JPH059385B2 - - Google Patents
Info
- Publication number
- JPH059385B2 JPH059385B2 JP59205496A JP20549684A JPH059385B2 JP H059385 B2 JPH059385 B2 JP H059385B2 JP 59205496 A JP59205496 A JP 59205496A JP 20549684 A JP20549684 A JP 20549684A JP H059385 B2 JPH059385 B2 JP H059385B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- raw material
- magnesia
- alumina
- refractory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 66
- 239000002994 raw material Substances 0.000 claims description 35
- 239000000395 magnesium oxide Substances 0.000 claims description 33
- 229910052596 spinel Inorganic materials 0.000 claims description 13
- 239000011029 spinel Substances 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 3
- 239000010419 fine particle Substances 0.000 claims description 2
- 239000011362 coarse particle Substances 0.000 claims 1
- 235000012245 magnesium oxide Nutrition 0.000 description 28
- 229910000831 Steel Inorganic materials 0.000 description 17
- 239000011819 refractory material Substances 0.000 description 17
- 239000010959 steel Substances 0.000 description 17
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 9
- 238000004901 spalling Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910000655 Killed steel Inorganic materials 0.000 description 3
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910017082 Fe-Si Inorganic materials 0.000 description 2
- 229910017133 Fe—Si Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- LNSPFAOULBTYBI-UHFFFAOYSA-N [O].C#C Chemical group [O].C#C LNSPFAOULBTYBI-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
[発明の技術分野]
本発明はスライドゲートに使用される耐火物の
改良に関する。
[発明の技術的背景とその問題点]
スライドゲート用耐火物としては、高アルミナ
質、アルミナ−カーボン質等種々の耐火物が検討
されているが、耐スポーリング性の特殊例である
耐ピーリング性に優れていることが重要であるた
め、いずれの耐火物も満足な結果が得られていな
い。
また、マグネシア質耐火物は、溶融金属あるい
は塩基性スラグに対して優れた耐食性を有してい
るので、転炉を始め、各種製鋼用炉材として使用
されているが、耐スポーリング性に劣るため、ス
ライドゲート用耐火物としては開閉操作回数が特
に少ない特殊用途にわずかに使用されているにす
ぎない。
このマグネシア質耐火物の耐スポーリング性を
改善する試みとしては、例えば特公昭53−13643、
特開昭55−11669、特開昭55−107749、特開昭58
−26073等が知られている。
特公昭53−13643は、マグネシア質原料と、ペ
リクレーズ・スピネル質原料を混合使用するもの
であり、耐スポーリング性に関してかなりの改善
は期待されるものの、一般の製鋼炉容器よりも格
段に厳しい使用条件下におかれるスライドゲート
用耐火物では満足な結果が得られていない。
また、特開昭55−11669は、マグネシア質原料
に炭化原料を添加することにより耐スポーリング
性の改善を図ろうとするものである。しかし、マ
グネシア原料に炭素原料を添加すると、耐スポー
リング性は改善されるが、必要な強度が得られな
い。
更に、特開昭55−107749、特開昭58−26073等
は、マグネシア質原料に炭素原料を添加すること
により耐スポーリング性を改善するとともに、炭
素添加による強度低下を解消するためにSi、SiC
−Al、Fe−Si等を添加し、非酸化性雰囲気で焼
成するものである。しかし、このようなマグネシ
ア質耐火物は非酸化性雰囲気下で熱処理する必要
があるためコスト高になるとともに、使用時に炭
素質原料の酸化による組織の劣化の問題を有して
いる。また、近年種々試みらているCa添加鋼、
あるいは各種快削鋼等、耐火物に対して浸蝕性の
大きい鋼種の鋳造に用いると、従来の高アルミナ
質、アルミナ−カーボン質等と同様満足な結果が
得られない。
[発明の目的]
本発明は上記事情に鑑みてなされたものであ
り、特殊な製造方法を使用することなく、耐ピー
リング性が改善され、しかも溶融金属及び塩基性
スラグにする優れた耐食性を有するスライドゲー
ト用耐火物を提供しようとするものである。
[発明の概要]
本願発明のスライドゲート用耐火物は、
Al2O340〜75重量%、MgO25〜60重量%、残部10
重量%以下の組成を有し、粒径3〜1mmの粗粒と
粒径1mm以下の微粒とを配合したアルミナ−マグ
ネシアスピネル質原料10〜30重量部と、MgO90
重量%以上のマグネシア質原料90〜70重量部とか
らなり、Al2O310〜25重量%、MgO90〜75重量%
を含有することを特徴とするものである。
本発明における原料の組成及び配合割合は相互
に関連している。
本発明において用いられるアルミナ−マグネシ
アスピネル質原料は、理論組成値(Al2O371.7重
量%、MgO28.3重量%)にほぼ等しい組成ある
いはマグネシアリツチのものであるが、その組成
を上記のように限定したのは、以下のような理由
による。まず、Al2O3が40重量%未満、又はMgO
が60重量%を超えると、アルミナ・ペリクレーズ
からなるスピネル結晶相が少なくなり、耐ピーリ
ング性を改善する効果が少なくなる。一方、
Al2O3が75重量%を超えるか、又はMgOが25重量
%未満であると、スピネル結晶粒の周囲に過剰の
コランダム結晶が存在し、耐食性に劣る。
また、本発明において用いられるマグネシア質
原料の組成をMgO90重量%以上としたのは、
MgOが90重量%未満であると、耐食性に劣るか
らである。
また、アルミナ−マグネシアスピネル質原料の
配合割合を10〜30重量部、マグネシア質原料の混
合割合を90〜70重量部としたのは、アルミナ−マ
グネシアスピネル質原料が10重量部未満、又はマ
グネシア質原料が90重量部を超える場合、耐ピー
リング性を改善する効果がなく、一方アルミナ−
マグネシアスピネル質原料が30重量部を超える
か、又はマグネシア質原料が70重量部未満の場
合、耐溶損性に劣るとともに耐ピーリング性にも
劣るためである。
これは、アルミナ−マグネシアスピネル質原料
とマグネシア質原料とは熱膨張率が異なるが、上
記範囲で原料を配合すれば、熱膨張率の相違に基
づく熱的歪を吸収することができるためであると
考えられる。
上記のような原料を用い、スライドゲート用耐
火物を得るには一般的なマグネシア質耐火物を得
るのと同様な方法を用いればよい。すなわち、所
定の配合割合のアルミナ−マグネシアスピネル質
原料とマグネシア質原料に有機結合剤もしくは無
機結合剤又はこれらの両者を添加して、ミキサー
あるいはウエツトパン等の混練機により混練し、
つづいてフリクシヨンプレス、オイルプレスある
いはラバープレス等により成形して乾燥した後、
単独窯あるいはトンネルキルンにより通常の酸化
雰囲気で1500℃以上で焼成すればよい。
なお、使用原料の粒度については特に限定する
ものではないが、アルミナ−マグネシアスピネル
質原料は粗粒〜中間粒のものを用いることがより
好ましい。これは、アルミナはマグネシアよりも
耐食性に劣るので、微粉のアルミナを少なくする
ためである。また、焼成温度については、所望の
強度を得るためには1500℃以上であることが望ま
しく、品質的、コスト的に更に好ましくは1650〜
1750℃がよい。
以上のようにして得られる耐火物の化学組成を
Al2O310〜25重量%、MgO90〜75重量%に限定し
たのは、原料の配合割合と同様に耐ピーリング性
と耐食性に関するものである。更に好ましくは化
学組成として、Al2O312〜20重量%、MgO88〜80
重量%がよい。
[発明の実施例]
以下、本発明の実施例説明する。
まず、下記第1表に示す原料を用意し、ウエツ
トパンを用いて下記第2表に示す配合割合で混練
した。つづいて、オイルプレスにより1000Kg/cm2
の圧力でほぼ400×200×50mmの寸法に成形し、
100℃で乾燥した後、通常の酸化雰囲気のトンネ
ルキルン中において1700℃で焼成を行ない、スラ
イドゲート用耐火物を得た。
得られた耐火物の物性を下記第2表に併記す
る。なお、見掛気孔率、カサ比重及び圧縮強さは
JISに従つて測定した。耐食性は得られた耐火物
から20×20×150mmの供試サンプルを切出し、100
Kg高周波誘導炉により溶融した1600℃の溶鋼中に
2時間浸漬した後、その溶損寸法を測定した。耐
ピーリング性は得られた耐火物の200×400の面を
研磨加工し、5/100mm以下の平滑度にした後、そ
の表面を酸素−アセチレンバーナにより急熱し、
1分間保持して表面が貝殻状に剥がれる状況の有
無により判定した。
第2表から明らかなように、実施例1〜4及び
比較例1〜4の耐火物の見掛気孔率、カサ比重及
び圧縮強さについては特に注目すべき点はない。
また、耐食性についてはAl2O3含有量が多い方が
溶損し易い傾向にある。
しかし、耐ピーリング性については、比較例1
〜4の耐火物はピーリング現象が大〜中であるの
に対し、実施例1〜4の耐火物はピーリング現象
が無〜小であり、明らかな差異が認められた。
[Technical Field of the Invention] The present invention relates to improvements in refractories used in slide gates. [Technical background of the invention and its problems] Various refractories such as high alumina and alumina-carbon refractories have been studied as refractories for slide gates, but peel-resistant refractories are a special example of spalling resistance. Since it is important to have excellent properties, satisfactory results have not been obtained with any refractory. In addition, magnesia refractories have excellent corrosion resistance against molten metal or basic slag, so they are used as furnace materials for various types of steelmaking, including converters, but they have poor spalling resistance. Therefore, refractories for slide gates are only used in special applications where the number of opening and closing operations is particularly small. As an attempt to improve the spalling resistance of this magnesia refractory, for example, Japanese Patent Publication No. 53-13643,
JP-A-55-11669, JP-A-55-107749, JP-A-58
-26073 etc. are known. Special Publication No. 53-13643 uses a mixture of magnesia raw material and periclase/spinel raw material, and although a considerable improvement in spalling resistance is expected, the use is much harsher than that of general steelmaking furnace vessels. Satisfactory results have not been obtained with slide gate refractories subjected to these conditions. Furthermore, JP-A-55-11669 attempts to improve spalling resistance by adding a carbonized raw material to a magnesia raw material. However, when a carbon raw material is added to a magnesia raw material, although spalling resistance is improved, the necessary strength cannot be obtained. Furthermore, JP-A-55-107749, JP-A-58-26073, etc. improve spalling resistance by adding carbon raw materials to magnesia raw materials, and also add Si, SiC
-Al, Fe-Si, etc. are added and fired in a non-oxidizing atmosphere. However, such magnesia-based refractories require heat treatment in a non-oxidizing atmosphere, resulting in high costs, and also have the problem of structural deterioration due to oxidation of carbonaceous raw materials during use. In addition, various attempts have been made in recent years to introduce Ca-added steel,
Alternatively, when used for casting steels that are highly corrosive to refractories, such as various free-cutting steels, satisfactory results cannot be obtained, as with conventional high alumina materials, alumina-carbon materials, etc. [Object of the invention] The present invention has been made in view of the above circumstances, and has improved peeling resistance without using any special manufacturing method, and has excellent corrosion resistance to molten metal and basic slag. The purpose is to provide a refractory for slide gates. [Summary of the invention] The refractory for slide gates of the present invention has the following features:
Al2O3 40-75% by weight, MgO25-60 % by weight, balance 10
10 to 30 parts by weight of an alumina-magnesia spinel raw material having a composition of 3 to 1 mm in diameter and fine particles in 1 mm or less, and MgO90
Composed of 90 to 70 parts by weight of magnesia raw material of 10 to 25 parts by weight of Al 2 O 3 and 90 to 75 parts by weight of MgO.
It is characterized by containing. The composition and blending ratio of raw materials in the present invention are interrelated. The alumina-magnesia spinel raw material used in the present invention has a composition almost equal to the theoretical composition value (Al 2 O 3 71.7% by weight, MgO 28.3% by weight) or is rich in magnesia. The reason for limiting this is as follows. First, Al 2 O 3 is less than 40% by weight, or MgO
If it exceeds 60% by weight, the spinel crystal phase consisting of alumina periclase will decrease, and the effect of improving peeling resistance will decrease. on the other hand,
When Al 2 O 3 exceeds 75% by weight or MgO exceeds 25% by weight, excessive corundum crystals exist around spinel crystal grains, resulting in poor corrosion resistance. In addition, the composition of the magnesia raw material used in the present invention is set to 90% by weight or more of MgO because
This is because if MgO is less than 90% by weight, corrosion resistance will be poor. In addition, the mixing ratio of the alumina-magnesia spinel raw material was set to 10 to 30 parts by weight, and the mixing ratio of the magnesia raw material was set to 90 to 70 parts by weight, because the alumina-magnesia spinel raw material was less than 10 parts by weight or If the raw material exceeds 90 parts by weight, there is no effect of improving peeling resistance;
This is because if the magnesia spinel raw material exceeds 30 parts by weight or is less than 70 parts by weight, the erosion resistance and peeling resistance will be poor. This is because the alumina-magnesia spinel raw material and the magnesia raw material have different coefficients of thermal expansion, but if the raw materials are blended within the above range, thermal strain due to the difference in coefficient of thermal expansion can be absorbed. it is conceivable that. To obtain a refractory for a slide gate using the raw materials as described above, a method similar to that used for obtaining a general magnesia refractory may be used. That is, an organic binder, an inorganic binder, or both are added to an alumina-magnesia spinel raw material and a magnesia raw material in a predetermined mixing ratio, and the mixture is kneaded using a kneading machine such as a mixer or a wet pan.
Next, after being shaped and dried using a friction press, oil press, or rubber press,
It may be fired at 1500°C or higher in a normal oxidizing atmosphere in a single kiln or tunnel kiln. Although the particle size of the raw material used is not particularly limited, it is more preferable to use alumina-magnesia spinel raw material with coarse to medium grains. This is to reduce the amount of fine powder alumina since alumina has lower corrosion resistance than magnesia. In addition, the firing temperature is desirably 1500°C or higher in order to obtain the desired strength, and more preferably 1650°C or higher in terms of quality and cost.
1750℃ is good. The chemical composition of the refractory obtained in the above manner is
The reason why the content is limited to 10 to 25% by weight of Al 2 O 3 and 90 to 75% by weight of MgO is related to peeling resistance and corrosion resistance as well as the blending ratio of raw materials. More preferably, the chemical composition is 12 to 20% by weight of Al 2 O 3 and 88 to 80% by weight of MgO.
Good weight percentage. [Embodiments of the Invention] Examples of the present invention will be described below. First, the raw materials shown in Table 1 below were prepared and kneaded using a wet pan in the proportions shown in Table 2 below. Next, 1000Kg/cm 2 by oil press
Formed into dimensions of approximately 400 x 200 x 50 mm under pressure of
After drying at 100°C, it was fired at 1700°C in a tunnel kiln in a normal oxidizing atmosphere to obtain a refractory for a slide gate. The physical properties of the obtained refractory are also listed in Table 2 below. The apparent porosity, bulk specific gravity and compressive strength are
Measured according to JIS. Corrosion resistance was measured by cutting a 20 x 20 x 150 mm test sample from the obtained refractory and measuring 100 mm.
After being immersed for 2 hours in 1600°C molten steel melted in a Kg high-frequency induction furnace, the dimensions of the erosion damage were measured. Peeling resistance is determined by polishing the 200 x 400 surface of the obtained refractory to a smoothness of 5/100 mm or less, and then rapidly heating the surface with an oxygen-acetylene burner.
After holding for 1 minute, judgment was made based on whether or not the surface peeled off in a shell-like manner. As is clear from Table 2, there is nothing particularly noteworthy about the apparent porosity, bulk specific gravity, and compressive strength of the refractories of Examples 1 to 4 and Comparative Examples 1 to 4.
In addition, regarding corrosion resistance, the higher the Al 2 O 3 content, the more likely it is to be eroded. However, regarding peeling resistance, Comparative Example 1
The refractories of Examples 1 to 4 had a large to moderate peeling phenomenon, whereas the refractories of Examples 1 to 4 had no to small peeling phenomenon, and a clear difference was observed.
【表】【table】
【表】【table】
【表】
更に、本発明に係るスライドゲート用耐火物か
らなる摺動盤(実施例5)ならびに従来の高アル
ミナ質耐火物にタール又はピツチを含浸した摺動
盤(比較例5)及びアルミナ−カーボン質耐火物
からなる摺動盤(比較例6)を用いて以下のよう
な条件で実用試験を行なつた。
実用試験1
取鍋容量 250トン
鋼 種 低炭素アルミキルド鋼及びCa添加鋼
鋳込温度 取鍋内温度1580〜1600℃
鋳込時間 50〜60分
摺動盤孔径 75〜80mm
実用試験2
取鍋容量 70トン
鋼 種 低炭素(C0.05%)普通鋼
鋳込温度 取鍋内温度165℃
鋳込時間 90〜100分
摺動盤孔径 35mm
なお、低炭素アルミキルド鋼は鋼中酸素含有量
50ppm以下の低酸素レベル鋼の代表、Ca添加鋼
は耐火物との反応性が比較的高い鋼種の代表、低
炭素普通鋼は鋼中酸素含有量100〜250ppmの鋼種
の代表としてそれぞれ用いている。
上記各摺動盤をそれぞれ100個セツトして鋼を
注入した場合の1セツト当りの平均使用回数を下
記第3表に示す。[Table] Furthermore, a sliding plate made of the refractory for a sliding gate according to the present invention (Example 5), a sliding plate made of a conventional high alumina refractory impregnated with tar or pitch (Comparative Example 5), and alumina A practical test was conducted under the following conditions using a sliding plate made of carbonaceous refractory (Comparative Example 6). Practical test 1 Ladle capacity 250 tons Steel Type Low carbon aluminum killed steel and Ca-added steel Casting temperature Ladle internal temperature 1580 to 1600℃ Casting time 50 to 60 minutes Sliding plate hole diameter 75 to 80 mm Practical test 2 Ladle capacity 70 Ton steel Type: Low carbon (C0.05%) ordinary steel Casting temperature: Temperature inside the ladle: 165℃ Casting time: 90 to 100 minutes Sliding plate hole diameter: 35mm In addition, low carbon aluminum killed steel has a low oxygen content in the steel.
Steel with low oxygen level of 50ppm or less is used as a representative, Ca-added steel is used as a representative of steel with relatively high reactivity with refractories, and low carbon ordinary steel is used as a representative of steel with an oxygen content of 100 to 250ppm. . Table 3 below shows the average number of times each set was used when 100 of each of the above sliding plates were injected with steel.
【表】
第3表から明らかなように、鋼中酸素レベルの
低い低炭素アルミキルド鋼の場合には、摺動盤を
構成する3種類の材質によつて使用回数に差は出
ない。しかし、酸素レベルの比較的高い低炭素普
通鋼あるいは還元力の強いCa添加鋼の場合には、
従来の材質のものよりも1〜2回使用回数が増
え、寿命の延長を図ることができた。この主原因
は耐火物中に含有されているSiO2の高温の溶鋼
による還元等の反応が溶損に関係しているためで
あると考えられる。すなわち、従来の高アルミナ
質耐火物のタール又はピツチ含浸品、アルミナ−
カーボン質耐火物に比べて本発明のアルミナ−マ
グネシア質耐火物はSiO2の値が低いので、鋼中
に含有されている還元力の強いCa、MnO、FeO
等に対しても反応が少なく、組織が強固であり、
このことが寿命延長につながつているといえる。
なお、本発明に用いる原料は焼結あるいは熱溶
融により得られるもののいずれでもよく、原料の
製造方法により何ら限定されるものではない。
また、本発明においてアルミナ−マグネシアス
ピネル質原料及びマグネシア質原料以外の他の耐
火物原料例えばクロム鉱、酸化クロム、ジルコニ
ア等あるいはSi、Al、Fe−Si、Mg等の金属を添
加してもよいことはいうまでもない。上記のよう
にSi、Al等の金属を添加した場合、窒素雰囲気
にて焼成し、Si3N4結合あるいはAlN結合を生じ
させてもよい。
更に、本発明に係る耐火物にタール、ピツチ、
樹脂あるいは熱処理によりシリカ、アルミナ、マ
グネシア、ジルコニア、酸化クロム等となる成分
を含有する液状物質を含浸して、そのままあるい
は揮散性成分を除去する処理を行なつてスライド
ゲート用耐火物とすることにより一層の寿命向上
を図ることができる。
[発明の効果]
以上詳述した如く本発明のスライドゲート用耐
火物によれば、特殊な製造方法を使用することな
く、耐ピーリング性が改善され、しかも溶融金属
及び塩基性スラグに対する優れた耐食性を有し、
寿命を向上できる等顕著な効果を奏するものであ
る。[Table] As is clear from Table 3, in the case of low carbon aluminum killed steel with a low oxygen level in the steel, there is no difference in the number of uses depending on the three types of materials that make up the sliding plate. However, in the case of low-carbon ordinary steel with relatively high oxygen levels or Ca-added steel with strong reducing power,
It can be used one to two more times than conventional materials, extending its lifespan. The main reason for this is thought to be that reactions such as reduction of SiO 2 contained in the refractory by high-temperature molten steel are related to erosion. That is, conventional high alumina refractories impregnated with tar or pitch, alumina
Compared to carbonaceous refractories, the alumina-magnesia refractory of the present invention has a lower SiO 2 value, so Ca, MnO, and FeO, which have strong reducing power, are contained in the steel.
The organization is strong, with little reaction to
This can be said to lead to longer lifespans. Note that the raw material used in the present invention may be obtained by sintering or thermal melting, and is not limited in any way by the method of producing the raw material. In addition, in the present invention, other refractory materials other than the alumina-magnesia spinel raw material and the magnesia raw material, such as chromite, chromium oxide, zirconia, etc., or metals such as Si, Al, Fe-Si, Mg, etc. may be added. Needless to say. When metals such as Si and Al are added as described above, firing may be performed in a nitrogen atmosphere to form Si 3 N 4 bonds or AlN bonds. Furthermore, the refractory according to the present invention contains tar, pitch,
By impregnating it with a liquid substance containing components such as silica, alumina, magnesia, zirconia, and chromium oxide through resin or heat treatment, it can be made into a refractory for slide gates either as it is or by processing to remove volatile components. It is possible to further improve the lifespan. [Effects of the Invention] As detailed above, the slide gate refractory of the present invention has improved peeling resistance without using any special manufacturing method, and has excellent corrosion resistance against molten metal and basic slag. has
This has remarkable effects such as improving lifespan.
Claims (1)
部10重量%以下の組成を有し、粒径3〜1mmの粗
粒と粒径1mm以下の微粒とを配合したアルミナ−
マグネシアスピネル質原料10〜30重量部と、
MgO90重量%以上のマグネシア質原料90〜70重
量部とからなり、Al2O310〜25重量%、MgO90〜
75重量%を含有することを特徴とするスライドゲ
ート用耐火物。1 Alumina having a composition of 40 to 75% by weight of Al 2 O 3 , 25 to 60% by weight of MgO, and the balance 10% by weight or less, and a mixture of coarse particles with a particle size of 3 to 1 mm and fine particles with a particle size of 1 mm or less.
10 to 30 parts by weight of magnesia spinel raw material,
Consists of 90 to 70 parts by weight of magnesia raw material containing 90% by weight or more of MgO, 10 to 25% by weight of Al 2 O 3 , and 90 to 90% by weight of MgO.
A refractory for slide gates characterized by containing 75% by weight.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59205496A JPS6183670A (en) | 1984-10-02 | 1984-10-02 | Refractories for slide gate |
DE19853532228 DE3532228A1 (en) | 1984-10-02 | 1985-09-10 | FIREPROOF COMPOSITION |
FR858513481A FR2571043B1 (en) | 1984-10-02 | 1985-09-11 | ALUMINA-MAGNESIA REFRACTORY COMPOSITION |
KR1019850007199A KR900000139B1 (en) | 1984-10-02 | 1985-09-28 | Refractories for slide gate |
US06/946,648 US4780434A (en) | 1984-10-02 | 1986-12-22 | Refractory composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59205496A JPS6183670A (en) | 1984-10-02 | 1984-10-02 | Refractories for slide gate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6183670A JPS6183670A (en) | 1986-04-28 |
JPH059385B2 true JPH059385B2 (en) | 1993-02-04 |
Family
ID=16507819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59205496A Granted JPS6183670A (en) | 1984-10-02 | 1984-10-02 | Refractories for slide gate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6183670A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5192970B2 (en) * | 2008-09-30 | 2013-05-08 | 黒崎播磨株式会社 | Basic plate refractories for sliding nozzle devices |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5767072A (en) * | 1980-10-07 | 1982-04-23 | Mino Yogyo Kk | Basic refractories |
-
1984
- 1984-10-02 JP JP59205496A patent/JPS6183670A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5767072A (en) * | 1980-10-07 | 1982-04-23 | Mino Yogyo Kk | Basic refractories |
Also Published As
Publication number | Publication date |
---|---|
JPS6183670A (en) | 1986-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4471059A (en) | Carbon-containing refractory | |
US4780434A (en) | Refractory composition | |
JPH0545546B2 (en) | ||
JPH09202667A (en) | Castable refractory for slide gate | |
JPH059385B2 (en) | ||
EP0116194A1 (en) | A carbon-containing refractory | |
JPS58190868A (en) | Non-baked refractories | |
JP4160796B2 (en) | High thermal shock resistant sliding nozzle plate brick | |
JPH0556305B2 (en) | ||
JP2765458B2 (en) | Magnesia-carbon refractories | |
JPS632911B2 (en) | ||
KR830001463B1 (en) | Manufacturing method of fire brick | |
RU2130440C1 (en) | Spinel-containing refractory material with carbon binder | |
JPS61266345A (en) | Carbon-containing basic refractory brick | |
He et al. | Extruded graphite pellets in magnesia-based castables | |
CA1189093A (en) | Carbon-containing refractory | |
JPH10158072A (en) | Magnesia-carbon castable refractory and its applied body | |
JPS63288968A (en) | Composite refractories | |
JPH0421625B2 (en) | ||
JPH07291710A (en) | Graphite containing refractory | |
JPS6127349B2 (en) | ||
JPS5913468B2 (en) | Basic refractories | |
JPH01305850A (en) | Refractories for cement kiln | |
JPH0283250A (en) | Production of carbon-containing calcined refractory | |
JPH04338160A (en) | High-durable magnesia-carbon brick |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |