JPS632911B2 - - Google Patents

Info

Publication number
JPS632911B2
JPS632911B2 JP58121573A JP12157383A JPS632911B2 JP S632911 B2 JPS632911 B2 JP S632911B2 JP 58121573 A JP58121573 A JP 58121573A JP 12157383 A JP12157383 A JP 12157383A JP S632911 B2 JPS632911 B2 JP S632911B2
Authority
JP
Japan
Prior art keywords
graphite
refractory
alumina
refractories
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58121573A
Other languages
Japanese (ja)
Other versions
JPS6016866A (en
Inventor
Kenji Ichikawa
Teiichi Fujiwara
Shohei Hara
Juji Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP58121573A priority Critical patent/JPS6016866A/en
Publication of JPS6016866A publication Critical patent/JPS6016866A/en
Publication of JPS632911B2 publication Critical patent/JPS632911B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶銑の脱硫、脱燐、脱珪等の処理(溶
銑予備処理)を行なう溶銑予備処理用容器の耐火
物に関して極めて耐食性の優れた耐火物を提供す
るものである。 現在溶銑の脱硫、脱燐、脱珪を行なう代表的な
窯炉は取鍋及び混銑車が用いられる。 以下混銑車を使用した場合について説明するが
混銑車は従来溶銑の搬送容器として使用された。 しかし最近脱硫、脱燐、脱珪処理のため
Na2CO3やCaO(CaF2)の処理剤をランスパイプ
にとつて窯内へ吹込み精錬炉として使用されてい
る。したがつて従来の耐火物であるろう石、高級
粘土質及び高アルミナ質れんがでは安定した炉寿
命が得られなくなつてきた。そのためにアルミナ
−カーボン質或はマグネシア−カーボン質の如き
カーボン含有耐火物が開発され適用されている。
すなわちこれら処理剤による侵食作用に対して高
い耐食性を有する耐火材料としてはアルミナ
(Al2O3)、マグネシア(MgO)、スピネル(MgO
−Al2O3)があげられる。しかし、耐火材料の耐
食性を100%発揮させるためには不純物の混入を
極力抑制する必要があり、特にマトリツクス部に
不純物を含有させないことが望ましい。しかしア
ルミナ、マグネシア及びスピネルを主耐火材料と
する耐火物は溶銑予備処理操業の条件下では熱的
スポーリングに対し非常に弱い。 すなわち、使用中の温度変化熱応力によつて表
面に亀裂が生じこれに起因する剥離現象が発生し
易いという欠点を有する。たとえばアルミナは、
熱間線膨張率が1000℃で0.86%と高く熱伝導率が
1000℃で5cal/mhr℃と比較的小さい。これは使
用中稼働面と背部とでは耐火物内部の特性値が大
きく異なることであり、したがつて、発生熱応力
が大きく熱的スポーリングを起し易い。そこでこ
の様な熱スポーリング性を改善するために黒鉛が
使用されている。すなわち黒鉛は通常の形で添加
されるが黒鉛の熱間線膨張率はアルミナの約半分
であり、熱伝導率は20倍と極めて高く優れた耐熱
スポーリング性を有している。 このようにアルミナ、マグネシア、スピネルの
耐火材料をベースとして黒鉛を添加し耐熱スポー
リング性を改良した不焼成耐火物が使用されてい
る。 しかし、黒鉛は本来ソーダ系のフラツクス等に
対する耐食性に極めて劣る性質を有し、また黒鉛
の酸化による耐火物の品質劣化が生じる。たとえ
ばアルミナカーボン系耐火物においてはマトリツ
クス部が先行的に損耗する結果となり、耐食性が
低下する。このような理由から耐食性低下に関与
する黒鉛の配合量は可能な限り少なくすることが
よいとの結論である。 しかし、従来の黒鉛を添加して熱スポーリング
を抑制するためには黒鉛添加量が減少すると下記
の如き問題のあることを使用後耐火物を詳しく解
析し原因を究明した。 即ち、黒鉛添加量の減少は耐火物の組織内部で
黒鉛が不均一に分散しており、使用中に黒鉛を介
在しないアルミナ粒とアルミナ粒が受熱の影響に
よつて直接結合し、耐火物組織上アルミナの一体
化組織をなして熱スポーリングの抑制効果が十分
でないことを知見した。 この対策として市販されている積層状になつて
いる黒鉛(比表面積最高約1100cm2/g:比表面積
の計算はJIS R5201による)をさらに薄肉に剥離
して少なくとも比表面積を1500cm2/gとし、その
物を添加することによつて均一に分散できること
を発見した。この場合黒鉛の粒度は比表面積で判
断することができる。 従つて本発明は比表面積1500cm2/g以上の鱗片
状黒鉛を5〜25重量%含有する耐火骨材を混練成
形後、乾燥或いは乾燥後焼成することを特徴とす
る、溶銑予備処理容器用黒鉛含有耐火物に関す
る。 比表面積1500cm2/g以上のものを使用すると5
〜25重量%のカーボン配合比で十分に熱スポーリ
ング性をもたせることが可能である。 上記の如く黒鉛の比表面積は1500cm2/g以上と
限定した理由は黒鉛の理想的な形状はC軸を薄く
することであつてa軸B軸はできるだけ長い方が
よい。 したがつて粒径で管理するのは適当でなく比表
面積で管理するのがよい。 次に配合量を5〜25重量%と限定した理由とし
ては黒鉛が25重量%を超えると耐食性に関与する
アルミナ、マグネシア等の耐火材料が減少し耐火
物全体の耐食性が低下する。 また5重量%未満になると熱スポーリングの抑
制効果が得られない。 本発明の耐火材料としては、アルミナ、スピネ
ル、マグネシア、炭化珪素、Al、Al−Feたる金
属物質及び窒化珪素等の従来の耐火材を骨材とし
て使用し、ピツチ及びフエノール樹脂をバインダ
ーとして配し、比表面積1500cm2/g以上の鱗状黒
鉛を5〜25重量%含有する耐火性骨材を混練成形
後、乾燥(不焼成)或いは乾燥後焼成するもので
ある。 実施例 1 第1表に示す配合割合で混練し、乾燥すること
によつて得られた実施例1−1〜1−5及び比較
例1−6〜1−9不焼成耐火物を第1図に示す侵
食試験装置に内張りする。第1図のAは実施例及
び比較例不焼成耐火物、Bはスラグ、Cは酸素プ
ロパン燃焼ガスをそれぞれ示す。第2図は第1図
の−を切断した時の断面図であり、Aは実施
例及び比較例不焼成耐火物、Bはスラグを示す。
侵食試験装置による熱スポーリング性及び耐食性
試験の試験条件は酸化物として表わしてNa2O/
SiO2=3の組成を持つスラグを使用し1500℃で
5時間加熱したものである。装置の回転速度は2
1/2rpmである。試験結果は第1表および第3図
に示す。第3図は試料を第2図の−で切断し
た時の切断面の侵食状態を示したものであり、こ
れより耐食性は、黒鉛を減少させる程良い結果が
得られた。比較例試料は侵食量も多くまた熱スポ
ーリング性亀裂も発生していることがわかり、黒
鉛の添加量は5〜25%の範囲がよいことがわか
る。
The present invention provides a refractory having extremely excellent corrosion resistance as a refractory for a hot metal pretreatment vessel in which treatments such as desulfurization, dephosphorization, and desiliconization of hot metal (hot metal pretreatment) are carried out. At present, typical kilns for desulfurization, dephosphorization, and desiliconization of hot metal use a ladle and a mixing wheel. The case where a pig iron mixer car is used will be explained below, but the pig iron mixer car has conventionally been used as a conveyor container for hot metal. However, recently due to desulfurization, dephosphorization, and desiliconization treatments,
It is used as a refining furnace by injecting treatment agents such as Na 2 CO 3 and CaO (CaF 2 ) into the kiln through a lance pipe. Therefore, it has become impossible to obtain a stable furnace life with conventional refractories such as waxite, high-grade clay, and high-alumina bricks. For this purpose, carbon-containing refractories such as alumina-carbon and magnesia-carbon materials have been developed and used.
In other words, alumina (Al 2 O 3 ), magnesia (MgO), and spinel (MgO
−Al 2 O 3 ). However, in order to achieve 100% corrosion resistance of the refractory material, it is necessary to suppress the inclusion of impurities as much as possible, and it is particularly desirable not to include impurities in the matrix portion. However, refractories based on alumina, magnesia, and spinel are very susceptible to thermal spalling under conditions of hot metal pretreatment operations. That is, it has the disadvantage that cracks occur on the surface due to temperature change and thermal stress during use, and peeling phenomenon is likely to occur due to this. For example, alumina
High thermal conductivity with a hot linear expansion coefficient of 0.86% at 1000℃
