JPH01197370A - Monolithic refractory for lining molten metal vessel - Google Patents

Monolithic refractory for lining molten metal vessel

Info

Publication number
JPH01197370A
JPH01197370A JP63020117A JP2011788A JPH01197370A JP H01197370 A JPH01197370 A JP H01197370A JP 63020117 A JP63020117 A JP 63020117A JP 2011788 A JP2011788 A JP 2011788A JP H01197370 A JPH01197370 A JP H01197370A
Authority
JP
Japan
Prior art keywords
alumina
spinel
molten metal
weight
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63020117A
Other languages
Japanese (ja)
Inventor
Tsuguyoshi Shibata
柴田 告芳
Toyohiro Ishii
石井 豊浩
Kenji Yamamoto
憲治 山本
Noriaki Nobeoka
延岡 則明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI TAIKA RENGA KK
Original Assignee
DAIICHI TAIKA RENGA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI TAIKA RENGA KK filed Critical DAIICHI TAIKA RENGA KK
Priority to JP63020117A priority Critical patent/JPH01197370A/en
Publication of JPH01197370A publication Critical patent/JPH01197370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the cracking and peeling of a cast product and to allow a refractory to exhibit superior corrosion resistance by using aggregate consisting of alumina- and spinel-based heat resistant starting materials. CONSTITUTION:A blend of 60-95 pts.wt., preferably 50-85 pts.wt. heat resistant starting material based on alumina such as electromelted or sintered alumina with heat resistant starting material based on spinel such as high purity electromelted or sintered spinel is used as aggregate and an inorg. binder such as high alumina cement or colloidal silica and a dispersant such as phosphate are added to the blend to obtain the title refractory.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融金属容器の内面ライニング用不定形耐火物
に関し、特に流し込み方式で形成されたときの亀裂や剥
離が少なく、かつ優れた耐食性を発揮する溶融金属容器
用内張り材料組成物に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a monolithic refractory for lining the inner surface of a molten metal container, and particularly to a monolithic refractory that exhibits less cracking and peeling when formed by a pouring method, and has excellent corrosion resistance. The present invention relates to a lining material composition for a molten metal container that exhibits the following properties.

[従来の技術] 取鍋ライニング用不定形耐火物材料としては従来ろう石
質、ろう石−ジルコン質、珪石−ジルコン質、ジルコン
質等が主に使用されてきた。
[Prior Art] Conventionally, as monolithic refractory materials for ladle lining, waxite, waxite-zircon, silica-zircon, zircon, etc. have been mainly used.

一方近年に至り、真空脱ガス法や連続鋳造法の採用、更
には取鍋精錬技術の向上環を受けて高級鋼種が取鍋で精
錬されるようになってきた。その為アルゴン攪拌、合金
添加、真空処理等を遂行することの必要上、溶鋼温度の
上昇さらには溶湯滞留時間の延長等で代表される様に取
鍋内での処理条件は益々苛酷になってきている。しかる
に前記した様な従来の汎用材質ではこの苛酷な条件に対
応できず、取鍋の寿命が著しく低下している。ざらに取
鍋の侵食に伴う耐火物からの多量の流出成分によって、
溶鋼の汚染および鋼中介在物の増加等鋼品質の低下が問
題となりつつある。
On the other hand, in recent years, with the adoption of vacuum degassing methods and continuous casting methods, and further improvements in ladle refining technology, high-grade steels have come to be refined in ladle. For this reason, processing conditions in the ladle have become increasingly severe, as exemplified by the need to carry out argon stirring, alloy addition, vacuum treatment, etc., as well as increased molten steel temperature and extended molten metal residence time. ing. However, the conventional general-purpose materials mentioned above cannot cope with these harsh conditions, and the life of the ladle is significantly reduced. Due to the large amount of components flowing out from the refractories due to the erosion of the ladle,
Deterioration of steel quality, such as contamination of molten steel and increase in inclusions in steel, is becoming a problem.

そこで上記の従来材質の問題点を解消する目的で、アル
ミナ質、スピネル質、マグドロ貿、マグカーボン質等が
試用されてきたが、何れも満足な結果は得られていない
In order to solve the above-mentioned problems with conventional materials, materials such as alumina, spinel, Magdrome, and Magcarbon have been tried, but no satisfactory results have been obtained with any of them.

[発明が解決しようとする課題] まずアルミナ質材料では組織内へのスラグの浸透が大き
く構造スポーリングが発生すること、並びに高塩基度ス
ラグに対しては化学的侵食を受け耐食性が著しく低下す
ること等の問題がある。ま′たスピネル質やマグドロ質
材料は耐食性に優れるが熱間線膨張性が高いため熱スポ
ーリング抵抗性に劣るという問題がある。更にマグカー
ボン質に代表されるカーボン含有材料は耐熱ffT撃性
に優れるが鋼中へのカーボンのピックアップの他、高F
eOスラグや高02レベル鋼種によるカーボンの消費に
伴う耐食性の低下、更には高熱伝導性(放熱性)による
溶鋼温度の顕著な降下、有機バインダー使用による乾燥
時の悪臭や発煙、並びに背面側(ライニング層における
鉄皮側)の酸化による脆弱劣化等の問題がある。
[Problems to be solved by the invention] First, in alumina materials, the penetration of slag into the structure is large and structural spalling occurs, and the corrosion resistance of high basicity slags is significantly reduced due to chemical attack. There are other problems. Furthermore, although spinel and maguro materials have excellent corrosion resistance, they have a problem of poor thermal spalling resistance due to their high hot linear expansion. Furthermore, carbon-containing materials, such as magcarbon, have excellent heat resistance and ffT impact resistance, but in addition to picking up carbon into steel,
Decrease in corrosion resistance due to consumption of carbon due to eO slag and high 02 level steel types, remarkable drop in molten steel temperature due to high thermal conductivity (heat dissipation), foul odor and smoke during drying due to the use of organic binders, and problems with the back side (lining). There are problems such as brittle deterioration due to oxidation on the iron skin side of the layer.

[課題を解決するための手段] 本発明者らはアルミナ質の低熱間線膨張性や低熱伝導性
及びスピネル質の耐スラグ侵食性を長所として把握し、
またスラグ浸透性が大きく構造スポーリングを生じ易い
というアルミナ質の欠点はスピネル質によって補い、一
方熱間線膨張性が高く熱スポーリングを生じ易いという
スピネル質の欠点は、アルミナ質によりて補うという観
点から両者を併用することによって、耐スポーリング性
及び耐食性の優れた溶融金属容器ライニング用不定形耐
火物を完成するに至った。即ち本発明はアルミナを主成
分とする耐熱性原料50〜95重量部、スピネルを主成
分とする耐熱性原料50〜5重量部からなる組成物を骨
材として含有することを要旨とするものである。
[Means for Solving the Problems] The present inventors grasped the low hot linear expansion and low thermal conductivity of alumina and the slag erosion resistance of spinel as advantages,
In addition, spinel makes up for the drawbacks of alumina, which has high slag permeability and tends to cause structural spalling, while alumina makes up for the drawbacks of spinel, which has high hot linear expansion and tends to cause thermal spalling. By using both in combination, we have completed a monolithic refractory for lining molten metal containers that has excellent spalling resistance and corrosion resistance. That is, the gist of the present invention is to contain as an aggregate a composition consisting of 50 to 95 parts by weight of a heat-resistant raw material containing alumina as a main component and 50 to 5 parts by weight of a heat-resistant raw material containing spinel as a main component. be.

[作用] 取鍋操業では加熱、放冷が繰り返される。従ってスラグ
の吸収や自己焼結によって材料が収縮する傾向を示すこ
とがあり、この様な場合は亀裂の発生が大となり、この
亀裂から地金の侵入を招き結果的に内張りの剥離に結び
つく、そこで取鍋ライニング材としては耐亀裂性や耐剥
離性の優れた材料を得ることが望まれるが、そのために
は耐スラグ浸透性に優れていることはもちろんのこと、
材料自体の熱間線膨張率を小さくすることも重要である
。この点アルミナ系原料のみを主骨材とした場合は、熱
間線膨張性が低いため熱的スポーリングに対する抵抗性
には優れるが、前述の如く耐スラグ浸透性に劣るため構
造スポーリングが発生し易い。一方スピネル系原料のみ
を主骨材にした場合は逆に構造スポーリングは発生し難
いが熱的スポーリングが発生し易い。本発明ではこの両
者の長所・短所を巧みに組合せることを骨子とするもの
である。
[Function] In ladle operation, heating and cooling are repeated. Therefore, the material may show a tendency to shrink due to slag absorption or self-sintering, and in such cases, cracks are likely to occur, allowing metal to enter through the cracks, resulting in peeling of the lining. Therefore, it is desirable to obtain a material with excellent crack resistance and peeling resistance as a ladle lining material.
It is also important to reduce the hot linear expansion coefficient of the material itself. In this regard, when only alumina-based raw materials are used as the main aggregate, the thermal spalling resistance is excellent due to low hot linear expansion, but as mentioned above, structural spalling occurs due to poor slag penetration resistance. Easy to do. On the other hand, when only spinel raw materials are used as the main aggregate, structural spalling is less likely to occur, but thermal spalling is more likely to occur. The main point of the present invention is to skillfully combine the advantages and disadvantages of both.

使用するアルミナ系原料としては、不純物が少なく、高
温処理されたものが好ましく、例えば電融アルミナや焼
結アルミナ或は仮焼アルミナが例示される。天然のボー
キサイトやパン土頁岩はSin、やTiO2等の不純成
分を多く含むため耐食性に劣るが、コストが低いので場
合によっては使用可能である。スピネル系原料は市販さ
れている高純度電融スピネル及び焼結スピネルが推奨さ
れる。但し不純物の混入が必ずしも排除されるものでは
hい。従って本発明ではアルミナ或はスピネルを主成分
とする耐熱性原料という表現を採用している。尚これら
の耐熱性原料は粉砕して使用されるが、混合時の空隙率
を少なくする為比較的大きい粒子と比較的小さい粒子に
分けて調製するのが一般的である。従って各原料毎にそ
の様な2系列の粒度に分けられるが、一方の原料は大粒
径を中心とし、他方の原料を小粒径とすることも可能で
あり、この場合スピネルを主成分とするものについては
スラグの耐浸透性を改善するという主旨に鑑み微細粒子
分を多くすることが望まれる。
The alumina-based raw material to be used is preferably one that contains few impurities and has been treated at a high temperature, such as fused alumina, sintered alumina, or calcined alumina. Natural bauxite and pansoil shale contain a large amount of impurity components such as Sin and TiO2, and therefore have poor corrosion resistance, but are low in cost and can be used in some cases. Commercially available high-purity fused spinel and sintered spinel are recommended as spinel raw materials. However, contamination with impurities cannot necessarily be excluded. Therefore, in the present invention, the term "heat-resistant raw material containing alumina or spinel as a main component" is adopted. Although these heat-resistant raw materials are used after being crushed, they are generally prepared by dividing them into relatively large particles and relatively small particles in order to reduce the porosity during mixing. Therefore, each raw material is divided into two types of particle sizes, but it is also possible for one raw material to have mainly large particle sizes and the other raw material to have small particle sizes, in which case spinel is the main component. In the case of slag, it is desirable to increase the fine particle content in view of the purpose of improving the penetration resistance of the slag.

アルミナ系原料とスピネル系原料の配合割合は両者の合
算量100重量部中、アルミナ系原料を50〜95!i
量部とし、残部50〜5重量部をスピネル系原料とする
。より好ましい比率はアルミナ系原料が50〜85重量
部である。アルミナ系原料が50重量部未満ではスピネ
ル系原料によって熱間線膨張率が大となり耐久ポーリン
グ性が劣る。一方95重量部以上では、耐久ラグ浸透性
及び耐食性が低下する。
The blending ratio of alumina-based raw materials and spinel-based raw materials is 50 to 95 parts by weight out of 100 parts by weight of both! i
parts by weight, and the remaining 50 to 5 parts by weight is spinel-based raw material. A more preferable ratio is 50 to 85 parts by weight of the alumina-based raw material. If the alumina-based raw material is less than 50 parts by weight, the hot linear expansion coefficient becomes large due to the spinel-based raw material, resulting in poor poling durability. On the other hand, if it exceeds 95 parts by weight, durable lag permeability and corrosion resistance will decrease.

上記Z fit類の原料によって骨材を形成し、一般に
外掛と称されている第3成分を配合することによって不
定形耐火物が製造される。まずバインダーとしては従来
より使用されている無機系バインダーを使用することが
望ましい。有機系バインダーの使用は前述した様に乾燥
時の悪臭や発煙の他、背面側の酸化による劣化を招き、
継足補修が不能になる等の欠点を有しているので好まし
くない、使用するバインダーを更に詳述すると、高アル
ミナセメント、珪酸ソーダ、コロイダルシリカ、アミン
シリケート、アルミナゾル、燐酸ソーダ、g!4酸アル
ミニウム、燐酸アルミニウム変成品等を使用することが
できる。
A monolithic refractory is manufactured by forming an aggregate using the above-mentioned Z fit raw materials and adding a third component generally referred to as an outer layer. First, it is desirable to use a conventionally used inorganic binder as the binder. As mentioned above, the use of organic binders not only causes bad odor and smoke when drying, but also causes deterioration due to oxidation on the back side.
In more detail, the binders to be used, which are undesirable because they have disadvantages such as making joint repair impossible, are: high alumina cement, sodium silicate, colloidal silica, amine silicate, alumina sol, sodium phosphate, g! Aluminum 4-acid, modified aluminum phosphate, etc. can be used.

[実施例] 実施例1〜3 第1表に示す配合割合(重量部)で焼結アルミナ及び焼
結スピネルを使用して本発明の流し込み材用骨材を製造
した。
[Examples] Examples 1 to 3 Aggregates for pouring materials of the present invention were manufactured using sintered alumina and sintered spinel at the mixing ratios (parts by weight) shown in Table 1.

上記耐火原料骨材100重量部に対し、バインダーとし
て気化製シリカ3重量部、ハイアルミナセメント2重量
部、燐酸塩(分散剤)0.1重量部を配合して混合し、
水を適量(フロー値180〜190に調整できる量)入
れ、混練後40mmx40mmX 160mmの金枠に
流し込んだ。これを温度20℃、湿度90%以上で24
時間養生した後、105℃で24時間乾燥して試験に供
した。
To 100 parts by weight of the above refractory raw material aggregate, 3 parts by weight of vaporized silica as a binder, 2 parts by weight of high alumina cement, and 0.1 part by weight of phosphate (dispersant) are mixed.
An appropriate amount of water (an amount that can be adjusted to a flow value of 180 to 190) was added, and after kneading, the mixture was poured into a metal frame measuring 40 mm x 40 mm x 160 mm. 24 hours at a temperature of 20℃ and a humidity of 90% or higher.
After curing for an hour, it was dried at 105° C. for 24 hours and used for testing.

得られた本発明流し込み材の性能試験の結果を第1表に
示す。
Table 1 shows the results of the performance test of the obtained pourable material of the present invention.

比較例1〜2 実施例に準じて比較品の流し込み材を製造し、性能試験
に供した。その結果を第1表に示す。試験方法は下記の
通りとした。
Comparative Examples 1 and 2 Comparative pouring materials were manufactured according to the examples and subjected to performance tests. The results are shown in Table 1. The test method was as follows.

(1)乾燥後の試料、及び電気炉で1500℃×3時間
焼成後の試料の物理特性(見掛気孔率。
(1) Physical properties (apparent porosity) of the sample after drying and the sample after firing at 1500°C for 3 hours in an electric furnace.

嵩比重)を測定した。Bulk specific gravity) was measured.

(2)乾燥後の試料、及び電気炉で1500℃×3時間
焼成後の試料の強度特性(曲げ強さ)を測定した。
(2) The strength characteristics (bending strength) of the sample after drying and the sample after firing at 1500° C. for 3 hours in an electric furnace were measured.

(3)電気炉で1500℃×3時間焼成後の線変化率を
測定した。
(3) The linear change rate after firing at 1500° C. for 3 hours in an electric furnace was measured.

(4)熱膨張測定装置で1000℃までの熱間線膨張率
を測定した。
(4) The hot linear expansion coefficient up to 1000° C. was measured using a thermal expansion measuring device.

(5)回転ドラム式侵食テストにより転炉スラグを使用
し、1650℃×2時間の耐食性テストを行い、その侵
食深さ及び浸潤深さを測定した。
(5) A corrosion resistance test was conducted at 1650° C. for 2 hours using a rotary drum type erosion test using converter slag, and the erosion depth and infiltration depth were measured.

(6)試料を1000℃に保持した電気炉中に10分間
挿入し、その後10分間空冷するというサイクルを繰り
返し、亀裂の発生までの回数を調べた。
(6) The sample was inserted into an electric furnace maintained at 1000° C. for 10 minutes, and then air-cooled for 10 minutes, a cycle repeated, and the number of times until cracking occurred was determined.

以上の結果より、本発明の流し込み材は従来のアルミナ
系やスピネル系のものに比較し、耐食性及び耐久ポーリ
ング性に優れていることがわかる。
From the above results, it can be seen that the casting material of the present invention has excellent corrosion resistance and durable poling property compared to conventional alumina-based and spinel-based materials.

[発明の効果] 本発明の溶融金属容器ライニング用不定形耐火物は上記
の様に構成されているので、従来のアルミナ系或はスピ
ネル系不定形耐火物に比較して優れた耐久ポーリング性
及び耐食性を有しており、取鍋をはじめとする各種精錬
炉の内張り耐火物として最適である。
[Effects of the Invention] Since the monolithic refractory for lining molten metal containers of the present invention is configured as described above, it has excellent durability and poling property compared to conventional alumina-based or spinel-based monolithic refractories. It has corrosion resistance and is ideal as a refractory lining for various types of smelting furnaces, including ladles.

Claims (1)

【特許請求の範囲】[Claims] アルミナを主成分とする耐熱性原料50〜95重量部、
スピネルを主成分とする耐熱性原料50〜5重量部から
なる組成物を骨材として含有することを特徴とする溶融
金属容器ライニング用不定形耐火物。
50 to 95 parts by weight of a heat-resistant raw material containing alumina as a main component,
A monolithic refractory for lining a molten metal container, comprising as an aggregate a composition consisting of 50 to 5 parts by weight of a heat-resistant raw material containing spinel as a main component.
JP63020117A 1988-01-29 1988-01-29 Monolithic refractory for lining molten metal vessel Pending JPH01197370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020117A JPH01197370A (en) 1988-01-29 1988-01-29 Monolithic refractory for lining molten metal vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020117A JPH01197370A (en) 1988-01-29 1988-01-29 Monolithic refractory for lining molten metal vessel

Publications (1)

Publication Number Publication Date
JPH01197370A true JPH01197370A (en) 1989-08-09

Family

ID=12018179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020117A Pending JPH01197370A (en) 1988-01-29 1988-01-29 Monolithic refractory for lining molten metal vessel

Country Status (1)

Country Link
JP (1) JPH01197370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06629A (en) * 1991-02-20 1994-01-11 Nippon Steel Corp Hollow fire resistant material for molten metal vessel with induction heating device
FR2707379A1 (en) * 1993-07-09 1995-01-13 Usinor Sacilor DC arc furnace for melting metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06629A (en) * 1991-02-20 1994-01-11 Nippon Steel Corp Hollow fire resistant material for molten metal vessel with induction heating device
FR2707379A1 (en) * 1993-07-09 1995-01-13 Usinor Sacilor DC arc furnace for melting metals

Similar Documents

Publication Publication Date Title
JP2002503630A (en) Alumina-silicon carbide-carbon refractory castable containing magnesium aluminate spinel
WO2014170424A2 (en) Methods for producing silicon carbide whisker-reinforced refractory composition
JP2874831B2 (en) Refractory for pouring
JPH01197370A (en) Monolithic refractory for lining molten metal vessel
CN108863408A (en) A kind of preparation method of ZrN-SiAlON-SiC-C multiple phase refractory material
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JPS5855379A (en) Refractory castable for ladle lining
JPH026373A (en) Cast amorphous refractory
JP3751135B2 (en) Indefinite refractory
Nourbakhsh INCREASING DURABILITY OF LADLE LINING REFRACTORIES BY UTILISING Al 2 O 3-MgO-C BRICKS
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JP2000309818A (en) Sleeve refractory in steel tapping hole of converter for steelmaking
JP2704249B2 (en) Basic amorphous refractories for induction furnaces
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
JP2747734B2 (en) Carbon containing refractories
JPS632911B2 (en)
JP6464831B2 (en) Immersion nozzle for continuous casting and method for continuous casting of steel
JPH0572345B2 (en)
JPH09278544A (en) Amorphous refractory material for lining in cupola-furnace
JPS63157746A (en) Submerged nozzle for continuous casting
JPH0477366A (en) Castable monolithic refractory
JPH03205375A (en) Castable refractory
JPH0380154A (en) Carbon brick
JPH04139075A (en) Alumina-chromia monolithic refractory
JPH07291710A (en) Graphite containing refractory