JP2005240142A - METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY - Google Patents

METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY Download PDF

Info

Publication number
JP2005240142A
JP2005240142A JP2004053707A JP2004053707A JP2005240142A JP 2005240142 A JP2005240142 A JP 2005240142A JP 2004053707 A JP2004053707 A JP 2004053707A JP 2004053707 A JP2004053707 A JP 2004053707A JP 2005240142 A JP2005240142 A JP 2005240142A
Authority
JP
Japan
Prior art keywords
mgo
waste
refractory
powdery
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053707A
Other languages
Japanese (ja)
Inventor
Takehiko Takahashi
岳彦 高橋
Takaharu Kajinami
貴治 梶波
Michihiro Kuwayama
道弘 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004053707A priority Critical patent/JP2005240142A/en
Publication of JP2005240142A publication Critical patent/JP2005240142A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for utilizing MgO-C based waste refractories applicable in an iron manufacturing stage even when they are powdery. <P>SOLUTION: Powdery scrap generated by the pulverization/particle size regulation in MgO-C based waste refractories is blended as an MgO source in a sintering raw material. In this case, the grain size of the powdery scrap is preferably controlled to ≤10 mm. Further, the blending quantity of the powdery scrap may be the total quantity of the MgC source or may be a part thereof. Thus, the powdery scrap of the MgO-C based waste refractories which have to be temporarily placed in an iron mill or have to be subjected to industrial waste treatment can be effectively utilized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、MgO−C系廃耐火物の利用方法に係わり、特に、該MgO−C系廃耐火物を発生元の製鉄所内において有効に利用して、省資源化に役立てる技術である。   The present invention relates to a method of using an MgO—C waste refractory, and in particular, is a technology that effectively uses the MgO—C waste refractory in an ironworks where it is generated to help save resources.

製鉄所内で発生する廃耐火物は、一般に、耐火物原料、製錬あるいは精錬の副原料(例えば、造滓材等)としてリサイクルすることで再利用されている。ところが、そのような利用方法は、廃耐火物自体の成分組成あるいは混入しているスラグの種類によっては、再利用先で不純物問題が生じるので、一部の廃耐火物屑に限られている。そのため、従来は製鉄所内で埋め立て等の土木工事に利用されたり、仮置き処理されたりしている。   Waste refractories generated in steelworks are generally reused by recycling them as refractory raw materials, smelting or refining auxiliary raw materials (for example, ironmaking materials, etc.). However, such a utilization method is limited to a part of waste refractory waste because an impurity problem occurs in the reuse destination depending on the component composition of the waste refractory itself or the kind of slag mixed therein. Therefore, conventionally, it has been used in civil works such as landfills or temporarily placed in steelworks.

近年、溶鋼を溶製する工程では、反応容器としてMgO−C系耐火物を内張りしたものが利用されるようになっている(例えば、各種の転炉、取鍋、RH脱ガス装置等)。そのため、廃耐火物の屑としてもMgO−C系耐火物に由来しているものが多くなっており、上記したような耐火物原料として利用する技術(例えば、特許文献1及び2参照)あるいは取鍋精錬での副原料(造滓材)として利用する技術(特許文献3参照)も開示されている。   In recent years, in the process of melting molten steel, an MgO—C refractory lined material is used as a reaction vessel (for example, various converters, ladles, RH degassing apparatuses, etc.). For this reason, waste refractory scraps are often derived from MgO-C refractories, and the technology used as a refractory raw material as described above (for example, see Patent Documents 1 and 2) or The technique (refer patent document 3) utilized as an auxiliary | assistant raw material (slag making material) in pot refining is also disclosed.

しかしながら、MgO−C系廃耐火物の屑を耐火物原料や製鉄工程の副原料として利用する場合、上記特許文献1〜3記載の従来技術では、いずれも該屑の破砕・整粒が必要である。つまり、MgO−C系廃耐火物を破砕・整粒してから10mm程度の篩で分け、篩上の比較的粗粒の部分だけを耐火物原料や精錬工程での副原料に再利用している。一方、破砕整粒時に発生する篩下の粉は、スラグ等の不純物質が多量に含まれるため、耐火物原料へのリサイクルには不適であった。また、精錬工程で副原料として使う場合、粉状のものはハンドリング、利用方法(例えば、溶鋼への投入等)難しく、利用されていなかった。そのため、篩下の粉が多いMgO−C系廃耐火物の屑については、年間500〜2000トンも現在再利用されておらず、その処理が製鉄所での重要な課題となっている。
特開平6−219853号公報 特開平8−259311号公報 特開平5−339615号公報
However, when using the waste of the MgO-C waste refractory as a refractory raw material or an auxiliary raw material in the iron making process, the conventional techniques described in Patent Documents 1 to 3 all require crushing / sizing of the waste. is there. In other words, after crushing and sizing MgO-C waste refractory, it is separated with a sieve of about 10 mm, and only the relatively coarse particles on the sieve are reused as refractory raw materials and auxiliary raw materials in the refining process. Yes. On the other hand, the powder under sieving generated at the time of crushing and sizing contains a large amount of impurities such as slag, and is therefore unsuitable for recycling to refractory raw materials. In addition, when used as an auxiliary material in the refining process, the powdery material is difficult to handle and use (for example, throwing into molten steel) and has not been used. Therefore, about the waste of the MgO-C waste refractory with a large amount of powder under the sieve, 500 to 2000 tons per year is not currently reused, and the treatment is an important issue in the steelworks.
Japanese Patent Laid-Open No. 6-219853 JP-A-8-259511 JP-A-5-339615

本発明は、かかる事情に鑑み、粉状であっても製鉄工程で適用可能なMgO−C系廃耐火物の利用方法を提供することを目的としている。   In view of such circumstances, an object of the present invention is to provide a method of using an MgO—C waste refractory that can be applied in an iron making process even if it is in a powder form.

発明者は、上記目的を達成するため、MgO−C系廃耐火物の有効利用先を鋭意検討し、その成果を本発明に具現化したのである。   In order to achieve the above-mentioned object, the inventor diligently studied the effective use destination of the MgO—C-based waste refractory, and realized the result in the present invention.

すなわち、本発明は、MgO−C系廃耐火物の破砕・整粒で発生した粉状屑を、焼結原料のMgO源として配合することを特徴とするMgO−C系廃耐火物の利用方法である。この場合、前記粉状屑の粒度が、10mm以下であるのが好ましい。また、前記粉状屑の配合量は、前記MgO源の全量又は一部のいずれであっても良い。   That is, the present invention is a method for using a MgO-C waste refractory characterized by blending powdery waste generated by crushing / sizing MgO-C waste refractory as an MgO source of a sintering raw material. It is. In this case, it is preferable that the particle size of the powdery waste is 10 mm or less. Moreover, the compounding quantity of the said powdery waste may be either the whole quantity of the said MgO source, or a part.

本発明によれば、従来、処理が困難であった年間500〜2000トンものMgO−C系廃耐火物の粉状屑が再利用できるようになる。その結果、MgO−C系廃耐火物の全体が有効利用できるようになるばかりでなく、焼結鉱製造のMgO源である蛇紋岩、ドロマイト等及び燃料であるコークス粉の使用量も低減できる。   According to the present invention, 500 to 2000 tons of MgO—C waste refractory waste that has been conventionally difficult to process can be reused. As a result, not only the entire MgO-C waste refractory can be effectively used, but also the amount of serpentine, dolomite, etc., which are MgO sources for the production of sintered ore, and coke powder, which is fuel, can be reduced.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

MgO−C系廃耐火物を再利用する場合、破砕・整粒するが、前記したように篩下(−10mm)の粉状屑は、耐火物原料にリサイクルするにはスラグ等の不純物質が、精錬工程で副原料として利用するにはハンドリング等の困難性が問題で、処理できずに困っていた。そこで、発明者は、粉状屑の利用先について検討し、高炉へ装入する鉄源原料の一つである人工鉱石の焼結鉱製造に利用することを着想した。   When reusing MgO-C waste refractory, crushing and sizing is performed, but as described above, powder waste under the sieve (-10 mm) has impurities such as slag for recycling to refractory raw materials. However, in order to use it as a secondary material in the refining process, it is difficult to handle because of difficulties in handling. Then, the inventor examined the utilization place of a powdery waste, and came up with thinking that it utilized for the sintered ore production of the artificial ore which is one of the iron source raw materials charged into a blast furnace.

この焼結鉱は、配合原料と称し、粉状の鉄鉱石、硫酸滓、砂鉄、スケール、高炉ダスト及び転炉ダスト等の鉄源に、造滓材として粉状の石灰石、ドロマイト、蛇紋岩、返鉱等の副原料及び燃料としてのコークス粉を混合したものを素材とするが、そのうちのドロマイト及び蛇紋岩は、MgO源としての役割をも果たしているからである。なお、通常は、この配合原料に適量の水分を添加、混合して造粒した後、移動式パレット上に層状に充填し、空気を流通させて炭材を燃焼し、該配合原料を溶融、冷却することで製造している。   This sintered ore is referred to as a raw material for mixing, and iron sources such as powdered iron ore, sulfated iron, iron sand, scale, blast furnace dust and converter dust, powdered limestone, dolomite, serpentine, This is because the raw material is a mixture of auxiliary materials such as return ore and coke powder as fuel, and dolomite and serpentine also play a role as MgO source. Normally, after adding and mixing an appropriate amount of moisture to this blended raw material, mixing and granulating, the mixture is packed in layers on a mobile pallet, air is circulated, the carbonaceous material is burned, and the blended raw material is melted. Manufactured by cooling.

ところで、焼結原料である粉状の蛇紋岩及び/又はドロマイトの代替としてMgO−C系廃耐火物の粉状屑を適用する場合、MgO含有量は十分であるか、Cの混入は支障ないか、高炉操業でトラブル原因にならないかという3つの問題を考慮しなければならない。   By the way, when applying powdered serpentine and / or dolomite powdery scraps of MgO-C waste refractory as a raw material for sintering, the MgO content is sufficient or mixing of C is not a problem. There are three issues that must be taken into consideration: whether it will cause trouble during blast furnace operation.

まず最初のMgO含有量については何ら問題がない。焼結鉱としての目標MgO濃度は1〜2質量%程度であり、MgO−C系廃耐火物の粉状屑には75〜90質量%のMgOが含まれているからである。ところが、MgO−C系廃耐火物の種類によっても異なるが、そこには最大で20質量%のCを含むものもある。このCとしては、黒鉛状(グラファイト状)のものが配合されており、その燃焼性が劣るので、焼結鉱中に多量に残留する恐れがある。   There is no problem with the initial MgO content. This is because the target MgO concentration as the sintered ore is about 1 to 2% by mass, and the powdery scrap of the MgO—C waste refractory contains 75 to 90% by mass of MgO. However, depending on the type of the MgO—C waste refractory, there are some containing 20 mass% C at the maximum. As this C, a graphite-like (graphite-like) thing is blended, and its combustibility is inferior.

しかしながら、焼結鉱の製造工程でも最高温度は1350℃には達し、また高温に晒されている時間も通常は20分以上あり、1mm以下の粉状であるので燃焼してしまうので、Cを含むという第2の問題も解消できると考えられた。そこで、実際に焼結原料中にMgO−C廃耐火物の粉状屑を実際に配合し、焼結鉱を試作し、残留Cを調査した。その結果、残留Cは全く見られないことが確認されたので、このようなMgO−C系廃耐火物を焼結鉱のMgO源の代替に利用できると判断した。さらに、通常の高炉操業で目標とするスラグのMgO濃度は、5〜10質量%であるが、この目標MgO濃度を満たすためのMgO源としてMgO−C系耐火物の粉状屑が利用できるかどうかを確認した。焼結原料のMgO源の全量をドロマイトにした場合と全量をMgO−C系耐火物の粉状屑にした時の高炉スラグのMgO濃度を図1に示す。いずれの場合も、高炉スラグの目標MgO濃度の範囲に収まり、前記粉状屑での代替が可能であることが確認できた。つまり、MgO−C廃耐火物の粉状屑をドロマイトあるいは蛇紋岩等と代替しても、焼結操業及び高炉操業のいずれにも特に問題はないと考えられたので、上記した内容の本発明を完成させたのである。   However, even in the manufacturing process of sintered ore, the maximum temperature reaches 1350 ° C., and the time of exposure to high temperature is usually 20 minutes or more, and it is burned because it is in the form of powder of 1 mm or less. It was thought that the second problem of inclusion could be solved. Therefore, the powdered waste of MgO-C waste refractory was actually blended in the sintering raw material, a sintered ore was prototyped, and the residual C was investigated. As a result, it was confirmed that no residual C was found, so it was determined that such MgO—C waste refractories could be used as a substitute for the MgO source of sintered ore. Furthermore, the target MgO concentration of slag in normal blast furnace operation is 5 to 10% by mass. Can MgO-C refractory powdered waste be used as an MgO source to satisfy this target MgO concentration? I confirmed. FIG. 1 shows the MgO concentration of the blast furnace slag when the total amount of the MgO source of the sintering raw material is dolomite and when the total amount is powdered scrap of the MgO—C refractory. In either case, it was within the range of the target MgO concentration of blast furnace slag, and it was confirmed that substitution with the powdery waste was possible. That is, even if the powdery waste of MgO-C waste refractory is replaced with dolomite or serpentine or the like, it is considered that there is no particular problem in both the sintering operation and the blast furnace operation. Was completed.

本発明では、前記粉状屑の上限粒度を特に限定しないが、10mm以下のものを利用するのが好ましい。10mm超えでは、粒度が大き過ぎて、他の原料と反応、溶融させる際に反応速度及び溶融速度を遅くし、好ましくないからである。なお、下限は設ける必要がない、いかに細かくても配合原料の混合・造粒工程で擬似粒子にされるからである。   In this invention, although the upper limit particle size of the said powdery waste is not specifically limited, It is preferable to use a 10 mm or less thing. If it exceeds 10 mm, the particle size is too large, and the reaction rate and melting rate are slowed when reacting and melting with other raw materials, which is not preferable. In addition, it is not necessary to provide a lower limit, because no matter how fine it is, pseudo particles are formed in the mixing and granulating step of the blended raw materials.

また、本発明では、前記粉状屑の配合は、代替する蛇紋岩やドロマイトのMgO含有量に相当する全量としても良いし、一部であっても良い。いずの配合でも焼結操業に悪い影響を与えないからである。ただし、ドロマイトはCaO源、蛇紋岩はSiO2源としての役割も果たしているので、配合原料の全体を決定する際には、焼結鉱成分の全体を配慮して代替量を決める必要があることは言うまでもない。 Moreover, in this invention, the mixture of the said powdery waste is good also as the whole quantity corresponded to MgO content of the serpentine and dolomite to substitute, and a part may be sufficient as it. This is because any compounding does not adversely affect the sintering operation. However, since dolomite also plays a role as a source of CaO and serpentinite as a source of SiO 2, it is necessary to determine the alternative amount in consideration of the entire sinter component when determining the total amount of raw materials. Needless to say.

焼結鉱を製造する原料配合の主な構成を、表1に示すように、粉鉄鉱石:40,000t、返鉱:15,000t、石灰石:3,000t、ドロマイト:2,500t、及びそれらに加えて−10mmのMgO−C系廃耐火物屑;100tとした。なお、表1には、そのようなMgO−C系廃耐火物屑を配合しない従来の配合例も示してある。10mm以下のこの耐火物屑100tの配合は、製鉄所で発生するMgO−C系廃耐火物屑のバランスで決めた値である。そして、通常の条件で焼結操業を行った。   As shown in Table 1, the main composition of the raw material composition for producing sintered ore is as follows: fine iron ore: 40,000 t, return ore: 15,000 t, limestone: 3,000 t, dolomite: 2,500 t, and those -10 mm MgO-C waste refractory waste; 100 t. Table 1 also shows a conventional blending example in which such MgO-C waste refractory waste is not blended. The composition of the refractory waste 100t of 10 mm or less is a value determined by the balance of MgO-C waste refractory waste generated at the steelworks. And the sintering operation was performed on normal conditions.

Figure 2005240142
Figure 2005240142

その結果、図1に示したように、MgO−C系廃耐火物の粉状屑100tを配合した焼結鉱と、MgO源を全量ドロマイトで配合したものとで、高炉スラグ中のMgO濃度は変化しなかった。また、焼結操業及び高炉操業のいずれにおいても、特に問題のなる現象が発生しなかった。つまり、従来は、製鉄所内に仮置きするかあるいは産廃処理しなければならなかったMgO−C系廃耐火物の粉状屑を有効利用できるようになった。また、本発明の実施で、焼結鉱製造でMgO源として使用するドロマイトあるいは蛇紋岩の使用量が従来より低減でき、省資源が達成されるばかりでなく、焼結鉱製造コストの低下も期待できる。 As a result, as shown in FIG. 1, the MgO-C waste refractory powdered waste 100t of the sintered ore and the MgO source mixed with the whole amount of dolomite, the MgO concentration in the blast furnace slag is It did not change. Also, no particularly problematic phenomenon occurred in either the sintering operation or the blast furnace operation. In other words, conventionally, it has become possible to effectively use powdery waste of MgO-C waste refractories that had to be temporarily placed in an ironworks or disposed of industrially. In addition, in the practice of the present invention, the amount of dolomite or serpentinite used as an MgO source in the production of sinter can be reduced as compared to the conventional, and not only resource saving is achieved, but also a reduction in sinter production cost is expected. it can.

焼結原料のMgO源としてドロマイトを用いた場合とMgO−C系廃耐火物の粉状屑を用いた場合での高炉スラグ中MgO濃度を比較した図である。It is the figure which compared the MgO density | concentration in the blast furnace slag in the case where a dolomite is used as a MgO source of a sintering raw material, and the powdery waste of a MgO-C type waste refractory is used.

Claims (3)

MgO−C系廃耐火物の破砕・整粒で発生した粉状屑を、焼結原料のMgO源として配合することを特徴とするMgO−C系廃耐火物の利用方法。 A method for using an MgO-C waste refractory, characterized in that powdered waste generated by crushing and sizing MgO-C waste refractory is blended as an MgO source of a sintering raw material. 前記粉状屑の粒度が、10mm以下であることを特徴とする請求項1記載のMgO−C系廃耐火物屑の利用方法。 The method for using MgO-C waste refractory waste according to claim 1, wherein the powdery waste has a particle size of 10 mm or less. 前記粉状屑の配合量が、前記MgO源の全量又は一部であることを特徴とする請求項1又は2記載のMgO−C系耐火物屑の利用方法。 3. The method of using MgO—C-based refractory waste according to claim 1, wherein the amount of the powdery waste is the total amount or a part of the MgO source.
JP2004053707A 2004-02-27 2004-02-27 METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY Pending JP2005240142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053707A JP2005240142A (en) 2004-02-27 2004-02-27 METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053707A JP2005240142A (en) 2004-02-27 2004-02-27 METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY

Publications (1)

Publication Number Publication Date
JP2005240142A true JP2005240142A (en) 2005-09-08

Family

ID=35022178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053707A Pending JP2005240142A (en) 2004-02-27 2004-02-27 METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY

Country Status (1)

Country Link
JP (1) JP2005240142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487087A (en) * 2019-01-10 2019-03-19 鞍钢股份有限公司 Method and device for extracting magnesium metal by using waste magnesia carbon bricks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536215A (en) * 1976-07-08 1978-01-20 Kobe Steel Ltd Operating method for blast furnace
JPS53144412A (en) * 1977-05-23 1978-12-15 Kobe Steel Ltd Method of producing sintered ore
JPS5458611A (en) * 1977-10-19 1979-05-11 Kobe Steel Ltd Manufacture of sintered ore
JPH06219853A (en) * 1993-01-29 1994-08-09 Nisshin Steel Co Ltd Treatment of magnesia-carbon brick chip and magnesia castable
JPH08259311A (en) * 1995-03-28 1996-10-08 Nippon Steel Corp Production of magnesia-carbonaceous refractory brick
JPH09215939A (en) * 1996-02-09 1997-08-19 Sumitomo Metal Ind Ltd Method for crushing magnesia-carbon brick and method for reusing crushed product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536215A (en) * 1976-07-08 1978-01-20 Kobe Steel Ltd Operating method for blast furnace
JPS53144412A (en) * 1977-05-23 1978-12-15 Kobe Steel Ltd Method of producing sintered ore
JPS5458611A (en) * 1977-10-19 1979-05-11 Kobe Steel Ltd Manufacture of sintered ore
JPH06219853A (en) * 1993-01-29 1994-08-09 Nisshin Steel Co Ltd Treatment of magnesia-carbon brick chip and magnesia castable
JPH08259311A (en) * 1995-03-28 1996-10-08 Nippon Steel Corp Production of magnesia-carbonaceous refractory brick
JPH09215939A (en) * 1996-02-09 1997-08-19 Sumitomo Metal Ind Ltd Method for crushing magnesia-carbon brick and method for reusing crushed product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487087A (en) * 2019-01-10 2019-03-19 鞍钢股份有限公司 Method and device for extracting magnesium metal by using waste magnesia carbon bricks
CN109487087B (en) * 2019-01-10 2020-07-17 鞍钢股份有限公司 Method and device for extracting magnesium metal by using waste magnesia carbon bricks

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
SK50492015A3 (en) Fluxing agent for agglomeration, method for production thereof, agglomeration mixture for production of agglomerate and use of the slag coming from secondary metallurgy as fluxing agent for preparation of the agglomeration mixture
US20070266824A1 (en) Using a slag conditioner to beneficiate bag house dust from a steel making furnace
TWI396749B (en) Producing method of reduced iron
CN108285949A (en) A kind of metal aluminium deoxidizer and preparation method thereof
WO2007134859A2 (en) Process for recycling of steel industry iron-bearing by-products by treating pellets in direct reduction furnaces
JP4411306B2 (en) Method for manufacturing reduced briquettes
JP5341849B2 (en) Manufacturing method of recycled slag
JP6020840B2 (en) Sintering raw material manufacturing method
JP2005240142A (en) METHOD FOR UTILIZING MgO-C BASED WASTE REFRACTORY
JPH11335718A (en) Method for utilizing magnesia base waste brick
JP5867428B2 (en) Hot metal manufacturing method using vertical melting furnace
CN111960835B (en) Pointing material for reducing oxidation of electric furnace magnesia carbon brick and preparation and use methods thereof
JP2008088533A (en) Method for manufacturing sintered ore
JP6004191B2 (en) Sintering raw material manufacturing method
JP7244805B2 (en) Blast furnace operation method
JP4637528B2 (en) Molten iron making material and method of using the same
JP4415690B2 (en) Method for producing sintered ore
JP5397020B2 (en) Reduced iron production method
JP2011179090A (en) Method for producing granulated iron
JP4816119B2 (en) Method for producing sintered ore
JP2009052074A (en) Molten iron production method using vertical scrap melting furnace
JP5867427B2 (en) Hot metal manufacturing method using vertical melting furnace
KR100954943B1 (en) Modifier for Electric furnace by using Waste Refractory, and method for producing the same
JP2010008030A (en) Molten-metal production method using vertical melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525