It is relatively small at 5cal/mhr℃ at 1000℃. This is because the internal characteristic values of the refractory differ greatly between the working surface and the back during use, and therefore the generated thermal stress is large and thermal spalling is likely to occur. Therefore, graphite is used to improve such thermal spalling properties. In other words, graphite is added in the usual form, but graphite's hot linear expansion coefficient is about half that of alumina, its thermal conductivity is extremely high, 20 times higher, and it has excellent heat spalling resistance. In this way, unfired refractories are used that are based on refractory materials such as alumina, magnesia, and spinel and have graphite added thereto to improve heat spalling resistance. However, graphite inherently has extremely poor corrosion resistance against soda-based fluxes and the like, and the quality of refractories deteriorates due to oxidation of graphite. For example, in alumina-carbon refractories, the matrix portion is worn out in advance, resulting in a decrease in corrosion resistance. For these reasons, it has been concluded that the amount of graphite involved in reducing corrosion resistance should be minimized as much as possible. However, in order to suppress thermal spalling by adding conventional graphite, the following problems occur when the amount of graphite added decreases, and the cause was determined by detailed analysis of used refractories. In other words, the decrease in the amount of graphite added is due to the non-uniform distribution of graphite within the structure of the refractory, and during use, alumina grains without graphite are directly bonded to each other due to the influence of heat reception, resulting in a reduction in the structure of the refractory. It was found that the effect of suppressing thermal spalling is not sufficient due to the integrated structure of upper alumina. As a countermeasure to this, commercially available laminated graphite (specific surface area maximum of approximately 1100 cm 2 /g; calculation of specific surface area is based on JIS R5201) is further peeled off to make the specific surface area at least 1500 cm 2 /g. It was discovered that uniform dispersion could be achieved by adding this substance. In this case, the particle size of graphite can be determined by the specific surface area. Therefore, the present invention provides graphite for a hot metal pretreatment vessel, which is characterized in that a refractory aggregate containing 5 to 25% by weight of flaky graphite with a specific surface area of 1500 cm 2 /g or more is kneaded and formed, and then dried or fired after drying. Regarding contained refractories. 5 when using a material with a specific surface area of 1500 cm 2 /g or more.
It is possible to provide sufficient thermal spalling properties with a carbon blending ratio of ~25% by weight. The reason why the specific surface area of graphite is limited to 1500 cm 2 /g or more as described above is that the ideal shape of graphite is to make the C axis thin, and it is better to make the a axis and the B axis as long as possible. Therefore, it is not appropriate to control by particle size, but it is better to control by specific surface area. Next, the reason why the blending amount is limited to 5 to 25% by weight is that if graphite exceeds 25% by weight, refractory materials such as alumina and magnesia that are involved in corrosion resistance decrease, and the corrosion resistance of the entire refractory decreases. Moreover, if it is less than 5% by weight, the effect of suppressing thermal spalling cannot be obtained. The fire-resistant material of the present invention uses conventional fire-resistant materials such as alumina, spinel, magnesia, silicon carbide, Al, Al-Fe metal substances, and silicon nitride as aggregates, and uses pitch and phenolic resin as binders. A refractory aggregate containing 5 to 25% by weight of scaly graphite having a specific surface area of 1500 cm 2 /g or more is kneaded and formed, and then dried (unfired) or fired after drying. Example 1 Examples 1-1 to 1-5 and Comparative Examples 1-6 to 1-9 unfired refractories obtained by kneading and drying in the proportions shown in Table 1 are shown in Figure 1. Line the erosion test equipment shown in . In FIG. 1, A indicates the unfired refractories of Examples and Comparative Examples, B indicates slag, and C indicates oxygen-propane combustion gas. FIG. 2 is a sectional view taken along the line - in FIG. 1, where A indicates the unfired refractories of Examples and Comparative Examples, and B indicates slag.
The test conditions for thermal spalling and corrosion resistance tests using an erosion testing device were Na 2 O/
A slag with a composition of SiO 2 =3 was used and heated at 1500°C for 5 hours. The rotation speed of the device is 2
It is 1/2 rpm. The test results are shown in Table 1 and Figure 3. FIG. 3 shows the corrosion state of the cut surface when the sample was cut at - in FIG. 2, and it can be seen from this that the corrosion resistance was better as graphite was reduced. It can be seen that the comparative sample has a large amount of erosion and thermal spalling cracks, indicating that the amount of graphite added is preferably in the range of 5 to 25%.

【表】 実施例 2 第2表に示す配合割合で実炉テスト不焼成耐火
物を作成して250トン混銑車スラグラインにおい
て実操業を行なつた。操業はCaO系処理材による
脱硫操業である。 得られた結果は第2表に示すように比較例2−
4(従来品)に比較して、耐食性は約20%優れ、
熱スポーリング並びに熱応力による剥離損傷は全
くなかつた。
[Table] Example 2 Unfired refractories for actual furnace testing were prepared using the compounding ratios shown in Table 2, and actual operations were carried out in a 250-ton mixed pig iron car slag line. The operation is a desulfurization operation using CaO-based treated materials. The obtained results are shown in Table 2 for Comparative Example 2-
Compared to 4 (conventional product), corrosion resistance is approximately 20% better.
There was no thermal spalling or peeling damage due to thermal stress.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は侵食試験装置で、第2図は第1図中の
−を切断した断面図であり、第3図は侵食試
験後の試料を第2図の−で切断した時の切断
面の侵食状態を示す図である。図中:A……(実
施例または比較例)耐火物、B……スラグ、C…
…酸素プロパン燃焼ガス。
Figure 1 is the erosion test device, Figure 2 is a cross-sectional view taken at - in Figure 1, and Figure 3 is a cross-sectional view of the sample after the erosion test taken at - in Figure 2. It is a figure showing an erosion state. In the figure: A... (Example or Comparative Example) Refractory, B... Slag, C...
...oxygen-propane combustion gas.

Claims (1)

【特許請求の範囲】[Claims] 1 比表面積1500cm2/g以上の鱗片状黒鉛を5〜
25重量%含有する耐火骨材を混練成形後、乾燥或
いは乾燥後焼成することを特徴とする溶銑予備処
理容器用黒鉛含有耐火物。
1 5 to 5 pieces of flaky graphite with a specific surface area of 1500 cm 2 /g or more
1. A graphite-containing refractory for a hot metal pretreatment vessel, characterized in that a refractory aggregate containing 25% by weight is kneaded and formed and then dried or fired after drying.
JP58121573A 1983-07-06 1983-07-06 Graphite-containing refractories Granted JPS6016866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121573A JPS6016866A (en) 1983-07-06 1983-07-06 Graphite-containing refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121573A JPS6016866A (en) 1983-07-06 1983-07-06 Graphite-containing refractories

Publications (2)

Publication Number Publication Date
JPS6016866A JPS6016866A (en) 1985-01-28
JPS632911B2 true JPS632911B2 (en) 1988-01-21

Family

ID=14814575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121573A Granted JPS6016866A (en) 1983-07-06 1983-07-06 Graphite-containing refractories

Country Status (1)

Country Link
JP (1) JPS6016866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112441U (en) * 1989-02-28 1990-09-07

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1267660A (en) * 1986-04-21 1990-04-10 Vesuvius Crucible Company Carbon-bonded refractory bodies
DE10000415A1 (en) * 2000-01-07 2001-09-06 Alstom Power Schweiz Ag Baden Method and device for suppressing flow vortices within a fluid power machine
GB2393500B (en) * 2003-01-29 2004-09-08 Morgan Crucible Co Induction furnaces and components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462210A (en) * 1977-10-27 1979-05-19 Nippon Crucible Co Aluminaacarbonnsilicon carbide base refractory for sliding nozzle
JPS5770213A (en) * 1980-10-21 1982-04-30 Kawasaki Steel Corp Container for treating molten pig iron on outside of furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462210A (en) * 1977-10-27 1979-05-19 Nippon Crucible Co Aluminaacarbonnsilicon carbide base refractory for sliding nozzle
JPS5770213A (en) * 1980-10-21 1982-04-30 Kawasaki Steel Corp Container for treating molten pig iron on outside of furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112441U (en) * 1989-02-28 1990-09-07

Also Published As

Publication number Publication date
JPS6016866A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
JP3615400B2 (en) Unfired carbon-containing refractories and molten metal containers
JP5073791B2 (en) Alumina-magnesia refractory brick and method for producing the same
EP0096508B1 (en) Magnesia-carbon refractory
JPS632911B2 (en)
JP6315037B2 (en) Lined refractories for continuous casting tundish
JP2000309818A (en) Sleeve refractory in steel tapping hole of converter for steelmaking
JPS6212655A (en) Carbon-containing refractory brick
JP3420360B2 (en) Refractory brick for hot metal pretreatment vessel
JPS61101471A (en) Basic monolithic refractories
JP2747734B2 (en) Carbon containing refractories
JPH0925160A (en) Production of carbon-containing refractory
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JPS593069A (en) Alumina-silicon carbide-carbon refractories
JP2947390B2 (en) Carbon containing refractories
JPH01275463A (en) Noncalcined refractory material for lining of steel refining furnace
JPH01197370A (en) Monolithic refractory for lining molten metal vessel
JPH0421625B2 (en)
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JP2765458B2 (en) Magnesia-carbon refractories
JPH07291710A (en) Graphite containing refractory
JPH0465370A (en) Casting material for molten pig iron pretreating vessel
JPH059385B2 (en)
CN116283247A (en) Carbon-free corundum-spinel unburned brick for steel ladle and preparation method thereof
JPH05843A (en) Refractory block for molten iron striking part of torpedo ladle car
JPH0556305B2 (en)