JP2015067457A - Magnesia-based brick - Google Patents

Magnesia-based brick Download PDF

Info

Publication number
JP2015067457A
JP2015067457A JP2013200140A JP2013200140A JP2015067457A JP 2015067457 A JP2015067457 A JP 2015067457A JP 2013200140 A JP2013200140 A JP 2013200140A JP 2013200140 A JP2013200140 A JP 2013200140A JP 2015067457 A JP2015067457 A JP 2015067457A
Authority
JP
Japan
Prior art keywords
mass
content
magnesia
cao
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013200140A
Other languages
Japanese (ja)
Inventor
圭輔 森田
Keisuke Morita
圭輔 森田
公一 清水
Koichi Shimizu
公一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2013200140A priority Critical patent/JP2015067457A/en
Publication of JP2015067457A publication Critical patent/JP2015067457A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesia-based brick which simultaneously satisfies slaking resistance and corrosion resistance.SOLUTION: There is provided a magnesia-based brick which has an MgO content of 75 mass% or more and an iron oxide content of 0.2 mass % or more and 7 mass% or less in terms of FeOand contains no lime as a mineral phase, where when the total amount of MgO, BO, CaO and SiOis 100 mass%, the BOcontent is 0.01 mass% or more and 0.20 mass% or less, the CaO content is 6.0 mass% or less, the SiOcontent is 0.2 mass% or more and 6.0 mass% or less, and the mass ratio (CaO/SiOratio) of the CaO content to the SiOcontent is 1.5 or less.

Description

本発明は、転炉、電気炉、AOD炉、セメント焼成用ロータリーキルン、あるいはガラス溶解炉の蓄熱室などの各種窯炉に好適に使用される、マグネシア(MgO)を主成分とするマグネシア系れんが、具体的には、マグネシアれんが、マグネシアカーボンれんが、マグクロれんがなどのマグネシア系れんがに関する。ただし、本発明でいう「マグネシア系れんが」からは、ドロマイトれんがのように鉱物相としてライムを含有するれんがは除くこととする。   The present invention is suitable for use in various kilns such as converters, electric furnaces, AOD furnaces, rotary kilns for cement firing, or heat storage chambers of glass melting furnaces. Specifically, it relates to magnesia bricks such as magnesia bricks, magnesia carbon bricks, and magcro bricks. However, the “magnesia brick” in the present invention excludes bricks containing lime as a mineral phase, such as dolomite brick.

マグネシア系れんがは、れんがの消化による耐用性の著しい低下が問題とされる場合がある。ここで消化とは、れんがの主成分であるMgOが水と反応してMg(OH)となる水和反応を意味し、この水和による体積膨張のために、著しい場合にはれんがが崩壊することもある。 For magnesia bricks, there may be a problem of a significant decrease in durability due to the digestion of bricks. Digestion here means a hydration reaction in which MgO, which is the main component of brick, reacts with water to become Mg (OH) 2. Sometimes.

例えば、実作業として、炉材の速やかな冷却と発塵防止のために炉内に散水する場合があるが、マグネシア系れんがを永久張りれんがに使用した際には、このれんがが消化し、崩壊して、交換を余儀なくされるという事態が生じる。   For example, in actual work, water may be sprayed into the furnace in order to quickly cool the furnace material and prevent dust generation. However, when magnesia brick is used for permanent tension brick, this brick is digested and collapsed. As a result, a situation arises in which replacement is forced.

また、稼動中の炉体冷却のために水冷パネルを使用している窯炉の場合には、水冷パネルの破損によって炉内に水漏れが発生し、ウエアれんがと永久張りれんがが共に水濡れすることがある。この際、マグネシア系れんがが使用されている場合には、れんがが消化によって崩壊し、炉内収納物が炉外に漏出するという事態が発生し、作業者の安全への脅威、生産設備の損傷などの重大問題となりかねない。   In the case of a kiln that uses a water-cooled panel for cooling the furnace body during operation, the water-cooled panel breaks and water leaks in the furnace, and both the wear brick and the permanent brick are wetted. Sometimes. In this case, when magnesia brick is used, the brick collapses due to digestion and the contents in the furnace leak out of the furnace, threatening the safety of workers and damaging production equipment. It can be a serious problem.

そこで、このマグネシア系れんがの消化対策として従来から多くの技術が提案されている。例えば特許文献1には、れんがの強熱減量を除いた化学成分の総和を100質量%としたときに、MgO含有量が80質量%以上99.5質量%以下、酸化ホウ素(III)含有量が0.05質量%以上5質量%以下及び酸化鉄含有量がFe換算で0.2質量%以上7質量%以下の、鉱物相としてライムを含有しないマグネシアれんがが開示されている。 Therefore, many techniques have been proposed as a countermeasure against digestion of this magnesia brick. For example, Patent Document 1 discloses that MgO content is 80 mass% or more and 99.5 mass% or less, boron oxide (III) content when the sum of chemical components excluding the loss on ignition of brick is 100 mass%. Has disclosed a magnesia brick that does not contain lime as a mineral phase and has an iron oxide content of 0.2 mass% or more and 7 mass% or less in terms of Fe 2 O 3 .

特許第4956044号公報Japanese Patent No. 4956044

近年、操業条件の変更によりこれまで以上に苛酷条件下での耐消化性が求められるようになり、特許文献1に開示されたマグネシアれんがは、耐消化性の向上効果は見られるものの、耐消化性はBの含有量が多いほど優れているため、更なる耐消化性向上にはBの含有量をより多くしなければならない。しかし、Bの含有量を多くすると、耐食性が低下するという問題があった。 In recent years, due to changes in operating conditions, digestion resistance under severe conditions has been demanded more than ever, and magnesia bricks disclosed in Patent Document 1 have an effect of improving digestion resistance, but are resistant to digestion. Since the property is more excellent as the content of B 2 O 3 is larger, the content of B 2 O 3 must be increased for further improvement of digestion resistance. However, when the content of B 2 O 3 is increased, there is a problem that the corrosion resistance is lowered.

そこで本発明が解決しようとする課題は、耐消化性と耐食性とを同時に満足するマグネシア系れんがを提供することにある。   Therefore, the problem to be solved by the present invention is to provide a magnesia brick that satisfies both digestion resistance and corrosion resistance at the same time.

本発明者らは、種々の原料を使用したマグネシア系れんがについてB添加によるその耐消化性効果について検討する中で、マグネシア系れんが中のSiOとCaOの含有量が、耐消化性に影響を与えることを知見した。そこで、マグネシア系れんが中のSiO含有量に対するCaO含有量の質量比(CaO/SiO比)に着目し、このCaO/SiO比の制御が、Bによる消化防止効果を飛躍的に高め、B含有量が少ない範囲でも十分な耐消化性が得られ、しかもB含有量が少ないため耐食性の低下を抑制できることを知見して本発明に至った。 The present inventors have found that in considering its digestion resistant effect on magnesia-based bricks using various raw materials by B 2 O 3 added, the content of SiO 2 and CaO in the magnesia-based in brick, digestion resistant It has been found that it affects. Therefore, paying attention to the mass ratio (CaO / SiO 2 ratio) of the CaO content to the SiO 2 content in the magnesia brick, the control of the CaO / SiO 2 ratio dramatically improves the digestion prevention effect by B 2 O 3. It has been found that sufficient digestion resistance can be obtained even in a range where the content of B 2 O 3 is small, and that the decrease in corrosion resistance can be suppressed since the content of B 2 O 3 is small.

すなわち本発明のマグネシア系れんがは、MgO含有量が75質量%以上及び酸化鉄含有量がFe換算で0.2質量%以上7質量%以下で鉱物相としてライムを含有しないマグネシア系れんがであって、このれんが中の、MgO、B、CaO及びSiOの合量を100質量%としたとき、B含有量が0.01質量%以上0.20質量%以下、 CaO含有量が6.0質量%以下、SiO含有率が0.2質量%以上6.0質量%以下で、かつSiO含有量に対するCaO含有量の質量比(CaO/SiO比)が1.5以下であることを特徴とするものである。 That is, the magnesia brick of the present invention has a MgO content of 75% by mass or more and an iron oxide content of 0.2% by mass to 7% by mass in terms of Fe 2 O 3 and does not contain lime as a mineral phase. And, when the total amount of MgO, B 2 O 3 , CaO and SiO 2 in this brick is 100% by mass, the B 2 O 3 content is 0.01% by mass or more and 0.20% by mass or less. , CaO content is 6.0 wt% or less, with SiO 2 content of 0.2 wt% to 6.0 wt%, and the weight ratio of CaO contents to the SiO 2 content (CaO / SiO 2 ratio) Is 1.5 or less.

本発明によれば、CaO/SiO比を1.5以下としたことにより、B含有量が少ない範囲でも耐消化性を大幅に向上させることができるため、耐消化性と耐食性とを同時に満足するマグネシア系れんがを提供することができる。 According to the present invention, since the CaO / SiO 2 ratio is 1.5 or less, the digestion resistance can be greatly improved even in a range where the B 2 O 3 content is small. It is possible to provide a magnesia brick that satisfies the above requirements.

表2に示す実施例及び比較例の耐消化性の評価結果を、横軸をCaO/SiO比、縦軸を消化試験後の重量増加率(%)としてプロットしたグラフである。Example shown in Table 2 and the evaluation results of the digestion resistant comparative example, a horizontal axis CaO / SiO 2 ratio is a graph plotting the vertical axis as the weight increase after digestion test (%).

本発明のマグネシア系れんがにおいて、その耐消化性と耐食性はMgO含有量に対するB、CaO及びSiOの含有量の割合が重要となるため、B、CaO及びSiOの含有量については、マグネシア系れんが中のMgO、B、CaO及びSiOの合量を100質量%としたときの各成分の含有量で規定した。 In the magnesia-based brick of the present invention, the digestion resistance and corrosion resistance are important because the ratio of the content of B 2 O 3 , CaO and SiO 2 to the content of MgO is important, so the content of B 2 O 3 , CaO and SiO 2 the amount was defined by the content of each component when MgO magnesia based in brick, the B 2 O 3, CaO and the total content of SiO 2 was 100 mass%.

含有量は、耐消化性を付与するために0.01質量%以上0.20質量%以下とする。B含有量が0.01質量%未満では十分な耐消化性が得られず、0.20質量%を超えると耐食性が低下する。 The B 2 O 3 content is set to 0.01% by mass or more and 0.20% by mass or less in order to impart digestion resistance. If the B 2 O 3 content is less than 0.01% by mass, sufficient digestion resistance cannot be obtained, and if it exceeds 0.20% by mass, the corrosion resistance decreases.

CaO含有量は、耐消化性の面からは0質量%が好ましいが、マグネシア原料の製造過程で不純物として除去するためには高コストとなるため 6.0質量%以下、より好ましくは4.0質量%以下であれば実用面で耐消化性に悪影響を与えることなく使用することができる。   The CaO content is preferably 0% by mass from the viewpoint of digestion resistance, but it is expensive to remove as impurities in the production process of the magnesia raw material, and is 6.0% by mass or less, more preferably 4.0%. If it is less than mass%, it can be used without adversely affecting digestion resistance in practical use.

SiO含有量は0.2質量%以上6.0質量%以下とする。SiO含有量が0.2質量%未満では耐消化性が低下し、6.0質量%を超えると耐食性が低下する。SiO含有量の上限は好ましくは4質量%以下である。 SiO 2 content is 6.0 wt% or less than 0.2 wt%. When the SiO 2 content is less than 0.2% by mass, the digestion resistance decreases, and when it exceeds 6.0% by mass, the corrosion resistance decreases. The upper limit of the SiO 2 content is preferably 4% by mass or less.

CaO/SiO比は、1.5以下(0を含む)とすることで耐消化性が向上し、1.5を超えると耐消化性が悪化する。 When the CaO / SiO 2 ratio is 1.5 or less (including 0), the digestion resistance is improved, and when it exceeds 1.5, the digestion resistance is deteriorated.

ここで、Bによるマグネシア(MgO)の消化防止機構は、特許文献1ではBがMgO結晶の表面で反応して3MgO・Bを生成し、この3MgO・Bが、MgOの結晶表面を被覆するためと考えられている。一方、本発明ではれんがの加熱時にCaOとSiOが存在することでMgOとBとで4成分系のガラス状物となり、これらの混合物でMgOの結晶表面が被覆されていると考えられる。そして、このときCaO/SiO比が低いほど、より粘性の低いガラス状物が生成するために、より少ない量でMgO結晶のより広い面積を被覆することができるため耐消化性が向上すると推定する。 Here, the mechanism of digestion of magnesia (MgO) by B 2 O 3 is disclosed in Patent Document 1, in which B 2 O 3 reacts on the surface of the MgO crystal to produce 3MgO · B 2 O 3 , and this 3MgO · B 2 It is considered that O 3 covers the crystal surface of MgO. On the other hand, in the present invention, when CaO and SiO 2 are present during heating of the brick, MgO and B 2 O 3 form a four-component glassy material, and it is considered that the MgO crystal surface is coated with these mixtures. It is done. At this time, the lower the CaO / SiO 2 ratio, the lower the viscosity of the glassy material is produced, so that it is possible to cover a wider area of the MgO crystal with a smaller amount, and it is estimated that the digestion resistance is improved. To do.

一方、酸化鉄は、上述とは異なるメカニズムで耐消化性に寄与していると考えられる。すなわち、FeO(Wustite)は、MgO(Periclase)と全率固溶体を形成し、かつ、格子定数がMgOの4.2Åに比べて4.31Åとやや大きい。したがって、マグネシア結晶は少量の酸化鉄を含有することによって格子定数が少し大きくなると考えられ、このことが耐消化性の向上に関係すると見られる。   On the other hand, iron oxide is considered to contribute to digestion resistance through a mechanism different from that described above. That is, FeO (Wustite) forms a complete solid solution with MgO (Periclase), and its lattice constant is a little larger, 4.31 比 べ than 4.2 の of MgO. Therefore, it is considered that the magnesia crystal contains a small amount of iron oxide, so that the lattice constant is slightly increased, and this is considered to be related to the improvement of digestion resistance.

れんが中の酸化鉄含有量はFe換算で0.2質量%以上7質量%以下とする。酸化鉄含有量が0.2質量%未満では耐消化性が不十分であり、7質量%を超えると、鉄の価数変化による体積変化のため、れんがのバースティングが発生しやすくなる。なお、酸化鉄は、上述のとおりB等とは異なるメカニズムで耐消化性に寄与していると考えられるため、その含有量はれんが中の含有量で規定した。 The iron oxide content in the brick is 0.2% by mass or more and 7% by mass or less in terms of Fe 2 O 3 . If the iron oxide content is less than 0.2% by mass, the digestion resistance is insufficient. If it exceeds 7% by mass, brick bursting tends to occur due to a volume change caused by a change in the valence of iron. Incidentally, iron oxide, it is considered to contribute to digestion resistant by a different mechanism from the following B 2 O 3 or the like described above, the content is defined by the content in the brick.

本発明のマグネシア系れんがは、マグネシア原料のみの耐火原料配合物あるいはマグネシア原料と他の原料を混合した耐火原料配合物にバインダーを加えて、混練し、加圧成形し、熱処理するという一般的な耐火れんがの製造方法によって得ることができる。   The magnesia brick of the present invention is a general refractory raw material composition consisting of only a magnesia raw material or a refractory raw material mixture obtained by mixing a magnesia raw material and another raw material, kneaded, pressure molded, and heat treated. It can be obtained by a method for manufacturing refractory bricks.

マグネシア原料としては、一般的に耐火物用として市販されている電融マグネシア、あるいは焼結マグネシアなどのマグネシアクリンカを使用することができる。これらのマグネシア原料中には不純物としてB、CaO、SiO及びFeが含まれているので、これらの成分の含有量が本発明の範囲内となるように単一のマグネシア原料あるいは複数のマグネシア原料を組み合わせて使用することができる。また、B、SiO、CaOあるいはFeを含有する原料を組み合わせて使用してもよい。例えば、酸化ホウ素(III)、ホウ酸、硼砂、フリット、ガラス、珪石、シリカフラワー、溶融シリカ、消石灰、石灰、ドロマイト、れんが屑、酸化鉄原料などを使用することができる。 As a magnesia raw material, a magnesia clinker such as an electrofused magnesia or a sintered magnesia generally marketed for refractories can be used. Since these magnesia raw materials contain B 2 O 3 , CaO, SiO 2 and Fe 2 O 3 as impurities, a single magnesia so that the content of these components is within the scope of the present invention. A raw material or a combination of a plurality of magnesia raw materials can be used. May also be used in combination raw material containing B 2 O 3, SiO 2, CaO or Fe 2 O 3. For example, boron oxide (III), boric acid, borax, frit, glass, silica stone, silica flour, fused silica, slaked lime, lime, dolomite, brick waste, iron oxide raw material and the like can be used.

他の原料としては、れんが中に鉱物相としてライム(lime;CaO)が残留しなければ耐火物に使用される一般的な耐火原料や金属等を使用することができる。例えば、黒鉛、酸化クロム、クロム鉄鉱、マグネシアクロムクリンカ、スピネル及びジルコニア等の1種以上を使用することができる。   As other raw materials, general refractory raw materials and metals used for refractories can be used as long as lime (CaO) does not remain as a mineral phase in the brick. For example, one or more of graphite, chromium oxide, chromite, magnesia chrome clinker, spinel, zirconia and the like can be used.

以下、実施例について説明する。なお、本実施例は本発明の一態様を示すものであって、本発明は下記実施例に限定されるものではない。   Examples will be described below. Note that this example shows one embodiment of the present invention, and the present invention is not limited to the following example.

下記実施例及び比較例において、使用したマグネシア原料(電融マグネシア)の化学組成は表1に記載のとおりである。そして、表2に記載のとおり原料を組み合わせて、マグネシア系れんがとしてマグネシアれんがを作製した。マグネシア原料は表1に示すものを適切な粒度構成に整粒したものを使用した。溶融シリカはSiO含有量が99.7質量%、酸化ホウ素(III)はB含有量が99.9%質量%の粉末を使用した。 In the following Examples and Comparative Examples, the chemical composition of the magnesia raw material (electrofused magnesia) used is as shown in Table 1. And the magnesia brick was produced as a magnesia type brick combining the raw materials as described in Table 2. As the magnesia raw material, one obtained by adjusting the particle size shown in Table 1 to an appropriate particle size configuration was used. As the fused silica, a powder having a SiO 2 content of 99.7% by mass and boron oxide (III) having a B 2 O 3 content of 99.9% by mass was used.

Figure 2015067457
Figure 2015067457

Figure 2015067457
Figure 2015067457

表2の耐火原料配合物にバインダーを添加して混練し、成形後、酸化雰囲気で1500℃で焼成を行い、供試れんがとし、化学成分、耐消化性及び耐食性を評価した。   Binders were added to the refractory raw material compositions shown in Table 2 and kneaded. After molding, firing was performed at 1500 ° C. in an oxidizing atmosphere to test bricks, and chemical components, digestion resistance and corrosion resistance were evaluated.

化学成分は、JIS R2212に準拠して評価した。表2において「化学成分」としては、MgO、B、CaO及びSiOの合量を100質量%としたときの各成分の含有量を示した。なお、表2において「化学成分」の合量が100.00質量%とならないものがあるが、これは小数点3桁を四捨五入したときの誤差が積み重なったことに起因するものである。表2にはこの「化学成分」のほか、れんが中のMgO含有量及び酸化鉄含有量も示した。なお、酸化鉄含有量はFe換算で示した。 Chemical components were evaluated according to JIS R2212. In Table 2, as the “chemical component”, the content of each component when the total amount of MgO, B 2 O 3 , CaO and SiO 2 is 100 mass% is shown. In Table 2, the total amount of “chemical components” does not become 100.00% by mass, but this is due to the accumulation of errors when rounding off three decimal places. In addition to this “chemical component”, Table 2 also shows the MgO content and iron oxide content in the brick. In addition, iron oxide content was shown in terms of Fe 2 O 3 .

耐消化性は、JIS R2211に準拠して評価した。ただし、圧力条件は0.60MPaとし、耐消化性の良否は試験後の重量増加率を指標として評価した。重量増加率が1.0%以下の場合は外観の変化は見られず、耐消化性は良好と判断した。   Digestion resistance was evaluated according to JIS R2211. However, the pressure condition was 0.60 MPa, and the quality of digestion resistance was evaluated using the rate of weight increase after the test as an index. When the weight increase rate was 1.0% or less, no change in appearance was observed, and the digestion resistance was judged to be good.

耐食性は、回転侵食試験にて評価した。回転侵食試験では、水平の回転軸を有する円筒の内面を供試れんがでライニングし、酸素−プロパンバーナーで加熱し、スラグを投入して円筒を回転させながら供試れんが表面を侵食させた。試験温度及び時間は1600℃×5時間とし、スラグとしてはCaO/SiO=3の合成スラグを使用し、30分毎にスラグの排出、投入を繰り返した。試験終了後の各れんが中央部の寸法を測定して侵食量を算出し、表2では「比較例1」の侵食量を100とする溶損指数で表示した。表3では、実施例14の侵食量を100として比較例11と、実施例15の侵食量を100として比較例12と、実施例16の侵食量を100として比較例14とそれぞれ対比して溶損指数で表示した。この溶損指数の数値が小さいものほど耐食性に優れることを示す。 Corrosion resistance was evaluated by a rotational erosion test. In the rotary erosion test, the inner surface of a cylinder having a horizontal rotation axis was lined with a test brick, heated with an oxygen-propane burner, slag was added, and the test brick eroded the surface while rotating the cylinder. The test temperature and time were set to 1600 ° C. × 5 hours. As the slag, synthetic slag of CaO / SiO 2 = 3 was used, and slag was repeatedly discharged and charged every 30 minutes. The erosion amount was calculated by measuring the size of the central part of each brick after completion of the test. In Table 2, the erosion amount of “Comparative Example 1” was set to 100 and displayed as a erosion index. In Table 3, the amount of erosion of Example 14 is set to 100, and Comparative Example 11 is set to 100, the amount of erosion of Example 15 is set to 100, Comparative Example 12 is set to 100, and the amount of erosion of Example 16 is set to 100. Expressed as loss index. A smaller numerical value of the melting index indicates that the corrosion resistance is more excellent.

評価結果は表2のとおりであり、このうち耐消化性の評価結果は図1にグラフ化した。すなわち図1は、表2に示す実施例及び比較例の耐消化性の評価結果を、横軸をCaO/SiO比、縦軸を消化試験後の重量増加率(%)としてプロットしたグラフである。なお、図1中の○印、◆印、□印及び■印は、それぞれB含有量が約0.2質量%、約0.1質量%、0.02質量%及び0質量%の例である。 The evaluation results are as shown in Table 2. Among them, the evaluation results of digestion resistance are graphed in FIG. That is, FIG. 1 is a graph in which the digestion resistance evaluation results of the examples and comparative examples shown in Table 2 are plotted with the horizontal axis representing the CaO / SiO 2 ratio and the vertical axis representing the weight increase rate (%) after the digestion test. is there. In FIG. 1, the ○ mark, ◆ mark, □ mark, and ■ mark indicate that the B 2 O 3 content is about 0.2% by mass, about 0.1% by mass, 0.02% by mass, and 0% by mass, respectively. It is an example.

表2及び図1より、本発明の範囲内のB含有量であり、かつCaO/SiO比が1.5以下のマグネシアれんがは十分な耐消化性が付与されることが確認された。 From Table 2 and FIG. 1, it was confirmed that magnesia bricks having a B 2 O 3 content within the scope of the present invention and having a CaO / SiO 2 ratio of 1.5 or less are provided with sufficient digestion resistance. It was.

具体的に説明すると、実施例1〜6はB含有量を0.09〜0.11質量%とほぼ同一とし、CaO/SiO比を1.5以下の範囲で変化させた例である。実施例1〜6は消化試験後の試験片の崩壊もなく、耐消化性の指標とした試験後の重量増加率は0.2〜0.7%とマグネシアの水和が抑制され、十分な耐消化性が付与された。これに対し比較例1〜3はB含有量が実施例1〜6と同等レベルであるが、CaO/SiO比が1.5より高い例である。CaO/SiO比が低下するほど重量増加率は減少しているものの、CaO/SiO比が1.5を超えると耐消化性の目安である重量増加率1.0%を上回り、マグネシアが水和し、耐消化性が不十分であることが分かる。 Specifically, Examples 1 to 6 are examples in which the B 2 O 3 content is substantially the same as 0.09 to 0.11% by mass, and the CaO / SiO 2 ratio is changed within a range of 1.5 or less. It is. In Examples 1 to 6, there is no disintegration of the test piece after the digestion test, and the weight increase rate after the test as an index of digestion resistance is 0.2 to 0.7%, which suppresses the hydration of magnesia. Digestion resistance was imparted. In contrast, Comparative Examples 1 to 3 are examples in which the B 2 O 3 content is at the same level as in Examples 1 to 6, but the CaO / SiO 2 ratio is higher than 1.5. Although CaO / SiO 2 ratio is decreasing as the percent weight increase decreases, CaO / SiO 2 ratio is greater than 1.0% increase in the weight of a digestion resistant Approximate exceeds 1.5, magnesia It turns out that it is hydrated and has insufficient digestion resistance.

実施例1、13と比較例7は、CaO/SiO比は本発明の範囲内でほぼ同値であるものの、B含有量が異なる例である。比較例7はBを含有しておらず、本発明の範囲外である。この比較例7は消化試験後の重量増加率が6.1%であり、十分な耐消化性の得られる目安を超過している。これより、CaO/SiO比のみが本発明の範囲内ではマグネシアが水和して耐消化性が不十分であり、Bを本発明の範囲内で含有する必要があることが分かる。 Examples 1 and 13 and Comparative Example 7 are examples in which the CaO / SiO 2 ratio is substantially the same within the scope of the present invention, but the B 2 O 3 content is different. Comparative Example 7 does not contain B 2 O 3 and is outside the scope of the present invention. In Comparative Example 7, the rate of weight increase after the digestion test was 6.1%, which exceeded the standard for obtaining sufficient digestion resistance. From this, it can be seen that magnesia is hydrated and the digestion resistance is insufficient within the scope of the present invention with only the CaO / SiO 2 ratio, and B 2 O 3 needs to be contained within the scope of the present invention. .

比較例8〜10は、CaO/SiO比は本発明の範囲内であるが、B含有量が0.33〜0.52質量%と多く本発明の範囲外である。この場合、重量増加率は0.1〜0.2%と目安の範囲内であり十分な耐消化性が付与されるものの、B含有量が本発明の範囲内のものと比較し、耐食性が大きく低下する結果となっている。 In Comparative Examples 8 to 10, the CaO / SiO 2 ratio is within the range of the present invention, but the B 2 O 3 content is as large as 0.33 to 0.52% by mass and is outside the range of the present invention. In this case, the weight increase rate is within the range of 0.1 to 0.2%, and sufficient digestion resistance is provided, but the B 2 O 3 content is compared with that within the range of the present invention. As a result, the corrosion resistance is greatly reduced.

実施例7〜12はB含有量を0.19〜0.20質量%とほぼ同一とし、CaO/SiO比を1.5以下の範囲で変化させた例である。B含有量が同等レベルの比較例4〜6と比較すると分かるように、上記と同様にCaO/SiO比が1.5以下であると重量増加率は1.0%以下となり、十分な耐消化性が付与された。 Examples 7 to 12 are examples in which the B 2 O 3 content was substantially the same as 0.19 to 0.20 mass%, and the CaO / SiO 2 ratio was changed within a range of 1.5 or less. As can be seen from comparison with Comparative Examples 4 to 6 in which the B 2 O 3 content is equivalent, the weight increase rate is 1.0% or less when the CaO / SiO 2 ratio is 1.5 or less in the same manner as described above. Sufficient digestion resistance was imparted.

比較例1〜3と比較例4〜6を比較すると、同等レベルのCaO/SiO比ではB含有量が多いほど、消化試験後の重量増加率は低減されている。B含有量が多いほど、重量増加率低減効果が高いと言える。ただし、本発明のCaO/SiO比の範囲外では、十分な耐消化性を得るには、本発明の範囲を超える多量のBが必要である。 Comparing Comparative Examples 1 to 3 and Comparative Examples 4 to 6, the weight increase rate after the digestion test is reduced as the B 2 O 3 content is increased at the CaO / SiO 2 ratio of the same level. It can be said that the greater the B 2 O 3 content, the higher the weight increase rate reducing effect. However, outside the range of the CaO / SiO 2 ratio of the present invention, a large amount of B 2 O 3 exceeding the range of the present invention is required to obtain sufficient digestion resistance.

一方、実施例1〜6と実施例7〜12を比較すると、B含有量が0.20質量%から0.10質量%へと半減されても、消化試験後の重量増加率は目安以下であり、十分な耐消化性を付与されていると言える。つまり、CaO/SiO比が本発明の範囲内である1.5以下では、耐消化性を維持しつつB量を低減可能である。 On the other hand, when Examples 1-6 are compared with Examples 7-12, even if the B 2 O 3 content is halved from 0.20% by mass to 0.10% by mass, the weight increase rate after the digestion test is It is below the standard and it can be said that sufficient digestion resistance is imparted. That is, when the CaO / SiO 2 ratio is 1.5 or less, which is within the range of the present invention, the amount of B 2 O 3 can be reduced while maintaining digestion resistance.

上記のとおり、焼成後のれんが中のB含有量が0.01質量%未満では十分な耐消化性を確保できず、0.20質量%を超えると耐消化性は付与されるものの、耐食性が大きく低下してしまう。また、CaO/SiO比が1.5を超えると、B含有量が本発明の範囲内でも、十分な耐消化性は確保できない。そのため、B含有量は0.01質量%以上0.20質量%以下で、かつCaO/SiO比は1.5以下であることが必要である。 As described above, if the B 2 O 3 content in the brick after firing is less than 0.01% by mass, sufficient digestion resistance cannot be secured, and if it exceeds 0.20% by mass, digestion resistance is imparted. Corrosion resistance is greatly reduced. If the CaO / SiO 2 ratio exceeds 1.5, sufficient digestion resistance cannot be ensured even if the B 2 O 3 content is within the range of the present invention. Therefore, the B 2 O 3 content needs to be 0.01% by mass or more and 0.20% by mass or less, and the CaO / SiO 2 ratio needs to be 1.5 or less.

次に表3に記載の原料を組み合わせてマグネシア系各種れんがを試作した。使用したマグネシア原料は、表1に記載の「マグネシア1」である。混練、成形は公知の通常の方法によって行った。   Next, various magnesia-based bricks were made by combining the raw materials listed in Table 3. The magnesia raw material used is “magnesia 1” shown in Table 1. Kneading and molding were performed by a known ordinary method.

Figure 2015067457
Figure 2015067457

表3に示す実施例14、15、比較例11、12は焼成品であり、焼成温度は1700℃とした。実施例16、比較例13は不焼成マグネシアカーボンれんがであり、熱処理温度は250℃とした。また、不焼成マグネシアカーボンれんがについては、供試れんがを事前に1200℃コークス中で還元熱処理した上で各評価を行った。   Examples 14 and 15 and Comparative Examples 11 and 12 shown in Table 3 were fired products, and the firing temperature was 1700 ° C. Example 16 and Comparative Example 13 were unfired magnesia carbon bricks, and the heat treatment temperature was 250 ° C. In addition, the unfired magnesia carbon brick was subjected to each evaluation after subjecting the test brick to reduction heat treatment in 1200 ° Coke in advance.

表3より、比較例11、12、13に比べて、本発明の範囲内である実施例14、15、16はそれぞれ耐消化性が改善されている。   From Table 3, compared with Comparative Examples 11, 12, and 13, Examples 14, 15, and 16 within the scope of the present invention have improved digestion resistance.

以上のとおり、マグネシア系れんがにBを特定の範囲で含有させ、かつれんが成分中のCaO/SiO比を1.5以下にすることで十分な耐消化性及び耐食性が得られることが確認された。 As described above, sufficient digestion resistance and corrosion resistance can be obtained by including B 2 O 3 in a specific range in magnesia-based brick and setting the CaO / SiO 2 ratio in the brick component to 1.5 or less. Was confirmed.

Claims (1)

MgO含有量が75質量%以上及び酸化鉄含有量がFe換算で0.2質量%以上7質量%以下で鉱物相としてライムを含有しないマグネシア系れんがであって、このれんが中の、MgO、B、CaO及びSiOの合量を100質量%としたとき、B含有量が0.01質量%以上0.20質量%以下、 CaO含有量が6.0質量%以下、SiO含有率が0.2質量%以上6.0質量%以下で、かつSiO含有量に対するCaO含有量の質量比(CaO/SiO比)が1.5以下であるマグネシア系れんが。 A magnesia-based brick having a MgO content of 75% by mass or more and an iron oxide content of 0.2% by mass to 7% by mass in terms of Fe 2 O 3 and not containing lime as a mineral phase, When the total amount of MgO, B 2 O 3 , CaO and SiO 2 is 100% by mass, the B 2 O 3 content is 0.01% by mass or more and 0.20% by mass or less, and the CaO content is 6.0% by mass. % Or less, a magnesia system having a SiO 2 content of 0.2% by mass or more and 6.0% by mass or less and a mass ratio of CaO content to SiO 2 content (CaO / SiO 2 ratio) of 1.5 or less. Brick.
JP2013200140A 2013-09-26 2013-09-26 Magnesia-based brick Pending JP2015067457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200140A JP2015067457A (en) 2013-09-26 2013-09-26 Magnesia-based brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200140A JP2015067457A (en) 2013-09-26 2013-09-26 Magnesia-based brick

Publications (1)

Publication Number Publication Date
JP2015067457A true JP2015067457A (en) 2015-04-13

Family

ID=52834520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200140A Pending JP2015067457A (en) 2013-09-26 2013-09-26 Magnesia-based brick

Country Status (1)

Country Link
JP (1) JP2015067457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132459A (en) * 2019-02-18 2020-08-31 品川リフラクトリーズ株式会社 Magnesia-spinel based refractory brick
WO2023003026A1 (en) * 2021-07-20 2023-01-26 京セラ株式会社 Ceramic member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275461A (en) * 1965-08-27 1966-09-27 Harbison Walker Refractories Refractory
JPS53121809A (en) * 1977-03-31 1978-10-24 Dresser Ind Refractory material for molds containing magnesite and chrome
JPH04198058A (en) * 1990-11-28 1992-07-17 Ube Chem Ind Co Ltd Magnesia clinker and production thereof
JP2003327467A (en) * 2002-05-10 2003-11-19 Mino Ceramic Co Ltd Chromium-free basic brick and method of producing chromium-free basic brick
JP2007290930A (en) * 2006-04-27 2007-11-08 Kurosaki Harima Corp Basic brick

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275461A (en) * 1965-08-27 1966-09-27 Harbison Walker Refractories Refractory
JPS53121809A (en) * 1977-03-31 1978-10-24 Dresser Ind Refractory material for molds containing magnesite and chrome
JPH04198058A (en) * 1990-11-28 1992-07-17 Ube Chem Ind Co Ltd Magnesia clinker and production thereof
JP2003327467A (en) * 2002-05-10 2003-11-19 Mino Ceramic Co Ltd Chromium-free basic brick and method of producing chromium-free basic brick
JP2007290930A (en) * 2006-04-27 2007-11-08 Kurosaki Harima Corp Basic brick

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132459A (en) * 2019-02-18 2020-08-31 品川リフラクトリーズ株式会社 Magnesia-spinel based refractory brick
WO2023003026A1 (en) * 2021-07-20 2023-01-26 京セラ株式会社 Ceramic member

Similar Documents

Publication Publication Date Title
JP2008290934A (en) Binder for monolithic refractory and monolithic refractory
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
JP2015067457A (en) Magnesia-based brick
US20210101835A1 (en) Chromia-based brick
JP2018154516A (en) Manufacturing method of magnesia-spinel fired brick
JP2011148643A (en) Magnesia-based refractory
TWI554484B (en) Refractory ceramic batch, use of a batch of this kind and a metallurgical melting vessel
JP2015193509A (en) Magnesia-spinel-zirconia brick
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
CN107010967A (en) A kind of VOD stoves Chrome-free composite magnesia brick containing and preparation method thereof
JP5448144B2 (en) Mug brick
JP2020128320A (en) Magnesia-spinel refractory
JP4956044B2 (en) Magnesia brick without lime as a mineral phase and its production method
JP2017206414A (en) Method for producing alumina-chromia fired brick
KR100365984B1 (en) Unburned dolomite-carbon refractories and its manufacturing method
CN102731125A (en) Production process of modified electric smelting magnalium spinel
JPH0692724A (en) Production of spinel-alumina fired brick
JP2014024689A (en) Magnesia monolithic refractory
KR101129265B1 (en) Synthetic MgO Rich-SiO2 Clinker and Firebrick Containing the Same
JP7277712B2 (en) Magnesia-spinel refractory bricks
JP6354807B2 (en) Cast refractories for blast furnace main slag line
JP2015193510A (en) MgO-TiO2-NiO CLINKER AND BURNT BASIC BRICK USING THE SAME
KR100276976B1 (en) Manufacturing method of electrolytic dolomite
JP2004262740A (en) Magnesia-alumina-based clinker and refractory obtained by using it
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606