JP2872670B2 - Irregular refractories for lining of molten metal containers - Google Patents

Irregular refractories for lining of molten metal containers

Info

Publication number
JP2872670B2
JP2872670B2 JP63020118A JP2011888A JP2872670B2 JP 2872670 B2 JP2872670 B2 JP 2872670B2 JP 63020118 A JP63020118 A JP 63020118A JP 2011888 A JP2011888 A JP 2011888A JP 2872670 B2 JP2872670 B2 JP 2872670B2
Authority
JP
Japan
Prior art keywords
weight
parts
alumina
spinel
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63020118A
Other languages
Japanese (ja)
Other versions
JPH01197371A (en
Inventor
告芳 柴田
豊浩 石井
憲治 山本
則明 延岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI TAIKA RENGA KK
Original Assignee
DAIICHI TAIKA RENGA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI TAIKA RENGA KK filed Critical DAIICHI TAIKA RENGA KK
Priority to JP63020118A priority Critical patent/JP2872670B2/en
Publication of JPH01197371A publication Critical patent/JPH01197371A/en
Application granted granted Critical
Publication of JP2872670B2 publication Critical patent/JP2872670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融金属容器の内面ライニング用不定形耐火
物に関し、特に流し込み方式で形成されたときの亀裂や
剥離が少なく、かつ優れた耐食性を発揮する溶融金属容
器用内張り材料組成物に関するものである。
Description: TECHNICAL FIELD The present invention relates to an amorphous refractory for lining the inner surface of a molten metal container, and in particular, has less cracking and peeling when formed by a casting method and has excellent corrosion resistance. The present invention relates to a lining material composition for a molten metal container that exerts its effect.

[従来の技術] 取鍋ライニング用不定形耐火物材料としては従来ろう
石質、ろう石−ジルコン質、珪石−ジルコン質、ジルコ
ン質等が主に使用されてきた。
[Related Art] Conventionally, as an amorphous refractory material for ladle lining, pyroxene, pyroxene-zircon, quartzite-zircon, zircon, etc. have been mainly used.

一方近年に至り、真空脱ガス法や連続鋳造法の採用、
更には取鍋精練技術の向上等を受けて高級鋼種が取鍋で
精練されるようになってきた。その為アルゴン撹拌、合
金添加、真空処理等を遂行することの必要上、溶鋼温度
の上昇さらには溶湯滞留時間の延長等で代表される様に
取鍋内での処理条件は益々苛酷になってきている。しか
るに前記した様な従来の汎用材質ではこの苛酷な条件に
対応できず、取鍋の寿命が著しく低下している。さらに
取鍋の侵食に伴う耐火物からの多量の流出成分によっ
て、溶鋼の汚染および鋼中介在物の増加等鋼品質の低下
が問題となりつつある。
On the other hand, in recent years, adoption of vacuum degassing method and continuous casting method,
Furthermore, high-grade steel grades have come to be refined with a ladle in response to improvements in ladle refining techniques. Therefore, it is necessary to perform argon stirring, alloy addition, vacuum processing, etc., and the processing conditions in the ladle are becoming increasingly severe as represented by an increase in the temperature of the molten steel and an extension of the residence time of the molten metal. ing. However, the conventional general-purpose materials as described above cannot cope with such severe conditions, and the life of the ladle is significantly reduced. Furthermore, due to a large amount of outflow components from the refractory due to erosion of the ladle, deterioration of steel quality such as contamination of molten steel and increase of inclusions in steel is becoming a problem.

そこで上記の従来材質の問題点を解消する目的で、ア
ルミナ質、スピネル質、マグドロ質、マグカーボン質等
が試用されてきたが、何れも満足な結果は得られていな
い。
Therefore, alumina, spinel, magdro, magcarbon, and the like have been used for the purpose of solving the above-mentioned problems of the conventional materials, but none of them have been satisfactory.

[発明が解決しようとする課題] まずアルミナ質材料では組織内へのスラグの浸透が大
きく構造スポーリングが発生すること、並びに高塩基度
スラグに対しては化学的侵食を受け耐食性が著しく低下
すること等の問題がある。またスピネル質やマグドロ質
材料は耐食性に優れるが熱間線膨張性が高いため熱スポ
ーリング抵抗性に劣るという問題がある。更にマグカー
ボン質に代表されるカーボン含有材料は耐熱衝撃性に優
れるが鋼中へのカーボンのピックアップの他、高FeOス
ラグや高O2レベル鋼種によるカーボンの消費に伴う耐食
性の低下、更には高熱伝導性(放熱性)による溶鋼温度
の顕著な降下、有機バインダー使用による乾燥時の悪臭
や発揮、並びに背面側(ライニング層における鉄皮側)
の酸化による脆弱劣化等の問題がある。
[Problems to be Solved by the Invention] First, in the case of alumina material, slag penetrates into the structure greatly, causing structural spalling. In addition, high basicity slag undergoes chemical erosion, and the corrosion resistance is significantly reduced. Problems. In addition, spinel and magdro materials have excellent corrosion resistance, but have a problem of poor thermal spalling resistance due to high hot linear expansion. In addition, carbon-containing materials such as mag-carbon materials have excellent thermal shock resistance, but in addition to carbon pickup into steel, decrease in corrosion resistance due to consumption of carbon due to high FeO slag and high O 2 level steel, and high heat Remarkable drop in molten steel temperature due to conductivity (heat dissipation), bad smell and dryness when drying due to use of organic binder, and back side (steel side in lining layer)
There is a problem such as fragile deterioration due to oxidation of the metal.

[課題を解決するための手段] 本発明者らはアルミナ質の低熱間線膨張性や低熱伝導
性及びスピネル質の耐スラグ侵食性を長所として把握
し、またスラグ浸透性が大きく構造スポーリングを生じ
易いというアルミナ質の欠点はスピネル質によって補
い、一方熱間線膨張性が高く熱スポーリングを生じ易い
というスピネル質の欠点は、アルミナ質によって補うと
いう観点から両者を併用することによって、耐スポーリ
ング性及び耐食性の優れた溶融金属容器ライニング用不
定形耐火物を完成するに至り別途特許出願した。しかし
ながら更に検討したところ、自己焼結による材料の収縮
に基づく亀裂の発生については、更に改良を重ねてこれ
を防止する必要があり、上記組成に加えてマグネシアを
添加すれば自己焼結時の昇温に際して該マグネシアが前
記アルミナと反応して二次スピネルを形成し、このとき
の適当な膨張によって亀裂抵抗性が与えられることを知
って本発明を完成した。即ち本発明はアルミナを主成分
とする耐熱性原料5〜95重量部に対してスピネルを主成
分とする耐熱性原料95〜5重量部を含む他、これらの合
計量100重量部に対してマグネシアを主成分とする耐熱
性原料を0.1〜10重量部配合してなる3成分系組成物を
骨材とし、さらにアルミナセメントを2重量部以下(但
し、0重量部を含まない)及び気化製シリカを3重量部
以下(但し、0重量部を含まない)含有することを要旨
とするものである。
Means for Solving the Problems The present inventors have grasped the advantages of low linear thermal expansion property and low thermal conductivity of alumina and slag erosion resistance of spinel as an advantage. The disadvantage of alumina, which is liable to occur, is compensated for by spinel, while the disadvantage of spinel, which has high hot linear expansion and tends to cause thermal spalling, is compensated for by alumina in view of the fact that both are used in combination. A patent application was separately filed for completing an amorphous refractory for lining a molten metal container having excellent poling properties and corrosion resistance. However, further studies have shown that cracks due to material shrinkage due to self-sintering need to be further improved to prevent this, and if magnesia is added to the above composition, the rise during self-sintering will increase. The present invention was completed by knowing that the magnesia reacts with the alumina at the time of heating to form a secondary spinel, and the appropriate expansion at this time imparts crack resistance. That is, the present invention includes 95 to 5 parts by weight of a heat-resistant raw material containing spinel as a main component with respect to 5 to 95 parts by weight of a heat-resistant raw material containing alumina as a main component. A ternary composition comprising 0.1 to 10 parts by weight of a heat-resistant raw material containing as a main component is used as an aggregate, and alumina cement is used in an amount of 2 parts by weight or less (but not including 0 part by weight) and vaporized silica. Is contained in an amount of 3 parts by weight or less (however, excluding 0 parts by weight).

[作用] 取鍋操業では加熱、放冷が繰り返される。従ってスラ
グの吸収や自己焼結によって材料が収縮する傾向を示す
ことがあり、この様な場合は亀裂の発生が大となり、こ
の亀裂から地金の侵入を招き結果的に内張りの剥離に結
びつく。そこで取鍋ライニング材としては耐亀裂性や耐
剥離性の優れた材料を得ることが望まれるが、そのため
には耐スラグ浸透性に優れていることはもちろんのこ
と、材料自体の熱間線膨張率を小さくすることも重要で
ある。この点アルミナ系材料のみを主骨材とした場合
は、熱間線膨張性が低いため熱的スポーリングに対する
抵抗性には優れるが、前述の如く耐スラグ浸透性に劣る
ため構造スポーリングが発生し易い。一方スピネル系原
料のみを主骨材にした場合は逆に構造スポーリングは発
生し難いが熱的スポーリングが発生し易い。本発明では
この両者の長所・短所を巧みに組合せることを要点の一
つとするものである。
[Action] In the ladle operation, heating and cooling are repeated. Accordingly, the material may tend to shrink due to slag absorption or self-sintering. In such a case, cracks are generated, and the cracks cause infiltration of the base metal, resulting in peeling of the lining. Therefore, it is desirable to obtain a material with excellent crack resistance and exfoliation resistance as a ladle lining material. To that end, not only is it excellent in slag penetration resistance, but also the hot linear expansion of the material itself It is also important to reduce the rate. When only the alumina-based material is used as the main aggregate, the resistance to thermal spalling is excellent due to low hot linear expansion, but structural spalling occurs due to poor slag penetration resistance as described above. Easy to do. On the other hand, when only the spinel-based raw material is used as the main aggregate, on the other hand, structural spalling hardly occurs, but thermal spalling tends to occur. In the present invention, one of the main points is to skillfully combine these advantages and disadvantages.

本発明の第2の要点は残存膨張性を与える点に存在す
る。即ち、スピネルの配合によってスラグの耐浸透性が
改善されることについては先に述べた通りであるが、自
己焼結時の材料収縮傾向を完全に改善できた訳ではな
い。そこで本発明においては、耐火物材料に膨張性能を
内在させること、つまり残存膨張性を付与することとし
た。この性能は耐火物材料を加熱した特に該材料が膨張
する性能であり、これによって、アルミナの収縮傾向に
対抗しようというものである。この残存膨張性を与える
に当たっては、マグネシア系原料を前記骨材成分に混合
し、マグネシアとアルミナを使用中の高温下で相互に反
応させ、二次スピネルを生成することによって与えられ
る。しかし二次スピネルの生成が適正量以上になると異
常膨張を招き、見掛気孔率の増大をもたらしてスラグ浸
透の助長あるいは稼動面側焼結層のふくれ等が発生す
る。二次スピネルの生成量及び生成速度はマグネシアの
粒度や添加量によって制御するのが一般的であり、小粒
径及び/或は大添加量であれば二次スピネルの生成が促
進される。
The second essential point of the present invention resides in providing a residual expandability. That is, although the penetration resistance of the slag is improved by the blending of the spinel as described above, the tendency of the material to shrink during self-sintering cannot be completely improved. Thus, in the present invention, the refractory material is made to have an intumescent property, that is, a residual inflation property is imparted. This performance is the ability of the refractory material to heat, especially the material expanding, thereby trying to counteract the tendency of alumina to shrink. In order to provide the residual expansibility, the magnesia-based raw material is mixed with the above-mentioned aggregate component, and the magnesia and the alumina are reacted with each other at a high temperature during use to produce a secondary spinel. However, when the amount of the secondary spinel exceeds a proper amount, abnormal expansion is caused, and the apparent porosity is increased, which promotes slag infiltration or causes blistering of the working surface side sintered layer. Generally, the amount and rate of formation of the secondary spinel are controlled by the particle size and the amount of magnesia, and a small particle size and / or a large amount of addition promotes the formation of the secondary spinel.

次に本発明において試用される耐熱性原料について説
明する。まずアルミナ系原料としては、不純物が少な
く、高温処理されたものが好ましく、例えば電融アルミ
ナや焼結アルミナ或は仮焼アルミナが例示される。天然
のボーキサイトやパン土頁岩はSiO2やTiO2等の不純成分
を多く含むため耐食性に劣るが、コストが低いので場合
によっては使用可能である。スピネル系原料は市販され
ている高純度電融スピネル及び焼結スピネルが推奨され
る。但し不純物の混入が必ずしも排除されるものではな
い。次にマグネシア系原料としては、不純物が極力少な
く、反応性の安定したもの、例えば電融マグネシア,海
水マグネシアクリンカーが良い。天然のマグネシア等は
フラックス成分が多く本発明に係る二次スピネルの生成
による膨張特性付与の効果が不十分であるばかりでな
く、耐食性及び耐スポーリング性を劣化させる。従って
本発明ではアルミナ或はスピネルを主成分とする耐熱性
原料、或はマグネシアを主成分とする耐熱性原料という
表現を採用している。
Next, the heat-resistant raw material used in the present invention will be described. First, as an alumina-based raw material, a material which has a small amount of impurities and is subjected to a high temperature treatment is preferable, and examples thereof include fused alumina, sintered alumina and calcined alumina. Natural bauxite and bread soil shale are poor in corrosion resistance because they contain many impurity components such as SiO 2 and TiO 2 , but can be used in some cases because of low cost. As the spinel-based raw material, commercially available high-purity fused spinel and sintered spinel are recommended. However, entry of impurities is not necessarily excluded. Next, as the magnesia-based raw material, a material containing as little impurities as possible and having a stable reactivity, such as electrofused magnesia and seawater magnesia clinker, is preferable. Natural magnesia and the like have a large amount of flux components, so that not only the effect of imparting expansion characteristics by the formation of the secondary spinel according to the present invention is insufficient, but also the corrosion resistance and spalling resistance are deteriorated. Therefore, in the present invention, the expression of a heat-resistant raw material containing alumina or spinel as a main component or a heat-resistant raw material containing magnesia as a main component is adopted.

これらの耐熱性原料は粉砕して使用されるが、混合時
の空隙率を少なくする為比較的大きい粒子と比較的小さ
い粒子に分けて調製するのが一般的である。従って各原
料毎にその様な2系列の粒度に分けられるが、一方の原
料は大粒径を中心とし、他方の原料を小粒径とすること
も可能であり、この場合スピネルを主成分とするものに
ついてはスラグの耐浸透性を改善するという主旨に鑑
み、また前述のごとく二次スピネル生成の促進という観
点から微細粒子分を多くすることが望まれる。
These heat-resistant raw materials are used after being pulverized, but are generally prepared by dividing into relatively large particles and relatively small particles in order to reduce the porosity at the time of mixing. Therefore, each raw material is divided into such two series of particle sizes, but one raw material can have a large particle size as the center and the other raw material can have a small particle size. In this case, spinel is the main component. In order to improve the penetration resistance of the slag, it is desirable to increase the amount of fine particles from the viewpoint of promoting the formation of secondary spinel as described above.

次にこれら耐熱性原料の配合割合について説明する。
まずアルミナ系原料とスピネル系原料の配合割合につい
ては、前者を100重量部としたとき、アルミナ系原料を
5〜95重量部、残部95〜5重量部をスピネル系原料とす
る。尚好ましいのはアルミナ系原料が15〜85重量部であ
る。アルミナ系原料が5重量部未満ではスピネル組成が
多くなり流し込み材料としての熱間線膨張率の増大、並
びに熱伝導率の増大により耐スポーリング性が低下する
と同時に二次スピネルの生成量が少なくなり、残存膨張
性が低下し、亀裂が発生し易くなる。逆にアルミナ系原
料が95重量部より多くなるとスピネル組成が少なくなる
ため耐スラグ浸透性や耐食性が低下する。
Next, the mixing ratio of these heat-resistant raw materials will be described.
First, regarding the mixing ratio of the alumina-based raw material and the spinel-based raw material, when the former is 100 parts by weight, the alumina-based raw material is 5 to 95 parts by weight, and the remaining 95 to 5 parts by weight is the spinel-based raw material. More preferably, the amount of the alumina-based raw material is 15 to 85 parts by weight. If the amount of the alumina-based material is less than 5 parts by weight, the spinel composition increases, the hot linear expansion coefficient as a casting material increases, and the spalling resistance decreases due to the increase in thermal conductivity, and the amount of secondary spinel generated decreases. In addition, the residual swellability is reduced, and cracks are easily generated. Conversely, if the amount of the alumina-based material is more than 95 parts by weight, the slag penetration resistance and the corrosion resistance decrease because the spinel composition decreases.

マグネシア系原料の添加割合はアルミナ系原料及びス
ピネル系原料との合計量(100重量部)に対して0.1〜10
重量部好ましくは1〜8重量部である。またアルミナ系
原料との重量比という面では、1:20〜1:5の範囲で且つ
スピネル組成値よりアルミナ側であることが望ましい。
0.1重量部未満では膨張性付与の効果がなく、10重量部
を越えると異常膨張によって組織がポーラスとなり、耐
食性及び耐スポーリング性が低下する。粒度については
使用条件に応じて適正な膨張速度が得られるように調整
する。
The addition ratio of the magnesia-based material is 0.1 to 10 with respect to the total amount (100 parts by weight) of the alumina-based material and the spinel-based material.
Parts by weight, preferably 1 to 8 parts by weight. In terms of the weight ratio with respect to the alumina-based raw material, it is desirable that the weight ratio is in the range of 1:20 to 1: 5 and is closer to the alumina side than the spinel composition value.
If the amount is less than 0.1 part by weight, the effect of imparting expandability is not obtained. If the amount exceeds 10 parts by weight, the structure becomes porous due to abnormal expansion, and the corrosion resistance and spalling resistance decrease. The particle size is adjusted according to the use conditions so that an appropriate expansion rate can be obtained.

本発明においては、上記3種類の原料によってアルミ
ナ−スピネル−マグネシアの3成分系骨材を形成し、一
般に外掛と称されている第4成分を配合することによっ
て不定形耐火物が製造され、バインダーとしては従来よ
り使用されている無機系バインダーのうちアルミナセメ
ントを2重量部以下含有させるものであり、高アルミナ
セメントが望ましい。有機系バインダーの使用は前述し
た様に乾燥時の悪臭や発煙の他、背面側の酸化による劣
化を招き、継足補修が不能になる等の欠点を有している
ので好ましくない。上記アルミナセメント以外の無機系
バインダーとしては、珪酸ソーダ,コロイダルシリカ,
アミンシリケート,アルミナゾル,燐酸ソーダ,燐酸ア
ルミニウム,燐酸アルミニウム変成品等を使用すること
ができる。特に気化製シリカを加えることにより製品強
度の一層の向上を図ることができる。
In the present invention, a three-component aggregate of alumina-spinel-magnesia is formed from the above three kinds of raw materials, and an amorphous refractory is produced by blending a fourth component, which is generally called an outer shell, to form a binder. Among them, those containing 2 parts by weight or less of alumina cement among conventionally used inorganic binders, and high alumina cement are desirable. As described above, the use of the organic binder is not preferable because it has disadvantages such as a bad smell at the time of drying, a smoke emission, a deterioration due to oxidation of the back side, and a repair of the thigh. Inorganic binders other than the alumina cement include sodium silicate, colloidal silica,
Amine silicate, alumina sol, sodium phosphate, aluminum phosphate, aluminum phosphate modified product and the like can be used. In particular, the product strength can be further improved by adding vaporized silica.

[実施例] 実施例1〜5 第1表に示す配合割合(重量部)で焼結アルミナ及び
焼結スピネルを使用して本発明の流し込み材用骨材を製
造した。
[Examples] Examples 1 to 5 Aggregates for cast materials of the present invention were manufactured using sintered alumina and sintered spinel at the compounding ratios (parts by weight) shown in Table 1.

上記耐火原料骨材100重量部に対し、バインダーとし
て気化製シリカ3重量部、ハイアルミナセメント2重量
部、燐酸塩(分散剤)0.1重量部を配合して混合し、水
を適量(フロー値180〜190に調整できる量)入れ、混練
後40mm×40mm×160mmの金枠に流し込んだ。これを温度2
0℃,湿度90%以上で24時間養生した後、150℃で24時間
乾燥して試験に供した。得られた本発明流し込み材の性
能試験の結果を第1表に示す。
3 parts by weight of vaporized silica, 2 parts by weight of high alumina cement, and 0.1 part by weight of a phosphate (dispersant) are blended and mixed with 100 parts by weight of the above refractory raw material aggregate, and water is added in an appropriate amount (flow value: 180). After kneading, the mixture was poured into a metal frame of 40 mm x 40 mm x 160 mm. Temperature 2
After curing at 0 ° C. and a humidity of 90% or more for 24 hours, they were dried at 150 ° C. for 24 hours and subjected to a test. Table 1 shows the results of the performance test of the obtained cast material of the present invention.

比較例1〜3 実施例に準じて比較品の流し込み材を製造し、性能試
験に供した。その結果を第1表に示す。試験方法は下記
の通りとした。
Comparative Examples 1 to 3 A casting material of a comparative product was manufactured according to the examples and subjected to a performance test. Table 1 shows the results. The test method was as follows.

(1)乾燥後の試料、及び電気炉で1500℃×3時間焼成
後の試料の物理特性(見掛気孔率,嵩比重)を測定し
た。
(1) The physical properties (apparent porosity, bulk specific gravity) of the dried sample and the sample fired in an electric furnace at 1500 ° C. for 3 hours were measured.

(2)乾燥後の試料、及び電気炉で1500℃×3時間焼成
後の試料の強度特性(曲げ強さ)を測定した。
(2) The strength characteristics (bending strength) of the dried sample and the sample fired in an electric furnace at 1500 ° C. for 3 hours were measured.

(3)電気炉で1500℃×3時間焼成後の線変化率を測定
した。
(3) The linear change rate after firing at 1500 ° C. for 3 hours in an electric furnace was measured.

(4)回転ドラム式侵食テストにより転炉スラグを使用
し、1650℃×2時間の耐食性テストを行い、その侵食深
さ及び浸潤深さを測定した。
(4) Using a converter slag by a rotary drum type erosion test, a corrosion resistance test was performed at 1650 ° C. × 2 hours, and the erosion depth and the immersion depth were measured.

(5)試料を1000℃に保持した電気炉中に10分間挿入
し、その後10分間空冷するというサイクルを繰り返し、
亀裂の発生までの回数を調べた。
(5) Repeat the cycle of inserting the sample into an electric furnace maintained at 1000 ° C. for 10 minutes, and then air cooling for 10 minutes.
The number of times until crack generation was examined.

以上の結果より、本発明の流し込み材は従来のアルミ
ナ系やスピネル系のものに比較し、耐食性及び耐スポー
リング性に優れていることがわかる。
From the above results, it can be seen that the cast material of the present invention is superior in corrosion resistance and spalling resistance as compared with conventional alumina-based and spinel-based materials.

[発明の効果] 本発明の溶融金属容器ライニング用不定形耐火物は上
記の様に構成されているので、従来のアルミナ系或はス
ピネル系不定形耐火物に比較して優れた耐スポーリング
性及び耐食性を有しており、取鍋をはじめとする各種精
練炉の内張り耐火物として最適である。
[Effect of the Invention] Since the amorphous refractory for lining a molten metal container of the present invention is constituted as described above, it has excellent spalling resistance as compared with a conventional alumina-based or spinel-based amorphous refractory. And it has corrosion resistance and is most suitable as a lining refractory for various scouring furnaces such as ladles.

フロントページの続き (56)参考文献 特開 平1−87577(JP,A) 特開 昭60−60986(JP,A) 特開 昭53−134012(JP,A) 特開 昭61−219764(JP,A)Continuation of the front page (56) References JP-A-1-87577 (JP, A) JP-A-60-60986 (JP, A) JP-A-53-134012 (JP, A) JP-A-61-219764 (JP) , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミナを主成分とする耐熱性原料5〜95
重量部に対して、スピネルを主成分とする耐熱性原料を
95〜5重量部含む他、これらの合計量100重量部に対し
てマグネシアを主成分とする耐熱性原料を0.1〜10重量
部配合してなる3成分系組成物を骨材とし、さらにアル
ミナセメントを2重量部以下(但し、0重量部を含まな
い)及び気化製シリカを3重量部以下(但し、0重量部
を含まない)含有することを特徴とする溶融金属容器ラ
イニング用不定形耐火物。
A heat-resistant raw material containing alumina as a main component.
Heat-resistant raw material mainly composed of spinel
In addition to 95 to 5 parts by weight, a ternary composition obtained by mixing 0.1 to 10 parts by weight of a heat-resistant raw material containing magnesia as a main component with respect to the total amount of 100 parts by weight is used as an aggregate. Characterized in that it contains 2 parts by weight or less (but does not include 0 parts by weight) and 3 parts by weight or less (but does not include 0 parts by weight) of vaporized silica. .
JP63020118A 1988-01-29 1988-01-29 Irregular refractories for lining of molten metal containers Expired - Lifetime JP2872670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020118A JP2872670B2 (en) 1988-01-29 1988-01-29 Irregular refractories for lining of molten metal containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020118A JP2872670B2 (en) 1988-01-29 1988-01-29 Irregular refractories for lining of molten metal containers

Publications (2)

Publication Number Publication Date
JPH01197371A JPH01197371A (en) 1989-08-09
JP2872670B2 true JP2872670B2 (en) 1999-03-17

Family

ID=12018206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020118A Expired - Lifetime JP2872670B2 (en) 1988-01-29 1988-01-29 Irregular refractories for lining of molten metal containers

Country Status (1)

Country Link
JP (1) JP2872670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633179B2 (en) * 1989-06-17 1994-05-02 黒崎窯業株式会社 Irregular refractory for pouring

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487577A (en) * 1987-08-29 1989-03-31 Harima Ceramic Co Ltd Monolithic alumina-spinel refractory

Also Published As

Publication number Publication date
JPH01197371A (en) 1989-08-09

Similar Documents

Publication Publication Date Title
JPH11189477A (en) Graphite-containing castable refractory material for mixer car
JP2000219575A (en) Castable refractory
JP2874831B2 (en) Refractory for pouring
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH0633179B2 (en) Irregular refractory for pouring
JP6315037B2 (en) Lined refractories for continuous casting tundish
JP7228733B1 (en) Magnesia carbon brick and its manufacturing method
JP2607963B2 (en) Pouring refractories
JPH01197370A (en) Monolithic refractory for lining molten metal vessel
JP2747734B2 (en) Carbon containing refractories
JPH06199575A (en) Alumina-spinel castable refractory
JPH0725668A (en) Refractory for casting work
JPH07115952B2 (en) Irregular shaped refractory for stainless hot metal ladle and stainless hot metal ladle lining it
JPH06172044A (en) Castable refractory of alumina spinel
JP2006076863A (en) Magnesia-chrome-boron nitride unfired refractory
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
TW202413307A (en) Magnesia-alumina based castable and refractory brick
JP2000191364A (en) Shaped magnesia-chrome refractory
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
JPH09278544A (en) Amorphous refractory material for lining in cupola-furnace
JPH09278546A (en) Amorphous casting refractory for vessel lining used for melted metal and its cast product
JPH1017357A (en) Production of carbon-containing refractory