JPH0324425B2 - - Google Patents

Info

Publication number
JPH0324425B2
JPH0324425B2 JP58064888A JP6488883A JPH0324425B2 JP H0324425 B2 JPH0324425 B2 JP H0324425B2 JP 58064888 A JP58064888 A JP 58064888A JP 6488883 A JP6488883 A JP 6488883A JP H0324425 B2 JPH0324425 B2 JP H0324425B2
Authority
JP
Japan
Prior art keywords
magnesia
bricks
chromium
maguro
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58064888A
Other languages
Japanese (ja)
Other versions
JPS59190257A (en
Inventor
Hideo Adachi
Toshihiro Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP58064888A priority Critical patent/JPS59190257A/en
Publication of JPS59190257A publication Critical patent/JPS59190257A/en
Publication of JPH0324425B2 publication Critical patent/JPH0324425B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はマグネシア・クロム質焼成耐火煉瓦の
改良関するものである。 従来、焼成のマグネシア・クロム質煉瓦として
はダイレクトボンドマグクロ煉瓦、リボンデツド
マグクロ煉瓦、セミリボンドマグクロ煉瓦があ
る。 ダイレクトボンドマグクロ煉瓦は、マグネシア
クリンカーとクロム鉄鉱を主体とし、必要に応じ
て少量の酸化クロムを添加し、混練、成形、乾燥
後1700℃以上の高温に焼成することによつて、粒
子間をいわゆる「ダイレクトボンド」による強固
な結合形態とし、高温度においても高い強度を維
持して高温容積安定性、耐荷重軟化性等の熱間特
性を得ている。 また、クロム鉄鉱を配合することによりマグネ
シア煉瓦特有の構造的スポールが減少するととも
に、特に低塩基度(CaO/SiO2重量比<2)の
スラグに対して優れた耐食性を示す。さらに、マ
グネシア粒子とクロム鉄鉱粒との熱膨張収縮率の
差により、焼成工程における冷却時に両粒子間に
微小亀裂を生起させ、この微小亀裂により、熱応
力を吸収させて耐スポール性を向上させている。 リボンデツドマグクロ煉瓦はマグネシアクリン
カーとクロム鉄鉱を電融して製造した電融マグク
ロ原料を粉砕し、混練、成形、乾燥、焼成した煉
瓦であつて、ダイレクトボンドマグクロ煉瓦に比
して耐侵食性に優れが耐スポール性に劣る欠点が
ある。 セミリボンドマグクロ煉瓦はマグネシアとクロ
ム鉄鉱に電融マグクロを組合せ、必要に応じて酸
化クロムを添加し、混練、成形、乾燥、焼成した
もので、ダイレクトボンドマグクロ煉瓦とリボン
ドマグクロ煉瓦の中間的な性質を示す。すなわ
ち、耐食性はダイレクトボンドマグクロ煉瓦より
優れ耐スポール性はリボンドマグクロ煉瓦より優
れる。 本発明は上記のダイレクトボンドマグクロ煉
瓦、セミリボンドマグクロ煉瓦の改良に関するも
のである。これらの煉瓦はある種の窯炉で長期間
使用していると組織が劣化して脆弱化する。この
原因について調査検討した結果、煉瓦中に含有さ
れる酸化鉄が窯炉内の温度変動あるいは雰囲気変
動によりFeOFe2O3なる変化を起こし、これに
伴う容積変化により組織劣化を起こすことに着目
した。 この対策について種々研究した結果煉瓦中の
Cr2O3/Fe2O3重量比を3.5〜4.5とすることによ
り、組織劣化が非常に少なく、また各種窯炉での
耐用性が飛躍的に向上することを見出し、本発明
を完成するに至つた。 すなわち、本発明は電融マグネシアおよび/ま
たはマグネシアクリンカーとクロム鉄鉱の組合
せ、あるいはさらに電融マグネシア・クロム、ま
たは酸化クロム、あるいはその両者を添加した焼
成マグネシア・クロム質煉瓦において、該煉瓦中
のCr2O3含有量が5〜35重量%で、Cr2O3含有量
とFe2O3に換算した酸化鉄量の重量比Cr2O3
Fe2O3が3.5〜4.5であることを特徴とするマグネ
シア・クロム質焼成耐火煉瓦である。 以下、本発明をさらに詳しく説明する。なお、
以下に示す%はすべて重量%とする。 本発明に使用する電融マグネシアまたはマグネ
シアクリンカーは一般市販品であり、MgO98%
以上、SiO2は0.5%以下のものが望ましい。 クロム鉄鉱としてはC2O330%以上、Fe2O320%
以上のものが用いられる。 本発明において、煉瓦中に含まれるCr2O3含有
量は、耐スポール性および耐食性の両面からみ
て、5〜35%に調整する必要がある。5%以下で
は耐スポール性が低下し、35%以上では塩基性ス
ラグに対する耐食性が低下する。 焼成温度は1750℃以下では熱間強度が小さく、
1900℃以上では焼成費用が嵩む上に焼成変形が大
きくなるので、1750〜1900℃間で焼成するのが好
ましい。 本発明の最大の特徴であるCr2O3/Fe2O3重量
比を3.5〜4.5とするのが温度変動あるいは雰囲気
変動による組織劣化が小さいことおよび経済性か
ら望ましい。すなわち、Cr2O3/Fe2O3重量比が
3.5以下では温度変動あるいは雰囲気変動により
組織が棕弱化し強度の低下が大きいため、3.5以
上とすることによつてこの強度の低下が少なくな
り、各種窯炉に使用した場合の耐用性は著しく向
上してくる。Cr2O3/Fe2O3重量比は4.5以上に高
めても改善の効果はなく、これを高めるために酸
化クロムの添加量が多くなり、不経済となる。 次に、本発明に至つた実験結果について記述す
る。 第1表に示す化学成分のマグネシ・アクリンカ
ーと、クロム鉄鉱Aと、酸化クロムとを用いて、
第2表に示す化学成分の配合に結合剤として10ボ
ーメの苦汁2%添加し、混練し、1000Kg/cm2の圧
力で成形して1750℃で5h焼成した。この煉瓦か
ら25×40×120mmの供試片を切出し電気炉で4
℃/分の速度で昇温し、1500℃で3h加熱した後、
自然冷却した。この加熱冷却を5回繰返した後の
曲げ強さを測定し、加熱前の曲げ強さとの比率を
計算した。この結果を第1図に示す。 Cr2O3/Fe2O3重量比が3以下では加熱、冷却
の繰返しによつて曲げ強さは原煉瓦の20%程度し
かなく、組織の劣化が著しいことが判る。3〜
3.5の間で強度は上昇し、3.5以上になると原煉瓦
の55%に向上した。 以下に本発明を実施例に基づいて説明する。 実施例 1 第3表に示す配合割合により得られた化学成分
の原料に10ボーメの苦汁2%をそれぞれ添加、混
練して1000Kg/cm2の圧力で成形し、8種類の成形
体を得た。この成形体をいずれも120℃で24h乾
燥した後、1800℃で5h焼成した。 本発明品4,5,6,7,8は、従来品1,2
The present invention relates to improvements in magnesia-chromium fired refractory bricks. Conventionally, fired magnesia/chromium bricks include direct bonded maguro bricks, ribbon-dead maguro bricks, and semi-ribboned maguro bricks. Direct bond maguro bricks are made mainly of magnesia clinker and chromite, with the addition of a small amount of chromium oxide as needed, kneading, shaping, and drying followed by firing at a high temperature of 1,700℃ or higher to create bonds between particles. It has a strong bonding form using so-called "direct bonding", maintains high strength even at high temperatures, and has hot properties such as high-temperature volume stability and load-bearing softening properties. In addition, by incorporating chromite, the structural spalling characteristic of magnesia bricks is reduced, and it exhibits excellent corrosion resistance, especially against slag with low basicity (CaO/SiO 2 weight ratio <2). Furthermore, due to the difference in thermal expansion and contraction rates between magnesia particles and chromite particles, micro-cracks are generated between the two particles during cooling during the firing process, and these micro-cracks absorb thermal stress and improve spall resistance. ing. Ribbon-dead Maguro bricks are bricks made by crushing, kneading, shaping, drying, and firing the electrofused Maguro raw material produced by electromelting magnesia clinker and chromite, and are more durable than direct bond Maguro bricks. It has excellent erosion properties but has the disadvantage of poor spalling resistance. Semi-rebond maguro bricks are made by combining magnesia and chromite with electrofused maguro, adding chromium oxide as necessary, kneading, shaping, drying, and firing.Direct bond maguro bricks and ribbon maguro bricks shows intermediate properties. That is, the corrosion resistance is superior to direct bond maguro bricks, and the spalling resistance is superior to ribbon bond maguro bricks. The present invention relates to improvements in the above-mentioned direct bonded maguro bricks and semi-ribboned maguro bricks. When these bricks are used in certain types of kilns for long periods of time, their structure deteriorates and they become brittle. As a result of investigating the cause of this, we focused on the fact that the iron oxide contained in the bricks undergoes a change to FeOFe 2 O 3 due to temperature fluctuations or atmospheric changes within the kiln, and the accompanying volume change causes structural deterioration. . As a result of various studies on this countermeasure,
We have discovered that by setting the Cr 2 O 3 /Fe 2 O 3 weight ratio to 3.5 to 4.5, structural deterioration is extremely small and durability in various furnaces is dramatically improved, and the present invention has been completed. It came to this. That is, the present invention provides a fired magnesia/chromium brick containing a combination of electrofused magnesia and/or magnesia clinker and chromite, or further addition of electrofused magnesia/chromium, chromium oxide, or both. 2 O 3 content is 5 to 35% by weight, and the weight ratio of Cr 2 O 3 content and amount of iron oxide converted to Fe 2 O 3 Cr 2 O 3 /
This is a magnesia-chromium fired refractory brick characterized by Fe 2 O 3 of 3.5 to 4.5. The present invention will be explained in more detail below. In addition,
All percentages shown below are by weight. The electrofused magnesia or magnesia clinker used in the present invention is a commercially available product, and contains 98% MgO.
As mentioned above, SiO 2 is desirably 0.5% or less. As chromite, C 2 O 3 30% or more, Fe 2 O 3 20%
The above are used. In the present invention, the Cr 2 O 3 content contained in the brick needs to be adjusted to 5 to 35% from the viewpoint of both spall resistance and corrosion resistance. If it is less than 5%, the spalling resistance will be reduced, and if it is more than 35%, the corrosion resistance against basic slag will be reduced. If the firing temperature is below 1750℃, the hot strength will be low.
If the temperature is higher than 1900°C, the firing cost increases and the firing deformation increases, so it is preferable to perform the firing at a temperature between 1750 and 1900°C. It is desirable to set the Cr 2 O 3 /Fe 2 O 3 weight ratio to 3.5 to 4.5, which is the most important feature of the present invention, from the viewpoint of economical efficiency and less structural deterioration due to temperature fluctuations or atmospheric fluctuations. In other words, the weight ratio of Cr 2 O 3 /Fe 2 O 3 is
If it is less than 3.5, the structure will become weaker due to temperature or atmosphere fluctuations, resulting in a large decrease in strength, so by making it more than 3.5, this decrease in strength will be reduced, and the durability will be significantly improved when used in various types of kilns. I'll come. Even if the Cr 2 O 3 /Fe 2 O 3 weight ratio is increased to 4.5 or more, there is no improvement, and in order to increase this, the amount of chromium oxide added becomes uneconomical. Next, the experimental results that led to the present invention will be described. Using magnesi aclinker, chromite A, and chromium oxide, which have the chemical components shown in Table 1,
2% of 10 Baume bittern was added as a binder to the chemical composition shown in Table 2, kneaded, molded at a pressure of 1000 kg/cm 2 and baked at 1750° C. for 5 hours. A test piece of 25 x 40 x 120 mm was cut out from this brick and heated in an electric furnace.
After increasing the temperature at a rate of °C/min and heating at 1500 °C for 3 h,
Naturally cooled. The bending strength after repeating this heating and cooling five times was measured, and the ratio to the bending strength before heating was calculated. The results are shown in FIG. It can be seen that when the Cr 2 O 3 /Fe 2 O 3 weight ratio is less than 3, the bending strength is only about 20% of the original brick due to repeated heating and cooling, and the structure is significantly deteriorated. 3~
The strength increased between 3.5 and 55% of the original brick when it reached 3.5 or higher. The present invention will be explained below based on examples. Example 1 2% of 10 Baumé bittern was added to the raw materials of chemical components obtained according to the compounding ratio shown in Table 3, kneaded, and molded at a pressure of 1000 Kg/cm 2 to obtain 8 types of molded products. . All of these molded bodies were dried at 120°C for 24 hours, and then fired at 1800°C for 5 hours. The products 4, 5, 6, 7, and 8 of the present invention are the conventional products 1 and 2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 3に比較して第3表に示すように加熱冷却の繰返
しによる曲げ強さの変化が少ない。 この煉瓦をRH真空脱ガス装置の部部槽側壁に
それぞれ張り合せて使用した時の損毛速度は、従
来品に比して本発明品は大幅に向上した。 実施例 2 第4表に示す配合割合に結合剤として10ボーメ
の苦汁2.5%を添加し、混練した後1000Kg/cm2
圧力で成形し、2種類の成形体を得た。この成形
体を120℃で24h乾燥後、1770℃で5h焼成した。
第4表に示すように従来品9に比して、本発明10
は加熱、冷却の繰返しによる曲げ強度の変化が少
なかつた。 この煉瓦をRH真空脱ガス装置の下部槽側壁で
使用した時の損耗速度は、従来品に比して本発明
品は格段に向上した。
[Table] As shown in Table 3, there is less change in bending strength due to repeated heating and cooling than in Example 3. When these bricks were attached to the side walls of the chambers of an RH vacuum degassing device, the rate of hair loss was significantly improved with the product of the present invention compared to the conventional product. Example 2 2.5% of 10 Baume bittern was added as a binder to the blending ratio shown in Table 4, kneaded, and then molded at a pressure of 1000 Kg/cm 2 to obtain two types of molded products. This molded body was dried at 120°C for 24 hours and then fired at 1770°C for 5 hours.
As shown in Table 4, compared to the conventional product 9, the present invention 10
There was little change in bending strength due to repeated heating and cooling. When this brick was used on the side wall of the lower tank of an RH vacuum degassing device, the wear rate of the product of the present invention was significantly improved compared to the conventional product.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2表に示す化学組成のマグネシア・
クロム質焼成煉瓦を1500℃加熱、冷却を5回繰返
し、その前後の曲げ強さを測定し、
加熱後の曲げ強さ/加熱前の曲げ強さ×100=曲げ強さ
変化指数 (%)で計算した曲げ強さ変化指数とCr2O3
Fe2O3重量比の関係をプロツトしたものである。
Figure 1 shows magnesia with the chemical composition shown in Table 2.
Chromium fired bricks were heated to 1500℃ and cooled 5 times, and the bending strength before and after was measured.
Bending strength change index calculated from bending strength after heating / bending strength before heating × 100 = bending strength change index (%) and Cr 2 O 3 /
This is a plot of the relationship between Fe 2 O 3 weight ratio.

Claims (1)

【特許請求の範囲】[Claims] 1 電融マグネシアおよび/またはマグネシアク
リンカーとクロム鉄鉱の組合わせ、あるいはさら
に電融マグネシア・クロム、または酸化クロム、
あるいはその両者を添加した焼成マグネシア・ク
ロム質煉瓦において、該煉瓦中のCr2O3含有量が
5〜35重量%で、Cr2O3含有量とFe2O3に換算し
た酸化鉄量の重量比Cr2O3/Fe2O3が3.5〜4.5であ
ることを特徴とする焼成マグネシア・クロム質焼
成耐火煉瓦。
1 Electrofused magnesia and/or a combination of magnesia clinker and chromite, or further electrofused magnesia chromium, or chromium oxide,
Alternatively, in a fired magnesia/chromium brick containing both of them, the Cr 2 O 3 content in the brick is 5 to 35% by weight, and the Cr 2 O 3 content and the amount of iron oxide converted to Fe 2 O 3 are A fired magnesia/chromium refractory brick characterized in that the weight ratio Cr 2 O 3 /Fe 2 O 3 is 3.5 to 4.5.
JP58064888A 1983-04-12 1983-04-12 Magnesia chrome baked refractory brick Granted JPS59190257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064888A JPS59190257A (en) 1983-04-12 1983-04-12 Magnesia chrome baked refractory brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064888A JPS59190257A (en) 1983-04-12 1983-04-12 Magnesia chrome baked refractory brick

Publications (2)

Publication Number Publication Date
JPS59190257A JPS59190257A (en) 1984-10-29
JPH0324425B2 true JPH0324425B2 (en) 1991-04-03

Family

ID=13271078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064888A Granted JPS59190257A (en) 1983-04-12 1983-04-12 Magnesia chrome baked refractory brick

Country Status (1)

Country Link
JP (1) JPS59190257A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213317A (en) * 1985-03-18 1986-09-22 Harima Refract Co Ltd Vessel for vacuum degassing treatment
JP2968542B2 (en) * 1989-07-20 1999-10-25 黒崎窯業株式会社 Refractory
JP5388305B2 (en) * 2010-03-31 2014-01-15 黒崎播磨株式会社 Semili Bond Magnesia-Chrome Brick
CN102659432B (en) * 2012-05-14 2013-08-28 攀枝花市银江金勇工贸有限责任公司 RH gunning refractory

Also Published As

Publication number Publication date
JPS59190257A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
WO1995015932A1 (en) Chromium-free brick
CN101798232B (en) Preparation method of Sialon-carbofrax-corundum composite refractory material
JPH0324425B2 (en)
CN109776079A (en) High temperature resistant heat insulation refractory clay
JPS6060985A (en) Refractory composition for ladle lining
JP2003238250A (en) Yttria refractory
JP6420748B2 (en) Unburned silicon carbide-containing high alumina brick used for lining of containers holding molten metal
US4039342A (en) Firebricks
JPH07242464A (en) Production of silica brick
JP2021147275A (en) Magnesia-spinel refractory brick
JPH026371A (en) Production of silicon carbide brick having sialon linkage
CN109776072A (en) Fire-resistant slurry powder
JP4960541B2 (en) Magnesia-alumina-titania brick
JPH046150A (en) Magnesia-chrome refractories
CN109776076A (en) High-strength corundum refractory clay
KR20130015707A (en) Ceramic welding composition
JP3703104B2 (en) Magnesia-chromic unfired brick
JPH0455360A (en) Magnesia-based superhigh temperature refractory
JPH01131057A (en) Production of refractory brick of magnesia spinel
JP3368035B2 (en) Setter
JPH06172044A (en) Castable refractory of alumina spinel
CN109776080A (en) High chromium fire-resistant slurry powder
JPS62207757A (en) Manufacture of chromium oxide-containing fine refractories
JPH10226522A (en) Spinel brick for glass furnace regenerator
JPS64343B2 (en)