JPH08259311A - Production of magnesia-carbonaceous refractory brick - Google Patents

Production of magnesia-carbonaceous refractory brick

Info

Publication number
JPH08259311A
JPH08259311A JP7093226A JP9322695A JPH08259311A JP H08259311 A JPH08259311 A JP H08259311A JP 7093226 A JP7093226 A JP 7093226A JP 9322695 A JP9322695 A JP 9322695A JP H08259311 A JPH08259311 A JP H08259311A
Authority
JP
Japan
Prior art keywords
brick
magnesia
weight
carbon
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7093226A
Other languages
Japanese (ja)
Other versions
JP3639635B2 (en
Inventor
Naoki Hirai
直樹 平井
Shinichi Tamura
信一 田村
Junji Yamada
淳二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09322695A priority Critical patent/JP3639635B2/en
Publication of JPH08259311A publication Critical patent/JPH08259311A/en
Application granted granted Critical
Publication of JP3639635B2 publication Critical patent/JP3639635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for producing a magnesia-carbonaceous refractory brick capable of manifesting characteristics comparable to those of a conventional brick in reutilizing the used magnesia-carbonaceous brick as a brick aggregate in order to reduce the brick cost effectively utilizing a brick waste. CONSTITUTION: A magnesia clinker and carbon are added to 5-50 pts.wt. pulverized brick waste material obtained by pulverizing a magnesia-carbonaceous refractory brick used in a kiln to have the maximum particle diameter or below of an aggregate constituting the brick to make up the total amount to 100 pts.wt. An additive containing an antioxidant is further added to be mixed and regulate the mixture so that the total composition may be 69-89wt.% magnesia, 10-30wt.% carbon and 1-5wt.% additive containing the antioxidant. A binder is then added thereto to carry out the forming and drying of the resultant mixture. A brick waste prepared by removing particles having <1mm particle diameter in the brick waste obtained by pulverizing the refractory brick is especially preferably used and the pulverized brick waste material is preferably used after heat-treating thereof at 100-600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼用窯炉に内張りさ
れるマグネシア−カーボン質耐火れんがの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnesia-carbonaceous refractory brick lined in a furnace for molten steel.

【0002】[0002]

【従来の技術】マグネシア−カーボン質耐火れんがは、
マグネサイト鉱石を仮焼した天然マグネシア、海水から
抽出した海水マグネシア、天然マグネシアを溶融して純
度を高めた電融マグネシアなどの粒径約5mm以下のマ
グネシアクリンカーと、鱗状黒鉛などの粒径約300μ
m以下のカーボンを原料とし、さらに酸化防止剤とし
て、Al,Mgなどの粒径数十μm以下の金属を添加し
て得られる粉体を、樹脂を用いて成形することにより製
造される。
2. Description of the Related Art Magnesia-carbon refractory bricks
Magnesia clinker with a particle size of about 5 mm or less, such as natural magnesia obtained by calcining magnesite ore, seawater magnesia extracted from seawater, and fused magnesia obtained by melting natural magnesia to increase purity, and a particle size of scaly graphite of about 300μ
It is manufactured by molding a powder using a resin, which is obtained by using carbon of m or less as a raw material and further adding a metal having a particle size of several tens of μm or less such as Al or Mg as an antioxidant.

【0003】マグネシア−カーボン質れんがは、転炉の
ような非常に苛酷な環境で使用するため、従来から原料
の高級化が指向されてきた。マグネシアクリンカーとし
て電融品が多く使用されたり、カーボンとして高品質の
鱗状黒鉛が使用されている。
Since magnesia-carbonaceous bricks are used in a very harsh environment such as a converter, a high-grade raw material has hitherto been aimed at. Electro-fused products are often used as magnesia clinker, and high quality scaly graphite is used as carbon.

【0004】しかし、操業技術および補修技術の進歩に
より苛酷な環境下においてもれんがに対する負荷が軽減
され、マグネシア−カーボン質れんがの高耐用化はそれ
ほど高いニーズではなくなってきて、むしろれんがコス
トの低減が重要となってきている。
However, due to the progress of operation and repair techniques, the load on bricks is reduced under harsh environments, and the high durability of magnesia-carbonaceous bricks is no longer in high demand, but rather the cost of bricks is reduced. It has become important.

【0005】[0005]

【発明が解決しようとする課題】ところで、マグネシア
−カーボン質れんがは、スラグの浸潤が生じにくいた
め、使用済みのれんがであっても稼働面より内部は使用
前のれんがと殆ど同じ品質を保持している。特にマグネ
シアは品質が劣化しない。カーボンは多少酸化消耗する
が、これは表面酸化して小さくなるのみであって鱗状黒
鉛の特性は低下していない。しかしながらこれらの使用
済みれんがは従来廃棄されていた。環境問題からもこれ
ら廃棄物の有効利用が望まれている。
By the way, since the magnesia-carbonaceous brick does not easily infiltrate the slag, even if it is a used brick, the inside of the brick retains almost the same quality as the brick before use from the operation side. ing. Especially the quality of magnesia does not deteriorate. Although the carbon is slightly oxidized and consumed, it is only oxidized and reduced in size, and the characteristics of the scaly graphite are not deteriorated. However, these used bricks were conventionally discarded. Due to environmental issues, effective use of these wastes is desired.

【0006】本発明は使用済みのマグネシア−カーボン
質れんがを新たに使用するれんがに再生させることで、
れんが廃材を有効に活用し、従来のれんがと同等の特性
を発現可能なれんがを製造して、れんがコストの低減を
はかることを目的としている。
The present invention regenerates used magnesia-carbonaceous bricks into newly used bricks,
The purpose is to reduce the cost of bricks by effectively utilizing the waste materials of bricks and manufacturing bricks that can exhibit the same characteristics as conventional bricks.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
めに本発明では、窯炉で使用済みのマグネシア−カーボ
ン質耐火れんがを、該れんがを構成している骨材の最大
粒径以下に粉砕して得られたれんが屑粉砕材5〜50重
量部に、マグネシアクリンカー及びカーボンを加えて合
計100重量部とし、さらに酸化防止剤を含む添加物を
加えて、全体の組成がマグネシア69〜89重量%、カ
ーボン10〜30重量%、及び酸化防止剤を含む添加物
1〜5重量%になるよう混合調整したのち、バインダー
を添加して成形、乾燥することを特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, the magnesia-carbonaceous refractory brick used in a kiln is made to have a particle size not larger than the maximum particle size of the aggregate constituting the brick. Magnesia clinker and carbon were added to 5 to 50 parts by weight of brick waste pulverized material obtained by pulverization to make a total of 100 parts by weight, and an additive containing an antioxidant was further added to give an overall composition of magnesia 69 to 89. The present invention is characterized in that after mixing and adjusting so as to be 1 to 5% by weight of an additive containing carbon, 10 to 30% by weight of carbon, and an antioxidant, a binder is added, followed by molding and drying.

【0008】あるいは、れんが屑粉砕材として、窯炉で
使用済みのマグネシア−カーボン質耐火れんがを、該れ
んがを構成している骨材の最大粒径以下に粉砕し、その
うち粒径1mm未満の粒子を除去して得られたれんが屑
粉砕材を用いるとさらによい。この場合も以下同様に、
れんが屑粉砕材5〜50重量部に、マグネシアクリンカ
ー及びカーボンを加えて合計100重量部とし、さらに
酸化防止剤を含む添加物を加えて、全体の組成がマグネ
シア69〜89重量%、カーボン10〜30重量%、及
び酸化防止剤を含む添加物1〜5重量%になるよう混合
調整したのち、バインダーを添加して成形、乾燥する。
特にれんが屑粉砕材は、粉砕後、または粒径1mm未満
の粒子を除去した後に、100〜600℃で加熱処理し
たものを用いるとよい。
Alternatively, as a brick crushing material, a magnesia-carbonaceous refractory brick used in a kiln is crushed to a particle size not larger than the maximum particle size of the aggregate constituting the brick, of which particles having a particle size of less than 1 mm. It is more preferable to use a crushed material of brick scraps obtained by removing. In this case as well,
Magnesia clinker and carbon were added to 5 to 50 parts by weight of brick crushed material to make a total of 100 parts by weight, and an additive containing an antioxidant was further added to make the total composition 69 to 89% by weight of magnesia and carbon 10 to 10 parts by weight. After 30% by weight and 1 to 5% by weight of an additive containing an antioxidant are mixed and adjusted, a binder is added and the mixture is molded and dried.
In particular, as the crushed brick waste material, it is preferable to use one that has been subjected to heat treatment at 100 to 600 ° C. after crushing or after removing particles having a particle diameter of less than 1 mm.

【0009】[0009]

【作用】使用済みのマグネシア−カーボン質耐火れんが
は、カーボンが酸化されて気孔率が高くなっており、粗
粒のまま利用すると気孔を内在するために特性が低下す
る。そこで本発明では、使用済みのマグネシア−カーボ
ン質耐火れんがを、該れんがを構成している骨材の最大
粒径以下に粉砕して用いる。一般にれんがに使用されて
いる骨材の最大粒径は約5mmである。使用済みのマグ
ネシア−カーボン質耐火れんがを5mm以下に粉砕する
ことによって、マグネシア質の粒子とマグネシア−カー
ボン質の粒子とを得ることができる。
The function of used magnesia-carbonaceous refractory bricks is high in porosity due to the oxidation of carbon, and if they are used as coarse grains, the properties are deteriorated because they have internal pores. Therefore, in the present invention, a used magnesia-carbonaceous refractory brick is crushed to a particle size equal to or smaller than the maximum particle size of the aggregate constituting the brick. The maximum particle size of aggregate generally used for bricks is about 5 mm. By crushing used magnesia-carbonaceous refractory bricks to 5 mm or less, magnesia-like particles and magnesia-carbonaceous particles can be obtained.

【0010】マグネシア質の粒子は従来のマグネシアク
リンカーとなんら変わらない特性を持っている。マグネ
シア−カーボン質の粒子は、その形状ゆえに充填が困難
な鱗状黒鉛とマグネシア骨材とを、充填性を上げるため
に高圧成形して得られたれんがに基づく粒子であるか
ら、既に十分な緻密性を持ち合わせている。また粉砕し
て得られる粒子は原料粒子よりも表面の凹凸が大きいた
め、液状バインダーとの濡れ性が良く、強度の均質化に
効果的である。
The magnesia particles have the same characteristics as the conventional magnesia clinker. Magnesia-carbonaceous particles are particles based on bricks obtained by high-pressure molding of scaly graphite and magnesia aggregate, which are difficult to fill due to their shape, to increase the filling property, and therefore already have sufficient compactness. Have. Further, since the particles obtained by pulverization have larger surface irregularities than the raw material particles, they have good wettability with the liquid binder and are effective in homogenizing the strength.

【0011】本発明は、前記のようなれんが屑粉砕材5
〜50重量部に、マグネシアクリンカー及びカーボンを
加えて合計100重量部とし、さらに、酸化防止剤を含
む添加物を加えて、全体の組成がマグネシア69〜89
重量%、カーボン10〜30重量%、及び酸化防止剤を
含む添加物1〜5重量%になるよう混合調整したのち、
バインダーを添加して成形、乾燥してマグネシア−カー
ボン質耐火れんがを得る。
In the present invention, the crushed brick waste material 5 as described above is used.
To 50 parts by weight of magnesia clinker and carbon to a total of 100 parts by weight, and an additive containing an antioxidant is added to make the total composition of magnesia 69 to 89.
Wt%, carbon 10 to 30 wt%, and additives containing an antioxidant 1 to 5 wt% after mixing and adjusting,
A magnesia-carbonaceous refractory brick is obtained by adding a binder, molding and drying.

【0012】れんが屑粉砕材、マグネシアクリンカー、
及びカーボンにおけるれんが屑粉砕材の含有量は5〜5
0重量%で、含有量が5重量%よりも少ない場合には従
来となんら変わらない特性が得られる。しかし、効果的
なれんがコストの低減と廃材の再利用がはかれない。一
方、含有量が多くなっていくと、特性は徐々に劣化し、
少なくとも従来なみの耐用性を維持するためには含有量
は50重量%が上限であることがわかった。
Brick crushed material, magnesia clinker,
And the content of crushed brick waste in carbon is 5 to 5
When the content is 0% by weight and the content is less than 5% by weight, the characteristics which are not different from the conventional ones can be obtained. However, effective brick cost reduction and waste material reuse cannot be achieved. On the other hand, as the content increases, the characteristics gradually deteriorate,
It has been found that the upper limit of the content is 50% by weight in order to maintain at least the durability as conventional.

【0013】ところで、前述のように、使用済みのマグ
ネシア−カーボン質耐火れんがは、カーボンや酸化防止
剤が一部酸化されて未使用れんがと成分が異なっていた
り、粉砕によって、特に未使用れんがの微粉部に使用さ
れていた成分が減少するため、従来と同等の耐用性を維
持するためには成分調整を行う必要がある。
By the way, as described above, the used magnesia-carbonaceous refractory brick has different components from that of the unused brick due to partial oxidation of carbon and the antioxidant, or is particularly crushed by crushing. Since the components used in the fine powder portion are reduced, it is necessary to adjust the components in order to maintain the durability equivalent to the conventional one.

【0014】そこで本発明では、全体の組成がマグネシ
ア69〜89重量%、カーボン10〜30重量%、及び
酸化防止剤を含む添加物1〜5重量%になるようマグネ
シアクリンカー、カーボン、及び酸化防止剤を含む添加
物の配合量を調整する。それによって、本発明のマグネ
シア−カーボン質耐火れんがの全体の組成を従来の同れ
んがと同一にする。
Therefore, in the present invention, the magnesia clinker, carbon, and antioxidant are so adjusted that the total composition is 69 to 89% by weight of magnesia, 10 to 30% by weight of carbon, and 1 to 5% by weight of an additive containing an antioxidant. The compounding amount of the additive including the agent is adjusted. Thereby, the entire composition of the magnesia-carbonaceous refractory brick of the present invention is made the same as that of the conventional brick.

【0015】なお、マグネシアクリンカーとしては電融
マグネシアや焼結マグネシアなど、カーボンとしては鱗
状黒鉛など、酸化防止剤としてはAl−Mg金属など従
来と同じものを用いる。こうして全体の成分組成を調整
した後は、従来と同様にバインダーを添加して成形、乾
燥し、マグネシア−カーボン質耐火れんがを製造する。
As the magnesia clinker, electrofused magnesia or sintered magnesia, etc. are used, as the carbon, scaly graphite or the like, and as the antioxidant, Al—Mg metal or the like is used. After adjusting the composition of the whole component in this way, a binder is added in the same manner as in the prior art, followed by molding and drying to produce a magnesia-carbonaceous refractory brick.

【0016】また本発明では、使用するれんが屑粉砕材
として、窯炉で使用済みのマグネシア−カーボン質耐火
れんがを、該れんがを構成している骨材の最大粒径以下
に粉砕し、そのうち粒径1mm未満の粒子を除去して得
られるれんが屑粉砕材を用いるとさらによい。発明者ら
は、マグネシア−カーボン質耐火れんがの廃材を粉砕し
てその成分を分析したところ、スラグなどが混入した廃
材の場合、スラグは微粒子の部分に集まりやすいことを
見いだした。
Further, in the present invention, as a brick crushing material to be used, a magnesia-carbonaceous refractory brick which has been used in a kiln is crushed to a particle size equal to or smaller than the maximum particle diameter of the aggregate constituting the brick, and the particles are crushed. It is even better to use a crushed brick waste material obtained by removing particles having a diameter of less than 1 mm. The inventors found out that the waste material of the magnesia-carbonaceous refractory brick was crushed and the components thereof were analyzed, and in the case of the waste material mixed with slag and the like, the slag was likely to collect in the fine particle portion.

【0017】このれんが屑粉砕材中の微粒子はれんがの
特性を低下させる要因となり、除去する必要がある。種
々の廃材について粒径5mm以下に粉砕すると、スラグ
などの成分は経験的に粒径1mm未満の微粒子に含まれ
ることがわかった。そこで、本発明では粒径1mm未満
の粒子を除去した粉砕材を用いることを推奨する。
The fine particles in the crushed material of brick scraps deteriorate the characteristics of the brick and must be removed. It has been empirically found that when various waste materials are pulverized to have a particle size of 5 mm or less, components such as slag are contained in fine particles having a particle size of less than 1 mm. Therefore, in the present invention, it is recommended to use a pulverized material from which particles having a particle diameter of less than 1 mm are removed.

【0018】さらに本発明では、れんが屑粉砕材を粉砕
後または粒径1mm未満の粒子を除去した後に100〜
600℃で加熱処理して使用するとよい。前記したよう
に、マグネシア−カーボン質耐火れんがには酸化防止剤
としてAl,Siなどの金属が添加されている。これら
は、そのれんがが使用された後にあっても一部未酸化の
まま残り、れんが解体時の冷却水や、粉砕・保管時の吸
湿によって消化することが考えられる。従って、そのま
ま使用すれば新たに製造されるれんがを劣化させる。そ
こで残存する酸化防止剤を十分酸化して安定にするた
め、れんが屑粉砕材を予め100〜600℃で加熱処理
して用いる。
Further, in the present invention, after crushing the crushed brick waste material or after removing particles having a particle size of less than 1 mm, 100 to
It is recommended to heat it at 600 ° C. before use. As described above, the magnesia-carbonaceous refractory brick is added with a metal such as Al or Si as an antioxidant. It is conceivable that some of these will remain unoxidized even after the brick is used, and that it will be digested by cooling water when the brick is dismantled and by moisture absorption during crushing and storage. Therefore, if it is used as it is, the newly manufactured brick deteriorates. Therefore, in order to sufficiently oxidize and stabilize the remaining antioxidant, the crushed brick waste material is preliminarily heat-treated at 100 to 600 ° C. before use.

【0019】れんが屑粉砕材に付着している水分を除去
するには、最低100℃以上に加熱する必要がある。一
方れんが屑粉砕材に含まれているカーボンの酸化を抑制
するには、600℃が上限である。使用済みのれんがに
含まれている酸化防止剤を酸化するには前記温度範囲で
十分可能であるが、好ましくは400℃以上とするとよ
く、従って、好ましい温度範囲は400〜600℃であ
る。
In order to remove the water adhering to the crushed brick waste material, it is necessary to heat at least 100 ° C. or higher. On the other hand, 600 ° C. is the upper limit for suppressing the oxidation of carbon contained in the crushed brick waste material. The above temperature range is sufficient to oxidize the antioxidant contained in the used brick, but the temperature is preferably 400 ° C or higher, and therefore, the preferable temperature range is 400 to 600 ° C.

【0020】[0020]

【実施例】本発明に基づいて製造したマグネシア−カー
ボン質耐火れんがの実施例及び比較例についてその特性
とともに表1に示す。用いたれんが屑は、転炉で使用済
みのマグネシア−カーボン質耐火れんがで、最大粒径5
mmのマグネシア骨材を用いて製造されたものである。
そこで、上記のれんが屑に付着しているスラグを除去し
た後、ジョークラッシャーによって粒径5mm以下に粉
砕し、5〜3mm、3〜1mm、1mm未満に分級し
た。また比較例として粒径10mm以下に粉砕して10
〜5mmのれんが屑粉砕材も得た。
EXAMPLES Examples and comparative examples of magnesia-carbonaceous refractory bricks produced according to the present invention are shown in Table 1 together with their characteristics. The used brick scraps are magnesia-carbon refractory bricks that have been used in the converter and have a maximum particle size of 5
It was manufactured using mm magnesia aggregate.
Then, after removing the slag adhering to the above-mentioned brick waste, it was crushed to a particle size of 5 mm or less by a jaw crusher and classified into 5 to 3 mm, 3 to 1 mm, and less than 1 mm. In addition, as a comparative example, 10
A crushed brick waste of ~ 5 mm was also obtained.

【0021】れんが屑の各粒度域の成分を分析したとこ
ろ、未使用の場合のれんが成分に対し、粒径5〜3m
m、3〜1mmではマグネシアが約10%多くてカーボ
ンが約5%少なく、1mm未満ではマグネシアが約10
%少なくて、カーボンが約10%多かった。一方、粒径
10〜5mmは未使用とほぼ同一成分であった。
Analysis of the components in each particle size range of the brick waste revealed that the particle size was 5 to 3 m with respect to the brick component when it was not used.
m, 3 to 1 mm, magnesia is about 10% more and carbon is about 5% less, and less than 1 mm magnesia is about 10%.
% Was less and carbon was about 10% more. On the other hand, the particle size of 10 to 5 mm was almost the same as that of the unused component.

【0022】表1に示すように、比較例6を除く5ケー
スについて各原料を比較例7のれんが(未使用れんが)
の粒度構成と鱗状黒鉛含有量とが同じになるように配合
し、さらに酸化防止剤として全てのれんがにAl−Mg
金属を2重量%添加し、れんがを作成して評価を行っ
た。
As shown in Table 1, in each of the five cases except Comparative Example 6, the raw materials were replaced by the bricks of Comparative Example 7 (unused bricks).
Al2Mg was added so that the particle size composition and the scaly graphite content would be the same.
A metal was added in an amount of 2% by weight, and a brick was prepared and evaluated.

