JP7417128B2 - Composition of raw materials for refractory bricks, method for producing refractory bricks - Google Patents
Composition of raw materials for refractory bricks, method for producing refractory bricks Download PDFInfo
- Publication number
- JP7417128B2 JP7417128B2 JP2021206887A JP2021206887A JP7417128B2 JP 7417128 B2 JP7417128 B2 JP 7417128B2 JP 2021206887 A JP2021206887 A JP 2021206887A JP 2021206887 A JP2021206887 A JP 2021206887A JP 7417128 B2 JP7417128 B2 JP 7417128B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- spinel
- magnesia
- refractory bricks
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002994 raw material Substances 0.000 title claims description 29
- 239000011449 brick Substances 0.000 title claims description 26
- 239000000203 mixture Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 44
- 229910052596 spinel Inorganic materials 0.000 claims description 30
- 239000011029 spinel Substances 0.000 claims description 30
- 239000000395 magnesium oxide Substances 0.000 claims description 22
- 229910001691 hercynite Inorganic materials 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 4
- 235000012245 magnesium oxide Nutrition 0.000 description 20
- 230000029087 digestion Effects 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005245 sintering Methods 0.000 description 5
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- ATRMIFNAYHCLJR-UHFFFAOYSA-N [O].CCC Chemical compound [O].CCC ATRMIFNAYHCLJR-UHFFFAOYSA-N 0.000 description 1
- KCZFLPPCFOHPNI-UHFFFAOYSA-N alumane;iron Chemical compound [AlH3].[Fe] KCZFLPPCFOHPNI-UHFFFAOYSA-N 0.000 description 1
- 239000011822 basic refractory Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000013003 hot bending Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は鉄鋼用二次精錬炉やセメントロータリーキルン等に使用するマグネシア・スピネル質耐火れんが原料の組成物および耐火れんがの製造方法に関する。 The present invention relates to a raw material composition for magnesia-spinel refractory bricks used in secondary refining furnaces for steel, cement rotary kilns, etc., and a method for producing refractory bricks.
鉄鋼用二次精錬炉やセメントロータリーキルン等にはマグネシアとスピネル(マグネシウムアルミニウムスピネル)を組み合わせたマグネシア・スピネル質れんがが使用される。その原料としてはマグネシア原料と、ペリクレース相およびスピネル相を含む焼結スピネル原料が使用される。 Magnesia-spinel bricks, which are a combination of magnesia and spinel (magnesium aluminum spinel), are used in secondary steel refining furnaces and cement rotary kilns. As raw materials, a magnesia raw material and a sintered spinel raw material containing a periclase phase and a spinel phase are used.
例えば、特許文献1は、B2O3含有量0.1~1質量%のマグネシア原料又は/およびスピネル原料を使用し、消化による組織劣化、膨張による亀裂の生成が減少した塩基性れんがを開示している。 For example, Patent Document 1 discloses a basic brick that uses a magnesia raw material and/or a spinel raw material with a B 2 O 3 content of 0.1 to 1% by mass, and has reduced structural deterioration due to digestion and generation of cracks due to expansion. are doing.
また特許文献2および非特許文献1はマグネシア・ヘルシナイト質耐火れんがを開示する。 Further, Patent Document 2 and Non-Patent Document 1 disclose magnesia-hercynite refractory bricks.
マグネシア・スピネル質耐火れんがを長期保管すると、主要構成鉱物であるペリクレース相の消化(水和)により膨張して亀裂が発生する場合がある。そこで、引用文献1ではB2O3の含有量を高めて0.1~1質量%とし、高温でのクラックの発生を減少させ、高い熱間曲げ強さを得るようにしている。 When magnesia spinel refractory bricks are stored for a long time, they may expand and crack due to digestion (hydration) of the periclase phase, which is the main constituent mineral. Therefore, in Cited Document 1, the content of B 2 O 3 is increased to 0.1 to 1% by mass to reduce the occurrence of cracks at high temperatures and to obtain high hot bending strength.
しかしながら、B2O3の含有量を高めた組成を1700℃以上で焼成すると、B2O3は不純物相中に濃集し低融点物を生成し、熱間特性が低下し、機械的スポーリングが生じやすくなるという課題が生じる。 However, when a composition with a high content of B 2 O 3 is fired at 1700°C or higher, B 2 O 3 concentrates in the impurity phase and forms a low melting point substance, resulting in a decrease in hot properties and mechanical stress. A problem arises in that polling becomes more likely to occur.
特許文献2等に開示されたマグネシア・ヘルシナイト質耐火れんがは、スピネル(マグネシウムアルミニウムスピネル)に代えて、同じスピネル型構造であるヘルシナイト(鉄アルミニウムスピネル)を使用したものである。ヘルシナイトはペリクレース相を含まないので、ペリクレース相を含むマグネシウムアルミニウムスピネルを使用した場合より耐消化性に優れる。一方、1450℃以上の高温域での使用においては熱間特性が低下するという欠点がある。 The magnesia-hercynite refractory brick disclosed in Patent Document 2 and the like uses hercynite (iron-aluminum spinel), which has the same spinel-type structure, instead of spinel (magnesium-aluminum spinel). Since hercynite does not contain a periclase phase, it has better digestion resistance than when magnesium aluminum spinel containing a periclase phase is used. On the other hand, when used in a high temperature range of 1450° C. or higher, there is a drawback that the hot properties deteriorate.
本発明は上記従来の事情に鑑みて提案されたものであって、耐消化性と高温域での熱間特性を両立して向上させることができるマグネシア・スピネル質耐火れんが原料の組成物および、その組成物を用いた耐火れんがの製造方法を提供することを目的とする。 The present invention has been proposed in view of the above-mentioned conventional circumstances, and includes a composition of a magnesia-spinel refractory brick raw material that can improve both digestion resistance and hot properties in a high temperature range; The object of the present invention is to provide a method for producing refractory bricks using the composition.
本発明のマグネシア・スピネル質耐火れんがの原料は、ヘルシナイトが全量の0.5~5質量%、B2O3含有量0.1~0.5質量%のペリクレース共存型焼結スピネルが全量の12~50質量%(但し20質量%以下を除く)、B2O3含有量0.2質量%以下の焼結マグネシアが全量の47~85質量%である組成物である。
また、本発明のマグネシア・スピネル質耐火れんがは、前記の耐火れんがの原料組成物を1450~1650℃で焼成することで得ることができる。
The raw materials for the magnesia-spinel refractory bricks of the present invention are 0.5 to 5% by mass of hercynite and 0.1 to 0.5% by mass of periclase-coexisting sintered spinel with a B 2 O 3 content of 0.5 to 5% by mass. This is a composition in which sintered magnesia with a B 2 O 3 content of 12 to 50 mass % (excluding 20 mass % or less) and 0.2 mass % or less of the total amount is 47 to 85 mass %.
Further, the magnesia spinel refractory brick of the present invention can be obtained by firing the above-mentioned refractory brick raw material composition at 1450 to 1650°C.
耐消化性と熱間特性を両立して向上させることができるマグネシア・スピネル質耐火れんがが得られる。 Magnesia-spinel refractory bricks can be obtained that can improve both fire resistance and hot properties.
<基本考察>
前記したように、特許文献1に開示された「塩基性れんがの原料としてB2O3含有量0.1~1質量%のマグネシア原料又は/およびスピネル原料を使用した塩基性れんが」を高温焼成(1700℃以上)すると、熱間特性および耐消化性が低下する。
<Basic considerations>
As mentioned above, "a basic brick using a magnesia raw material and/or a spinel raw material with a B 2 O 3 content of 0.1 to 1% by mass as a raw material for the basic brick" disclosed in Patent Document 1 is fired at a high temperature. (1700°C or higher), the hot properties and digestion resistance deteriorate.
その理由は必ずしも明らかではないが、焼結スピネルに含まれるB2O3が周囲のマグネシア原料中に拡散し、れんがの熱間特性と耐消化性を低下させていると推定される。一方、普通焼成(1500~1600℃)した場合は、結合組織が発達せず、れんがの熱間特性が不十分となる。 The reason for this is not necessarily clear, but it is presumed that B 2 O 3 contained in the sintered spinel diffuses into the surrounding magnesia raw material, reducing the hot properties and digestion resistance of the brick. On the other hand, if the bricks are fired normally (1500 to 1600°C), the connective tissue will not develop and the hot properties of the bricks will be insufficient.
以上の事実から、本発明では、B2O3含有量が0.2質量%以下の焼結マグネシアと、B2O3含有量0.1~0.5質量%のペリクレース共存型焼結スピネルを主体とし、当該ペリクレース共存型焼結スピネルにヘルシナイト0.5~5質量%を焼結助剤として添加した組成物を耐火れんがの原料とした。 Based on the above facts, the present invention uses sintered magnesia with a B 2 O 3 content of 0.2% by mass or less and periclase-coexisting sintered spinel with a B 2 O 3 content of 0.1 to 0.5% by mass. A composition consisting mainly of sintered spinel coexisting with periclase and 0.5 to 5% by mass of hercynite added as a sintering aid was used as a raw material for refractory bricks.
また、当該組成物を1450~1650℃で焼成することによって、耐消化性と熱間特性を両立したマグネシア・スピネル質耐火れんがを得た。
<ヘルシナイト>
前記ヘルシナイトはFeO・Al2O3からなる鉱物原料であり、焼結助剤として用いる。天然原料、合成原料のいずれも使用できるが、不純物含有量の少ない合成原料を使用することが好ましい。FeOとAl2O3の成分比は化学量論組成に限らず、質量比で30:70~50:50の範囲であればよい。
Further, by firing the composition at 1450 to 1650°C, a magnesia spinel refractory brick having both digestion resistance and hot properties was obtained.
<Healthy Night>
The hercynite is a mineral raw material consisting of FeO.Al 2 O 3 and is used as a sintering aid. Both natural raw materials and synthetic raw materials can be used, but it is preferable to use synthetic raw materials with low impurity content. The component ratio of FeO and Al 2 O 3 is not limited to the stoichiometric composition, but may be in the range of 30:70 to 50:50 in terms of mass ratio.
当該ヘルシナイトは前記組成物の全量に対して0.5~5質量%である。0.5質量%未満では焼結助剤としての効果がなく、5質量%を超えると耐食性が低下する。
<ペリクレース共存型焼結スピネル>
前記ペリクレース共存型焼結スピネルはB2O3含有量が0.1~0.5質量%の範囲が好ましい。B2O3含有量が0.1質量%未満では耐消化性が不十分であり、0.5質量%を超えると熱間特性が低下する。当該ペリクレース共存型焼結スピネルの含有量は前記組成物の全量に対して12~50質量%が好ましい。12質量%を下回ると耐消化性が不十分であり、50質量%を超えると熱間強度と耐食性が低下する。
<焼結マグネシア>
前記焼結マグネシアはB2O3含有量が0.2質量%以下であることが好ましい。B2O3含有量が0.2質量%を超えると熱間強度が低下する。当該焼結マグネシアの含有量は、前記組成物の全量に対して47~85質量%が好ましい。47質量%を下回ると熱間強度と耐食性が低下し、85質量%を超えると耐消化性が低下する。
<バインダー>
バインダーには公知の有機バインダー又は無機バインダーを配合できる。有機バインダーとしては、ピッチやフェノール樹脂、糖蜜、パルプ廃液、デキストリン、メチルセルロース類、ポリビニルアルコール等種々のバインダーを使用できる。
<混練・成形>
配合された原料配合物に、必要に応じてバインダーまたは水を添加して混練する。混練には、公知の混練機が使用できる。成形は公知の成形機を使用できる。
<焼成>
前記のように混錬・成形された組成物は、1450~1650℃の範囲の温度で焼成される。前記焼成温度が1450℃を下回ると結合組織が発達せず熱間強度が低下し、1650℃を超えるとB2O3が拡散して熱間強度が低下する。焼成時間は適宜調整できるが、最高温度帯で8~12時間程度とすることが好ましい。
The hercynite is present in an amount of 0.5 to 5% by mass based on the total amount of the composition. If it is less than 0.5% by mass, it will not be effective as a sintering aid, and if it exceeds 5% by mass, corrosion resistance will decrease.
<Periclese coexisting sintered spinel>
The B 2 O 3 content of the periclase-coexisting sintered spinel is preferably in the range of 0.1 to 0.5% by mass. If the B 2 O 3 content is less than 0.1% by mass, the digestion resistance will be insufficient, and if it exceeds 0.5% by mass, the hot properties will deteriorate. The content of the periclase-coexisting sintered spinel is preferably 12 to 50% by mass based on the total amount of the composition. If it is less than 12% by mass, the digestion resistance will be insufficient, and if it exceeds 50% by mass, the hot strength and corrosion resistance will decrease.
<Sintered magnesia>
The B 2 O 3 content of the sintered magnesia is preferably 0.2% by mass or less. If the B 2 O 3 content exceeds 0.2% by mass, the hot strength will decrease. The content of the sintered magnesia is preferably 47 to 85% by mass based on the total amount of the composition. If it is less than 47% by mass, hot strength and corrosion resistance will decrease, and if it exceeds 85% by mass, digestion resistance will decrease.
<Binder>
A known organic binder or inorganic binder can be blended into the binder. As the organic binder, various binders such as pitch, phenolic resin, molasses, pulp waste liquid, dextrin, methylcelluloses, polyvinyl alcohol, etc. can be used.
<Kneading/Forming>
If necessary, a binder or water is added to the blended raw material mixture and kneaded. A known kneader can be used for kneading. For molding, a known molding machine can be used.
<Firing>
The composition kneaded and shaped as described above is fired at a temperature in the range of 1450 to 1650°C. When the firing temperature is lower than 1450°C, connective tissue does not develop and hot strength is reduced, and when it exceeds 1650°C, B 2 O 3 is diffused and hot strength is lowered. The firing time can be adjusted as appropriate, but it is preferably about 8 to 12 hours at the highest temperature.
以下に実施例を示し、本発明を詳細に説明する。
[試料の作成]
表1に使用した原料の化学組成を示す。表2および表3の配合に従って耐火原料混合物を準備した。バインダーとして樹脂固形分60質量%のノボラック型フェノール樹脂溶液を、前記耐火原料の全量に対して外掛けで3質量%添加した。
EXAMPLES The present invention will be explained in detail with reference to Examples below.
[Preparation of sample]
Table 1 shows the chemical composition of the raw materials used. A refractory raw material mixture was prepared according to the formulations in Tables 2 and 3. As a binder, a novolac type phenol resin solution having a resin solid content of 60% by mass was added in an amount of 3% by mass based on the total amount of the refractory raw material.
耐火原料とバインダーの混合物をミキサーで混練し、混練物は油圧プレスを使用して成形した。成形圧力は118MPa、打回数は20回、試料形状は長さ155mm、幅80mm、厚み65mmとした。成形した試料は200℃で24時間乾燥し、その後箱型電気炉を使用し所定の温度まで5℃/minで昇温、10時間保持後、-5℃/minで500℃まで冷却し、その後は常温まで自然放冷した。
[耐食性(浸食性)]
侵食試験は回転ドラム法で評価した。熱源は酸素-プロパンバーナーを使用した。侵食剤は、ウォラストナイトと炭酸カルシウムを使用してCaOとSiO2が質量比で2:1となるように配合し、1000℃で3時間仮焼した後に使用した。試験温度は1700℃、試験時間は5時間で、侵食剤は1時間毎に入れ替えた。
A mixture of a refractory raw material and a binder was kneaded with a mixer, and the kneaded product was molded using a hydraulic press. The molding pressure was 118 MPa, the number of strokes was 20, and the sample shape was 155 mm in length, 80 mm in width, and 65 mm in thickness. The molded sample was dried at 200°C for 24 hours, then heated to the specified temperature at 5°C/min using a box-type electric furnace, held for 10 hours, cooled to 500°C at -5°C/min, and then was allowed to cool naturally to room temperature.
[Corrosion resistance (erosion resistance)]
The erosion test was evaluated using the rotating drum method. The heat source used was an oxygen-propane burner. The corrosive agent was prepared by mixing wollastonite and calcium carbonate so that the mass ratio of CaO and SiO 2 was 2:1, and was used after calcining at 1000° C. for 3 hours. The test temperature was 1700°C, the test time was 5 hours, and the corrosive agent was replaced every hour.
試験後の試料を長手方向の中央で切断し、侵食量を測定し耐食性を評価した。それぞれの耐食性は、実施例1を100とする指数で示した。指数が大きいほど耐食性が高いことを示す。
[熱間特性]
熱間特性は、1250℃の大気雰囲気で行った三点曲げ試験で評価した。試料形状は、長さ155mm、幅40mm、厚み40mmとし、下部支点間距離は100mmとした。
[耐消化性]
耐消化性は、オートクレーブ容器に一辺40mmの立方体に加工した試料をセットし、294kPa(ゲージ圧)で 3時間保持した。試験後の状態を観察し耐消化性を評価した。
[評価結果]
実施例1~14では耐消化性と熱間特性が両立され、耐食性にも問題なかった。比較例1は焼結スピネル量が全量の12質量%より少なく耐消化性に問題があった。比較例2は焼結スピネル量が全量の50質量%より多く、焼結マグネシア量が全量の47質量%より少ないためB2O3が周囲のマグネシアにも拡散して熱間強度の低下が見られた。
After the test, the sample was cut at the center in the longitudinal direction, the amount of erosion was measured, and the corrosion resistance was evaluated. Each corrosion resistance was expressed as an index with Example 1 set as 100. The larger the index, the higher the corrosion resistance.
[Hot properties]
The hot properties were evaluated by a three-point bending test conducted in an air atmosphere at 1250°C. The sample shape was 155 mm in length, 40 mm in width, and 40 mm in thickness, and the distance between the lower supports was 100 mm.
[Digestion resistance]
To test the digestion resistance, a sample processed into a cube with sides of 40 mm was placed in an autoclave container and held at 294 kPa (gauge pressure) for 3 hours. The condition after the test was observed and the digestive resistance was evaluated.
[Evaluation results]
In Examples 1 to 14, both digestion resistance and hot properties were achieved, and there was no problem with corrosion resistance. Comparative Example 1 had a problem in digestion resistance because the amount of sintered spinel was less than 12% by mass of the total amount. In Comparative Example 2, the amount of sintered spinel is more than 50% by mass of the total amount, and the amount of sintered magnesia is less than 47% by mass of the total amount, so B 2 O 3 diffuses into the surrounding magnesia, resulting in a decrease in hot strength. It was done.
比較例3はヘルシナイト原料が、全量の0.5質量%より少ないため焼結が十分ではなく熱間強度の低下が見られた。比較例4はヘルシナイト原料が全量の5質量%より多く、れんが中の低融点物も増加したため耐食性も低下した。 In Comparative Example 3, since the hercynite raw material was less than 0.5% by mass of the total amount, sintering was insufficient and a decrease in hot strength was observed. In Comparative Example 4, the hercynite raw material was more than 5% by mass of the total amount, and the low melting point substances in the bricks also increased, so the corrosion resistance also decreased.
比較例5は焼成温度が、1650℃より高いためB2O3の揮発で耐消化性が失われた。比較例6は焼成温度が1450℃より低く、焼結が不十分で熱間強度が低くなっていた。 In Comparative Example 5, the firing temperature was higher than 1650° C., so the digestion resistance was lost due to volatilization of B 2 O 3 . In Comparative Example 6, the firing temperature was lower than 1450°C, resulting in insufficient sintering and low hot strength.
比較例7は焼成温度が低いものの、ヘルシナイト原料が多いため耐消化性と熱間特性の両立が実現されたが、全量の5質量%を超えているので、耐食性が低下している。 In Comparative Example 7, although the firing temperature was low, both digestion resistance and hot properties were achieved due to the large amount of hercynite raw material, but since it exceeded 5% by mass of the total amount, corrosion resistance decreased.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021206887A JP7417128B2 (en) | 2021-12-21 | 2021-12-21 | Composition of raw materials for refractory bricks, method for producing refractory bricks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021206887A JP7417128B2 (en) | 2021-12-21 | 2021-12-21 | Composition of raw materials for refractory bricks, method for producing refractory bricks |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023091971A JP2023091971A (en) | 2023-07-03 |
JP7417128B2 true JP7417128B2 (en) | 2024-01-18 |
Family
ID=86995692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021206887A Active JP7417128B2 (en) | 2021-12-21 | 2021-12-21 | Composition of raw materials for refractory bricks, method for producing refractory bricks |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7417128B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011095018A1 (en) | 2010-02-03 | 2011-08-11 | 淄博市鲁中耐火材料有限公司 | Magnesia-hercynite brick and preparation method thereof |
US20160280603A1 (en) | 2013-03-22 | 2016-09-29 | Refractory Intellectual Property Gmbh & Co. Kg | Fire-resistant ceramic mix and fire resistant ceramic product |
US20170226016A1 (en) | 2014-09-18 | 2017-08-10 | Refractory Intellectual Property Gmbh & Co. Kg | Refractory ceramic batch as well as a refractory ceramic product |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4403869C2 (en) * | 1994-02-08 | 1998-01-15 | Veitsch Radex Ag | Refractory ceramic offset and its use |
JPH11139863A (en) * | 1997-11-11 | 1999-05-25 | Kawasaki Refract Co Ltd | Basic brick |
JPH11139864A (en) * | 1997-11-11 | 1999-05-25 | Kawasaki Refract Co Ltd | Basic brick |
DE10259826B4 (en) * | 2002-12-19 | 2004-11-25 | Refratechnik Holding Gmbh | Coarse ceramic molded article, process for its production and use |
DE102016109258B4 (en) * | 2016-05-19 | 2018-08-16 | Refratechnik Holding Gmbh | Refractory spinel granules suitable for elastinating heavy clay refractory products, process for its production, refractory product with the spinel granules, use of the refractory product, lining of an industrial furnace with the refractory product |
-
2021
- 2021-12-21 JP JP2021206887A patent/JP7417128B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011095018A1 (en) | 2010-02-03 | 2011-08-11 | 淄博市鲁中耐火材料有限公司 | Magnesia-hercynite brick and preparation method thereof |
US20160280603A1 (en) | 2013-03-22 | 2016-09-29 | Refractory Intellectual Property Gmbh & Co. Kg | Fire-resistant ceramic mix and fire resistant ceramic product |
US20170226016A1 (en) | 2014-09-18 | 2017-08-10 | Refractory Intellectual Property Gmbh & Co. Kg | Refractory ceramic batch as well as a refractory ceramic product |
Also Published As
Publication number | Publication date |
---|---|
JP2023091971A (en) | 2023-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2587194C2 (en) | Method of making lining in industrial furnace of large volume, as well as industrial furnace with lining, refractory brick for such lining | |
JP4470207B2 (en) | Refractory brick | |
JP2008290934A (en) | Binder for monolithic refractory and monolithic refractory | |
JP5943032B2 (en) | Manufacturing method of lightweight heat-insulating alumina / magnesia refractory | |
JP4653317B2 (en) | Clinker hydraulic binder, use and method for its production | |
JPH0456785B2 (en) | ||
JP7417128B2 (en) | Composition of raw materials for refractory bricks, method for producing refractory bricks | |
JPH08198649A (en) | Calcium aluminate, cement composition and prepared unshaped refractory containing the same | |
JP6344621B2 (en) | Magnesia spinel fired brick manufacturing method | |
JP6358272B2 (en) | Magnesia spinel refractory brick | |
JP2021147275A (en) | Magnesia-spinel refractory brick | |
JP2007204330A (en) | Alumina cement, alumina cement composition, and monolithic refractory | |
JP5019715B2 (en) | Alumina cement and hardened alumina cement | |
RU2541997C1 (en) | Charge for manufacture of aluminium-ferrous spinel and refractory using aluminium-ferrous spinel | |
JP7522373B1 (en) | Expanded graphite chips and carbon-containing bricks | |
JP7277712B2 (en) | Magnesia-spinel refractory bricks | |
JP2020128320A (en) | Magnesia-spinel refractory | |
JP7549247B2 (en) | Raw material mixture for magnesia-chrome refractory bricks and manufacturing method for magnesia-chrome refractory bricks | |
JP4538779B2 (en) | Magnesia-alumina clinker and refractory obtained using the same | |
KR101129265B1 (en) | Synthetic MgO Rich-SiO2 Clinker and Firebrick Containing the Same | |
RU2443657C1 (en) | Charge to manufacture periclase-spinel products | |
JPH0794343B2 (en) | Magnesia clinker and method for producing the same | |
JP2008081361A (en) | MgO-NiO COMPOSITE CLINKER AND REFRACTORY MATERIAL OBTAINED USING THE SAME | |
RU2634142C1 (en) | Composition for producing periclase-spinel refractories | |
KR20040049586A (en) | A burned magnesia-chrome firebrick using broken Mg-Cr brick |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230822 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7417128 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |