277712000003

Claims (2)

マグネシア・スピネル質焼成れんがであって、
主要鉱物相がペリクレースとアルミン酸マグネシウムスピネルであり、
化学組成がAl;5~22質量%、CaO;2.5質量%未満(ゼロを含まず)、SiO;3.1~5質量%で、
残部にMgOと不可避不純物を含み、
CaOとSiOの質量比(CaO/SiO)が0.6未満、
であることを特徴とするマグネシア・スピネル質焼成れんが。
A magnesia-spinel sintered brick,
The main mineral phases are periclase and magnesium aluminate spinel,
The chemical composition is Al 2 O 3 : 5 to 22% by mass, CaO: less than 2.5% by mass (not including zero), SiO 2 : 3.1 to 5% by mass,
The remainder contains MgO and inevitable impurities,
mass ratio of CaO to SiO 2 (CaO/SiO 2 ) is less than 0.6;
A magnesia-spinel fired brick characterized by:
請求項1に記載の組成を1400℃~2000℃で焼成することを特徴とするマグネシア・スピネル質焼成れんがの製造方法。 A method for producing magnesia-spinel sintered bricks, characterized in that the composition according to claim 1 is sintered at 1400°C to 2000°C.
JP2019026247A 2019-02-18 2019-02-18 Magnesia-spinel refractory bricks Active JP7277712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026247A JP7277712B2 (en) 2019-02-18 2019-02-18 Magnesia-spinel refractory bricks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026247A JP7277712B2 (en) 2019-02-18 2019-02-18 Magnesia-spinel refractory bricks

Publications (2)

Publication Number Publication Date
JP2020132459A JP2020132459A (en) 2020-08-31
JP7277712B2 true JP7277712B2 (en) 2023-05-19

Family

ID=72262183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026247A Active JP7277712B2 (en) 2019-02-18 2019-02-18 Magnesia-spinel refractory bricks

Country Status (1)

Country Link
JP (1) JP7277712B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281429A (en) 1999-01-29 2000-10-10 Mitsubishi Materials Corp Magnesia-spinel-based refractory material and its production
JP2007145684A (en) 2005-11-25 2007-06-14 Shinagawa Refract Co Ltd Refractory brick
JP2017137205A (en) 2016-02-02 2017-08-10 品川リフラクトリーズ株式会社 Magnesia spinel refractory brick
JP2017171527A (en) 2016-03-23 2017-09-28 品川リフラクトリーズ株式会社 Method for producing magnesia-spinel fired brick

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067457A (en) * 2013-09-26 2015-04-13 黒崎播磨株式会社 Magnesia-based brick

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281429A (en) 1999-01-29 2000-10-10 Mitsubishi Materials Corp Magnesia-spinel-based refractory material and its production
JP2007145684A (en) 2005-11-25 2007-06-14 Shinagawa Refract Co Ltd Refractory brick
JP2017137205A (en) 2016-02-02 2017-08-10 品川リフラクトリーズ株式会社 Magnesia spinel refractory brick
JP2017171527A (en) 2016-03-23 2017-09-28 品川リフラクトリーズ株式会社 Method for producing magnesia-spinel fired brick

Also Published As

Publication number Publication date
JP2020132459A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP5879414B2 (en) Sintered refractories with improved thermal shock resistance
JP5384025B2 (en) Bonding agent for amorphous refractory and amorphous refractory
WO2007061070A1 (en) Refractory brick
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
JP2013151381A (en) Basic brick
JP2018154516A (en) Manufacturing method of magnesia-spinel fired brick
JP7277712B2 (en) Magnesia-spinel refractory bricks
JPH08198649A (en) Calcium aluminate, cement composition and prepared unshaped refractory containing the same
JP6344621B2 (en) Magnesia spinel fired brick manufacturing method
JP6358272B2 (en) Magnesia spinel refractory brick
KR101175878B1 (en) Binder for monolithic refractory and monolithic refractory
JP2021147275A (en) Magnesia-spinel refractory brick
JP2017206414A (en) Method for producing alumina-chromia fired brick
JP2020128320A (en) Magnesia-spinel refractory
KR100481883B1 (en) PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
JPH0633179B2 (en) Irregular refractory for pouring
JP7417128B2 (en) Composition of raw materials for refractory bricks, method for producing refractory bricks
JPS5818345B2 (en) Synthetic dolomite refractories for basic steelmaking furnaces
JP3027593B2 (en) Manufacturing method of special cement
KR100317307B1 (en) Monolithic Basic Refractories Having High Durability
JP6964787B2 (en) Precast block for coke oven and coke oven using it
KR20040049586A (en) A burned magnesia-chrome firebrick using broken Mg-Cr brick
TW202413307A (en) Magnesia-alumina based castable and refractory brick
KR100468448B1 (en) Mg-Cr castable composition with residual expansion
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7277712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150