【0023】スラグ溶損指数は、C/S=1.1、T.
Fe=3重量%の合成スラグを用い、1700℃で8時
間の回転侵食試験を行なったときの溶損深さを、れんが
7の溶損深さを100としたときの相対値で示した。数
値が小さいほど耐スラグ溶損性に優れている。
The slag erosion index is C / S = 1.1, T.S.
Using the synthetic slag of Fe = 3% by weight, the erosion depth when the rotary erosion test was performed at 1700 ° C. for 8 hours was shown as a relative value when the erosion depth of brick 7 was 100. The smaller the value, the better the slag melting resistance.

【0024】耐熱スポールは、40×40×230mm
のれんがを用い、1600℃の溶銑に90秒浸漬した後
に30秒水冷するというサイクルを15回繰り返し、れ
んが剥落するときの回数で示した。数値が大きいほど耐
熱スポール性に優れている。
The heat resistant spall is 40 × 40 × 230 mm
Using a brick, a cycle of dipping in hot metal at 1600 ° C. for 90 seconds and then cooling with water for 30 seconds was repeated 15 times, and the number of times when the brick came off was shown. The larger the value, the better the heat-resistant spalling property.

【0025】また、見かけ気孔率と曲げ強度は、れんが
を作成した後、更に還元雰囲気中1400℃で3時間焼
成したのち常温で試験を行った。曲げ強度指数はれんが
7の曲げ強度を100としたときの相対値で示し、数値
が大きいほど優れている。
Further, the apparent porosity and the bending strength were tested at room temperature after the brick was prepared and further baked in a reducing atmosphere at 1400 ° C. for 3 hours. The bending strength index is shown as a relative value when the bending strength of Brick 7 is 100, and the larger the value, the better.

【0026】実施例1、2のれんがは、れんが屑添加量
を30ないし40重量%とした場合で、比較例7のれん
がと比較してほぼ同等の特性を示しており、実炉で問題
なく使用できた。実施例3のれんがは、れんが屑粉砕材
で粒径1mm未満のものを除去したれんがで、特に耐ス
ラグ溶損性に優れていた。
The bricks of Examples 1 and 2 show approximately the same characteristics as the brick of Comparative Example 7 when the amount of brick waste added is 30 to 40% by weight, and there is no problem in an actual furnace. I was able to use it. The brick of Example 3 was a brick obtained by removing crushed brick scraps having a particle size of less than 1 mm, and was particularly excellent in slag melt damage resistance.

【0027】一方比較例4、5のれんがは、れんが屑を
各々60、80重量%添加したれんがで、見かけ気孔率
が高く、耐スラグ溶損性、耐熱スポール性、及び曲げ強
度が低下していた。なお、実施例6のれんがは、使用済
みのれんがの最大骨材粒径以上の粒径である10〜5m
mのれんが屑を添加したれんがで、充填性が悪く、耐ス
ラグ溶損性や曲げ強度が劣った。
On the other hand, the bricks of Comparative Examples 4 and 5 are bricks containing 60% and 80% by weight of brick waste, respectively, and have high apparent porosity, slag melting resistance, heat resistant spall resistance, and bending strength. It was In addition, the brick of Example 6 has a particle size of 10 to 5 m, which is equal to or larger than the maximum aggregate particle size of the used brick.
This is a brick to which m bricks were added, and the filling property was poor, and the slag melt resistance and bending strength were poor.

【0028】[0028]

【表1】 [Table 1]

【0029】また、表1には示さなかったが、れんが屑
を500℃で焼成した後、実施例1のれんがと同一の粒
度構成で製造したれんがは、れんが製造直後の物性は実
施例1とほとんど変わらなかった。また、れんが製造後
に長期保管した際も、実施例1のれんがと比較して物性
の劣化は殆ど無かった。
Also, although not shown in Table 1, the bricks produced with the same grain size constitution as the bricks of Example 1 after firing the brick scraps at 500 ° C. have the same physical properties as those of Example 1 immediately after the brick production. Almost unchanged. Further, even when the bricks were stored for a long time after production, the physical properties were hardly deteriorated as compared with the bricks of Example 1.

【0030】[0030]

【発明の効果】本発明により、従来廃棄物となっていた
高級原料を含有するれんが屑を有効利用することが可能
となるとともに、れんがコストの低減が図れる。
According to the present invention, it is possible to effectively use the scraps of the brick containing the high-grade raw material, which was conventionally a waste, and the cost of the brick can be reduced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窯炉で使用済みのマグネシア−カーボン
質耐火れんがを、れんがを構成している骨材の最大粒径
以下に粉砕して得られたれんが屑粉砕材5〜50重量部
に、マグネシアクリンカー及びカーボンを加えて合計1
00重量部とし、さらに酸化防止剤を含む添加物を加え
て、全体の組成がマグネシア69〜89重量%、カーボ
ン10〜30重量%、及び酸化防止剤を含む添加物1〜
5重量%になるよう混合調整したのち、バインダーを添
加して成形、乾燥することを特徴とするマグネシア−カ
ーボン質耐火れんがの製造方法。
1. A crushed brick waste material, obtained by crushing a magnesia-carbonaceous refractory brick used in a kiln furnace to a maximum particle size of aggregate constituting the brick or less, in an amount of 5 to 50 parts by weight, Total 1 including magnesia clinker and carbon
In addition, the total composition of magnesia 69 to 89% by weight, carbon 10 to 30% by weight, and the additive 1 to
A method for producing a magnesia-carbonaceous refractory brick, which comprises mixing and adjusting so as to be 5% by weight, adding a binder, molding and drying.
【請求項2】 窯炉で使用済みのマグネシア−カーボン
質耐火れんがを、該れんがを構成している骨材の最大粒
径以下に粉砕し、そのうち粒径1mm未満の粒子を除去
して得られたれんが屑粉砕材5〜50重量部に、マグネ
シアクリンカー及びカーボンを加えて合計100重量部
とし、さらに酸化防止剤を含む添加物を加えて、全体の
組成がマグネシア69〜89重量%、カーボン10〜3
0重量%、及び酸化防止剤を含む添加物1〜5重量%に
なるよう混合調整したのち、バインダーを添加して成
形、乾燥することを特徴とするマグネシア−カーボン質
耐火れんがの製造方法。
2. A magnesia-carbonaceous refractory brick used in a kiln is crushed to a particle size not larger than the maximum particle size of the aggregate constituting the brick, and particles having a particle size of less than 1 mm are removed. Magnesia clinker and carbon were added to 5 to 50 parts by weight of crushed brick waste to make a total of 100 parts by weight, and an additive containing an antioxidant was further added to make the total composition 69 to 89% by weight of magnesia and 10 parts by weight of carbon. ~ 3
A method for producing a magnesia-carbonaceous refractory brick, which comprises mixing and adjusting the content of 0% by weight and an additive containing an antioxidant to 1 to 5% by weight, adding a binder, and molding and drying.
【請求項3】 れんが屑粉砕材として粉砕後または、粒
径1mm未満の粒子を除去した後に100〜600℃で
加熱処理したものを用いることを特徴とする請求項1ま
たは2に記載のマグネシア−カーボン質耐火れんがの製
造方法。
3. The magnesia according to claim 1, wherein the crushed brick waste material is used after crushing or after removing particles having a particle size of less than 1 mm and then heat-treating at 100 to 600 ° C. Carbon refractory brick manufacturing method.
JP09322695A 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick Expired - Fee Related JP3639635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09322695A JP3639635B2 (en) 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09322695A JP3639635B2 (en) 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick

Publications (2)

Publication Number Publication Date
JPH08259311A true JPH08259311A (en) 1996-10-08
JP3639635B2 JP3639635B2 (en) 2005-04-20

Family

ID=14076640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09322695A Expired - Fee Related JP3639635B2 (en) 1995-03-28 1995-03-28 Method for producing magnesia-carbon refractory brick

Country Status (1)

Country Link
JP (1) JP3639635B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331462B1 (en) * 1999-12-30 2002-04-09 신승근 MgO-C Refractory Brick Having High Resistance Against Heating Stress
JP2005240142A (en) * 2004-02-27 2005-09-08 Jfe Steel Kk METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY
JP2013001606A (en) * 2011-06-17 2013-01-07 Jfe Steel Corp Method for recycling used magnesia carbon brick and method for manufacturing magnesia carbon brick
JP2013147414A (en) * 2011-12-19 2013-08-01 Jfe Steel Corp Method for recycling carbon-containing neutral/acid refractory and method of manufacturing
JP2013249245A (en) * 2012-05-31 2013-12-12 Yotai Refractories Co Ltd Method for recycling used carbon-containing unfired brick
JP2014051428A (en) * 2012-09-04 2014-03-20 Yotai Refractories Co Ltd Carburization raw material and amorphous refractory
WO2018155118A1 (en) * 2017-02-24 2018-08-30 Jfeスチール株式会社 Graphite-containing refractory article and method for manufacturing graphite-containing refractory article
CN114147040A (en) * 2021-12-29 2022-03-08 中冶焦耐(大连)工程技术有限公司 Integrated treatment device and method for waste magnesia carbon bricks

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331462B1 (en) * 1999-12-30 2002-04-09 신승근 MgO-C Refractory Brick Having High Resistance Against Heating Stress
JP2005240142A (en) * 2004-02-27 2005-09-08 Jfe Steel Kk METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY
JP2013001606A (en) * 2011-06-17 2013-01-07 Jfe Steel Corp Method for recycling used magnesia carbon brick and method for manufacturing magnesia carbon brick
JP2013147414A (en) * 2011-12-19 2013-08-01 Jfe Steel Corp Method for recycling carbon-containing neutral/acid refractory and method of manufacturing
JP2013249245A (en) * 2012-05-31 2013-12-12 Yotai Refractories Co Ltd Method for recycling used carbon-containing unfired brick
JP2014051428A (en) * 2012-09-04 2014-03-20 Yotai Refractories Co Ltd Carburization raw material and amorphous refractory
WO2018155118A1 (en) * 2017-02-24 2018-08-30 Jfeスチール株式会社 Graphite-containing refractory article and method for manufacturing graphite-containing refractory article
RU2730718C1 (en) * 2017-02-24 2020-08-25 ДжФЕ СТИЛ КОРПОРЕЙШН Graphite-containing refractory material and method of producing graphite-containing refractory material
US11156403B2 (en) 2017-02-24 2021-10-26 Jfe Steel Corporation Graphite-containing refractory and method of producing graphite-containing refractory
US11629916B2 (en) 2017-02-24 2023-04-18 Jfe Steel Corporation Graphite-containing refractory and method of producing graphite-containing refractory
CN114147040A (en) * 2021-12-29 2022-03-08 中冶焦耐(大连)工程技术有限公司 Integrated treatment device and method for waste magnesia carbon bricks

Also Published As

Publication number Publication date
JP3639635B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
EP2803652B1 (en) Spinel forming refractory compositions, their method of production and use thereof
CN105645977A (en) Air brick for special steel refining and preparation method thereof
CN105237001B (en) Coke dry quenching furnace castable of in-situ preparation aluminium nitride and preparation method thereof
JP2007182337A (en) Low carbonaceous magnesia carbon brick
CN112679201B (en) Cement-free aluminum-magnesium-chromium castable taking aluminum-chromium slag as main raw material and preparation method and application thereof
CN1050591C (en) Fired microporous carbon-aluminium brick
JPH08259311A (en) Production of magnesia-carbonaceous refractory brick
JP6621784B2 (en) Refractory brick and method for producing refractory brick
JP2601129B2 (en) Alumina-chromia castable refractory and precast block using it
CN110615670A (en) High-performance magnesium sliding brick and preparation method thereof
JPS6411589B2 (en)
JPH08259313A (en) Production of magnesia-chrome-based refractory brick
CN107324824A (en) A kind of BOF Hood tar combination magnesia-alumina brick and preparation method thereof
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
JP6583968B2 (en) Refractory brick
KR101672470B1 (en) Refractory for slag dart, slag dart including the same and manufacturing method of slag dart
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
CN107324790A (en) Forsterite-silicon carbide composite ceramic materials and its synthetic method
JP2001146464A (en) Refractory containing lump graphite
JPH1017357A (en) Production of carbon-containing refractory
JPH11130548A (en) Basic monolithic refractory material
JP2005335966A (en) Graphite-containing castable refractory
JP2000263013A (en) Method for using aluminum dross residual ash, and alumina spinel castable refractory material
JP2947390B2 (en) Carbon containing refractories
JP2024010280A (en) Refractory brick and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees