JP7244805B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP7244805B2
JP7244805B2 JP2021030607A JP2021030607A JP7244805B2 JP 7244805 B2 JP7244805 B2 JP 7244805B2 JP 2021030607 A JP2021030607 A JP 2021030607A JP 2021030607 A JP2021030607 A JP 2021030607A JP 7244805 B2 JP7244805 B2 JP 7244805B2
Authority
JP
Japan
Prior art keywords
mgo
ore
raw material
blast furnace
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021030607A
Other languages
Japanese (ja)
Other versions
JP2021152213A (en
Inventor
泰志 小笠原
健 佐藤
晋之介 金山
望 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021152213A publication Critical patent/JP2021152213A/en
Application granted granted Critical
Publication of JP7244805B2 publication Critical patent/JP7244805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、特定のMgO源を副原料として使用する高炉の操業方法に関する。 The present invention relates to a method of operating a blast furnace using a specific MgO source as an auxiliary material.

高炉操業では、通常、還元材であるコークスと鉄源である鉱石原料を、炉内でコークスと鉱石原料が交互に層を形成するように、順次炉頂から炉内装入している。鉱石原料には造滓剤のような副原料を混合することもある。1層分のコークスや鉱石原料は、それぞれ所定量が1チャージ分の量として決められて炉内に装入されるが、このとき、炉内の半径方向でコークス層や鉱石原料層の厚さを調整することで、高炉内の半径方向でのガス流分布を制御している。また、このガス流分布の制御をより適正に行うために、1チャージ分のコークスや鉱石原料をそれぞれ分割し、複数のバッチとして装入することも行われている。 In blast furnace operation, coke, which is a reducing agent, and ore raw material, which is an iron source, are generally introduced into the furnace sequentially from the top of the furnace so that layers of coke and ore raw material are alternately formed in the furnace. The ore raw material may be mixed with an auxiliary raw material such as a slag forming agent. A predetermined amount of coke or ore raw material for one layer is determined as an amount for one charge and charged into the furnace. At this time, the thickness of the coke layer or ore raw material layer in the radial direction in the furnace By adjusting , the gas flow distribution in the radial direction in the blast furnace is controlled. Further, in order to control the gas flow distribution more appropriately, one charge of coke or ore raw material is divided and charged as a plurality of batches.

高炉では、高温の空気または酸素富化空気を炉下部の羽口から炉内に吹き込むことで炉内のコークスを燃焼させ、この燃焼により発生する熱とCOガスを利用して鉱石原料の還元、溶融を行うことで溶銑が製造される。
鉱石原料は、採掘された鉄鉱石を破砕、篩い分けして得られる塊鉱石と、塊鉱石よりも小さい鉄鉱石を塊成化した焼結鉱やペレット等の処理鉱石とに、概ね大別される。塊鉱石と処理鉱石は、各高炉の操業条件に応じて選択的に使用されるが、一般的には、処理鉱石は原料鉱石の配合や副原料の調整が事前に行われ、品質が比較的一定に保たれるため、主要な鉱石原料として使用される。また、還元材については、炉頂から装入されるコークスの他に、石炭を粉砕した低コストの微粉炭を炉下部の羽口から吹き込み、燃焼させることも行われており、近年では、微粉炭使用量の拡大に伴い、コークス使用量が低減してきている。
In a blast furnace, high-temperature air or oxygen-enriched air is blown into the furnace from the tuyeres at the bottom of the furnace to burn the coke inside the furnace. Hot metal is produced by melting.
Ore raw materials are roughly divided into lump ore obtained by crushing and sieving mined iron ore, and processed ore such as sintered ore and pellets made by agglomerating iron ore smaller than lump ore. be. Lump ore and treated ore are selectively used according to the operating conditions of each blast furnace. It is used as the main ore raw material because it remains constant. In addition to coke, which is charged from the top of the furnace, as a reducing material, low-cost pulverized coal, which is pulverized coal, is also blown from the tuyere at the bottom of the furnace and burned. As the amount of charcoal used increases, the amount of coke used is decreasing.

高炉で溶銑を製造する際に、鉱石原料に含有される脈石分や還元材に含まれる灰分が不純物として存在するが、これらは溶銑とともに出銑口から排滓する必要がある。そこで、副原料として造滓剤を添加し、適正な成分に調整した高炉スラグを生成させる。一般に、高炉スラグの主要構成成分は、SiO、CaO、MgO及びAlの4成分である。このうちSiOとCaOの含有率は、スラグ粘度による排滓性および溶銑中S濃度の低減の観点から、スラグ塩基度(CaO/SiO)が所定の値となるように調整される。これに対してAlは、主にコークス中の灰分や鉱石中に含まれるものであるため、その含有率は原燃料需給バランスにより変動し、調整が困難である。 When hot metal is produced in a blast furnace, the gangue contained in the ore raw material and the ash contained in the reducing material are present as impurities, and these must be discharged from the tap hole together with the hot metal. Therefore, a slag forming agent is added as an auxiliary raw material to produce blast furnace slag adjusted to have appropriate components. In general, the main constituents of blast furnace slag are four components, SiO2 , CaO, MgO and Al2O3 . Of these, the contents of SiO 2 and CaO are adjusted so that the slag basicity (CaO/SiO 2 ) becomes a predetermined value from the viewpoint of the slag viscosity and the reduction of the S concentration in the hot metal. On the other hand, Al 2 O 3 is mainly contained in ash and ore in coke, so its content fluctuates depending on the supply and demand balance of raw materials and fuels, making it difficult to adjust.

一方、高炉スラグのMgO濃度は、適正に調整することにより高炉スラグの粘性を低減させて排滓性を向上させることが可能であり、また、高炉スラグをセメント原料として外販するために、B3=(CaO+MgO+Al)/(SiO)という指標を基準値以上とする必要性から、MgO源の添加が必要となる。一般にMgO源としては、MgO-CaO系のドロマイトやMgO-SiO系の蛇紋岩を使用しているが、これらにはCaOやSiOが含まれているため、所定のスラグ塩基度に調整するための副原料がさらに必要になり、スラグ比の増加を招き、コスト増となるだけでなく、スラグボリュームの増加による通気性の悪化を招くため、使用量が制限される。また、MgO源としてマグネサイトを用いる場合もあるが、マグネサイトは塊状帯で粉化しやすいため、炉内通気性が悪化しやすい問題がある。 On the other hand, by properly adjusting the MgO concentration of blast furnace slag, it is possible to reduce the viscosity of blast furnace slag and improve the slag discharge property. Addition of an MgO source is necessary due to the need to increase the index of (CaO+MgO+Al 2 O 3 )/(SiO 2 ) to a standard value or higher. In general, MgO —CaO based dolomite and MgO—SiO 2 based serpentinite are used as MgO sources. In addition, the increase in the slag ratio leads to an increase in cost, and the increase in slag volume leads to deterioration in air permeability, so the amount used is limited. In some cases, magnesite is used as the MgO source, but since magnesite is a massive zone and easily pulverized, there is a problem that the air permeability in the furnace tends to deteriorate.

これに対して、特許文献1には、造滓剤として水酸化マグネシウム鉱石を炉頂部から炉内に装入することにより、スラグ比の上昇を抑制しつつスラグ中のMgO濃度を増加させる方法が開示されている。この方法によれば、ドロマイトやマグネサイトを使用した場合のような問題を生じることなく、高炉スラグのMgO濃度を増加させることができる。 On the other hand, Patent Document 1 discloses a method of increasing the MgO concentration in the slag while suppressing the increase in the slag ratio by charging magnesium hydroxide ore as a slag forming agent into the furnace from the top of the furnace. disclosed. According to this method, the MgO concentration of the blast furnace slag can be increased without causing the problems that occur when using dolomite or magnesite.

特開2008-240109号公報Japanese Patent Application Laid-Open No. 2008-240109

しかし、一般にブルーサイトと呼ばれる水酸化マグネシウム鉱石は、原料単価が高く、これを高炉のMgO源として使用した場合、溶銑の製造コストが増加するという問題がある。
したがって本発明の目的は、以上のような従来技術の課題を解決し、高炉内の通気性を悪化させるなどの問題を生じることなく、低コストに高炉スラグのMgO濃度を増加させることができる高炉操業方法を提供することにある。
However, magnesium hydroxide ore, which is generally called brucite, has a high raw material unit price, and when it is used as an MgO source for a blast furnace, there is a problem that the production cost of hot metal increases.
Accordingly, an object of the present invention is to solve the problems of the prior art as described above, and to increase the MgO concentration of blast furnace slag at low cost without causing problems such as deterioration of air permeability in the blast furnace. It is to provide an operation method.

本発明者は、上記のような課題を解決すべく検討を進めるなかで、安価なMgO源として、製鉄所内で発生するMgO-C系廃耐火物(使用済み耐火物)に着目した。製鉄所内では精錬工程で使用される反応容器や搬送容器にMgO-C系耐火物が用いられている。これは、MgO-C系耐火物が溶鋼等の高温に耐えられ、且つ溶鋼や製鋼スラグと化学的に反応しにくい特性を有しているためである。MgO-C系廃耐火物は、これら容器を補修した際に発生する廃材(解体屑)であり、高い含有率でMgOを含有しているため、高炉のMgO源として利用することができる可能性がある。 The inventor of the present invention focused on MgO—C-based waste refractories (used refractories) generated in steelworks as an inexpensive source of MgO while conducting studies to solve the above problems. MgO—C refractories are used in reaction vessels and transport vessels used in the refining process in steelworks. This is because the MgO--C refractory has the property of withstanding the high temperature of molten steel and the like, and hardly reacting chemically with molten steel and steelmaking slag. MgO-C waste refractory is a waste material (dismantling waste) generated when these containers are repaired, and since it contains a high content of MgO, it may be used as a source of MgO for blast furnaces. There is

しかしながら、MgO-C系耐火物の上記特性からして、さらには使用済みのMgO-C系耐火物は特に融点が高くなっていることからして、MgO-C系廃耐火物をそのまま高炉の副原料として使用した場合、高炉内において上述した脈石や灰分とともに溶解して高炉スラグを生成するかどうかは未知数であり、また、使用済み耐火物を破砕・整粒した塊状のMgO-C系廃耐火物を高炉で使用した例がないことから、塊状のMgO-C系廃耐火物を使用した際の高炉内への影響についても明らかではなかった。そこで、本発明者らがさらに検討を進めた結果、塊状のMgO-C系廃耐火物を副原料(MgO源)として使用しても、高炉内の通気性を悪化させるなどの問題を生じたり、高炉スラグの生成に支障を生じたりすることはなく、むしろ、次のような利点が得られることが判った。すなわち、塊状のMgO-C系廃耐火物を副原料として使用することにより、高炉内で最も通気性の悪い融着帯において、(i)MgO-C系廃耐火物のMgOが未還元状態のFeOに固溶して高融点化合物を形成することにより、融着帯の通気性が改善される、(ii)さらに、MgO-C系廃耐火物は融点が高いため融着帯の粒子間空隙率が高められ、これによっても融着帯の通気性が改善される、という効果が得られることが判った。 However, given the above properties of the MgO-C refractory, and the melting point of the used MgO-C refractory is particularly high, the MgO-C waste refractory can be used as it is for the blast furnace. When used as an auxiliary raw material, it is unknown whether it will melt together with the above-mentioned gangue and ash in the blast furnace to form blast furnace slag. Since there is no example of using waste refractories in a blast furnace, it was not clear about the impact inside the blast furnace when using massive MgO—C-based waste refractories. Therefore, as a result of further studies by the present inventors, even if a massive MgO-C waste refractory is used as an auxiliary raw material (MgO source), problems such as deterioration of air permeability in the blast furnace occur. However, it has been found that the following advantages can be obtained without hindrance to the generation of blast furnace slag. That is, by using massive MgO-C waste refractories as an auxiliary raw material, (i) the MgO of the MgO-C waste refractories is in an unreduced state in the cohesive zone with the lowest air permeability in the blast furnace. By dissolving in FeO to form a high-melting compound, the air permeability of the cohesive zone is improved. It has been found to have the effect of increasing the air permeability of the cohesive zone, which also improves the breathability of the cohesive zone.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]鉱石原料の少なくとも一部に副原料を混合して炉内に装入する高炉操業方法であって、鉱石原料に混合する副原料の少なくとも一部が、塊状のMgO-C系廃耐火物であることを特徴とする高炉操業方法。
[2]上記[1]の高炉操業方法において、塊状のMgO-C系廃耐火物が、使用済みのMgO-C系耐火物を破砕および整粒して得られたものであることを特徴とする高炉操業方法。
[3]上記[1]または[2]の高炉操業方法において、MgO-C系廃耐火物の粒径が10~50mmであることを特徴とする高炉操業方法。
[4]上記[1]~[3]のいずれかの高炉操業方法において、鉱石原料が処理鉱石と塊鉱石からなることを特徴とする高炉操業方法。
[5]上記[4]の高炉操業方法において、1チャージ分の鉱石原料を2バッチに分割して装入し、そのうち塊鉱石の質量比率の高い方のバッチにのみMgO-C系廃耐火物を混合することを特徴とする高炉操業方法。
[6]上記[4]の高炉操業方法において、1チャージ分の鉱石原料を2バッチに分割して装入し、各バッチにMgO-C系廃耐火物を混合するとともに、2バッチのうち塊鉱石の質量比率の高い方のバッチのMgO-C系廃耐火物の混合比率を、塊鉱石の質量比率の低い方のバッチのMgO-C系廃耐火物の混合比率と同じかそれよりも高くすることを特徴とする高炉操業方法。
The present invention was made based on such findings, and has the following gist.
[1] A method of operating a blast furnace in which at least a part of an ore raw material is mixed with an auxiliary raw material and charged into a furnace, wherein at least part of the auxiliary raw material mixed with the ore raw material is a massive MgO—C waste refractory A blast furnace operating method, characterized in that it is a material.
[2] In the blast furnace operating method of [1] above, the lumpy MgO-C waste refractories are obtained by crushing and granulating used MgO-C refractories. blast furnace operation method.
[3] The method for operating a blast furnace according to [1] or [2] above, wherein the particle size of the MgO—C-based waste refractories is 10 to 50 mm.
[4] The blast furnace operating method according to any one of [1] to [3] above, wherein the ore raw material comprises treated ore and lump ore.
[5] In the blast furnace operating method of [4] above, the ore raw material for one charge is divided into two batches and charged, and only the batch with the higher mass ratio of lump ore is MgO—C-based waste refractories. A blast furnace operating method characterized by mixing.
[6] In the blast furnace operating method of [4] above, the ore raw material for one charge is divided into two batches and charged, each batch is mixed with MgO-C waste refractories, and the lumps of the two batches are mixed. The mixing ratio of the MgO—C-based waste refractory in the batch with the higher ore mass ratio is the same as or higher than the mixing ratio of the MgO—C-based waste refractory in the batch with the lower lump ore mass ratio. A blast furnace operating method characterized by:

本発明によれば、副原料(MgO源)として安価なMgO-C系廃耐火物を使用することにより、溶銑製造コストを抑制しつつ、高炉内の通気性を悪化させたり、高炉スラグの生成に支障を生じさせたりすることなく、高炉スラグのMgO濃度を増加させることができる。さらに、副原料として塊状のMgO-C系廃耐火物を使用することにより、MgO-C系廃耐火物のMgOが未還元状態のFeOに固溶して高融点化合物を形成すること、さらには、MgO-C系廃耐火物は融点が高いため融着帯の粒子間空隙率が高められることによって、高炉内で最も通気性の悪い融着帯の通気性を改善することができる。このように通気性が改善されることにより、還元材としてコークスよりも安価な微粉炭の使用量を増加させることができるので、同じ出銑比、還元材比の操業であっても、コークス比を低減することができ、溶銑製造コストをより低減することができる。 According to the present invention, by using inexpensive MgO—C-based waste refractories as an auxiliary raw material (MgO source), the cost of hot metal production can be suppressed, and at the same time, the permeability in the blast furnace can be deteriorated, and blast furnace slag can be generated. The MgO concentration of the blast furnace slag can be increased without interfering with the Furthermore, by using massive MgO-C waste refractories as an auxiliary raw material, MgO of the MgO-C waste refractories is solid-dissolved in unreduced FeO to form a high melting point compound. Since the MgO—C waste refractories have a high melting point, the void ratio between particles in the cohesive zone is increased, thereby improving the air permeability of the cohesive zone, which has the lowest air permeability in the blast furnace. By improving the air permeability in this way, it is possible to increase the amount of pulverized coal that is cheaper than coke as a reducing agent, so even if the operation is performed with the same tapping ratio and reducing agent ratio, the coke ratio can be reduced, and the hot metal production cost can be further reduced.

MgO源であるMgO-C系廃耐火物、ブルーサイト、ドロマイト、マグネサイトについて、高炉の塊状帯における粉化し易さを評価するために行ったサンプル試験の結果(加熱後サンプルの-2.8mm比率)を示すグラフResults of a sample test conducted to evaluate the ease of pulverization in the massive zone of the blast furnace for MgO-C waste refractories, brucite, dolomite, and magnesite, which are MgO sources (-2.8 mm of the sample after heating ratio) MgO源であるMgO-C系廃耐火物、ブルーサイト、ドロマイト、マグネサイトについて、高炉の融着帯における通気性への影響を評価するために行った高温荷重軟化試験の結果(炉内推定温度に対する坩堝内圧損の推移)を示すグラフResults of a high-temperature load softening test conducted to evaluate the effect on air permeability in the cohesive zone of a blast furnace for MgO-C waste refractories, brucite, dolomite, and magnesite, which are MgO sources (estimated temperature inside the furnace Graph showing changes in crucible pressure loss against 図2の試験で用いた高温荷重軟化試験装置を示す説明図Explanatory diagram showing the high-temperature load softening test apparatus used in the test of FIG.

本発明者らは、高炉内に副原料として装入されるMgO源が、高炉内に及ぼす影響について評価するために、MgO源として、MgO-C系廃耐火物(以下、説明の便宜上「MgO-C耐火物屑」という場合がある。)、マグネサイト、ブルーサイト、ドロマイトを用いてラボ試験を行い、それぞれの試験結果を比較した。試験に使用したMgO-C耐火物屑、マグネサイト、ブルーサイト、ドロマイトの化学成分を表1に示す。MgO-C耐火物屑は精錬容器などで使用されたものであるため、その化学成分には、付着したスラグ成分(CaO,Alなど)も含まれている。
なお、以下の説明における材料の粒径は、当該数値の目開きの篩で篩った際の篩上または篩下となる材料の粒径を意味する。
In order to evaluate the effect of the MgO source charged into the blast furnace as an auxiliary raw material on the blast furnace, the present inventors used MgO—C-based waste refractories (hereinafter, for convenience of explanation, “MgO -C refractory scrap"), magnesite, brucite, and dolomite were used to conduct laboratory tests, and the respective test results were compared. Table 1 shows the chemical components of the MgO—C refractory scrap, magnesite, brucite, and dolomite used in the test. Since the MgO--C refractory scraps have been used in refining vessels and the like, their chemical composition also includes adhering slag components (CaO, Al 2 O 3 , etc.).
In addition, the particle size of the material in the following description means the particle size of the material that is above or below the sieve when sieved through a sieve with the aperture of the numerical value.

Figure 0007244805000001
Figure 0007244805000001

最初に、高炉の塊状帯におけるMgO源の粉化し易さを評価するため、粒径を15~20mmに整粒した500gの試料を目皿の上に乗せ、内径70mmの反応管の中に静置させた。その後、15NL/minのNガスにて反応管内部を置換した後、15NL/minのNガスを導入させたまま60分間で反応管内部を700℃まで昇温させた。その後、700℃にて30分間15NL/minのNガスを導入した後に、15NL/minのCO:CO=30:70の混合ガスに切り替えて30分間導入し、試料を還元ガスにて反応させた。その後、再び15NL/minのNガスに切り替えて導入し、常温まで試料を冷却した。冷却後の試料質量を測定した後、試料全量をJISM8720に記載の回転試験機の中に装入し、30rpmで30分間、計900回転させた後、目開きが15mmおよび2.8mmの篩を用いて分級した。回転試験機への装入質量に対する粒径2.8mm以下の質量比率を算出し、各原料間で比較をした。その結果を図1に示す。 First, in order to evaluate the easiness of pulverization of the MgO source in the massive zone of the blast furnace, a 500 g sample with a grain size of 15 to 20 mm was placed on a perforated plate and placed in a reaction tube with an inner diameter of 70 mm. placed. After that, the inside of the reaction tube was replaced with N 2 gas at 15 NL/min, and the inside of the reaction tube was heated to 700° C. for 60 minutes while introducing N 2 gas at 15 NL/min. After that, after introducing 15 NL/min of N 2 gas at 700° C. for 30 minutes, the mixed gas of 15 NL/min of CO:CO 2 =30:70 was introduced for 30 minutes, and the sample was reacted with the reducing gas. let me Thereafter, the sample was cooled to room temperature by switching to N 2 gas at 15 NL/min and introducing it again. After measuring the mass of the sample after cooling, the entire amount of the sample was placed in a rotation tester described in JISM8720, rotated at 30 rpm for 30 minutes, a total of 900 times, and then sieved with 15 mm and 2.8 mm meshes. Classified using The mass ratio of particles having a particle size of 2.8 mm or less to the mass charged into the rotary tester was calculated and compared between the raw materials. The results are shown in FIG.

図1によれば、マグネサイトの粒径2.8mm以下の質量比率は60mass%近くになっており、他のMgO-C耐火物屑、ブルーサイト、ドロマイトの粒径2.8mm以下の質量比率がいずれも20mass%以下となっていることと比較すると、粉化が著しいと言える。これは、マグネサイトが熱分解によりCOを放出し、割れが発生したためであると考えられる。ドロマイトも熱分解によりCOを放出し、割れを発生させると考えられるが、熱分解温度がマグネサイトの方が低温であったため、今回の試験ではマグネサイトのみ粉化が著しかったものと考えられる。以上の結果から、マグネサイトのMgO源としての使用は、高炉の塊状帯での粉化により通気性を悪化させるので好ましくないと言える。これに対してMgO-C耐火物屑は、元々強度が高く、熱分解により割れが発生することもないので、粉化しにくく、高炉の塊状帯での粉化により通気性を悪化させることもない。 According to FIG. 1, the mass ratio of magnesite with a particle size of 2.8 mm or less is close to 60 mass%, and the mass ratio of other MgO-C refractory scraps, brucite, and dolomite with a particle size of 2.8 mm or less. are all less than 20 mass%, it can be said that powdering is remarkable. This is believed to be due to the fact that magnesite releases CO2 through thermal decomposition and cracks occur. It is thought that dolomite also releases CO2 through thermal decomposition and causes cracks, but since the thermal decomposition temperature of magnesite was lower than that of magnesite, it is thought that only magnesite was significantly pulverized in this test. . From the above results, it can be said that the use of magnesite as an MgO source is not preferable because it deteriorates air permeability due to pulverization in the massive zone of the blast furnace. On the other hand, MgO-C refractory scraps are originally high in strength and do not crack due to thermal decomposition, so they are difficult to pulverize, and air permeability is not deteriorated due to pulverization in the lumpy zone of the blast furnace. .

次に、高炉の融着帯におけるMgO源の通気性への影響について評価するため、高温荷重軟化試験を行った。使用した高温荷重軟化実験装置の概略を図3に示すが、この装置は、試料を黒鉛坩堝に装入し、坩堝上部より荷重を印加させつつ、坩堝下部より気体を導入する構造となっている。黒鉛坩堝の内径は100mmであり、試料の上下を粒径15mmのジルコニアボールの充填層で被覆して試験を行った。試料の上下の充填層は、コークス粒子を使用するのが一般的であるが、実験後に試料の坩堝内残留物の質量を測定するため、化学的に安定なジルコニアボールを用いて炉内残留物との差別化を図った。試料は、粒径を10-15mmに整粒した焼結鉱と、MgO源とを均一に混合したものを用い、試料全体の質量が900gとなるようにし、MgO源の混合質量を適宜変化させて実験を行った。MgO源としては、塊状帯での粉化が低位であった、MgO-C耐火物屑、ブルーサイト、ドロマイトを用いた。 Next, a high-temperature load softening test was conducted to evaluate the effect of the MgO source on air permeability in the cohesive zone of the blast furnace. The outline of the high-temperature load softening experimental apparatus used is shown in FIG. . The inner diameter of the graphite crucible was 100 mm, and the test was conducted by covering the upper and lower sides of the sample with packed layers of zirconia balls having a particle size of 15 mm. It is common to use coke particles for the filling layers above and below the sample. We tried to differentiate from The sample is a uniform mixture of sintered ore with a grain size of 10 to 15 mm and an MgO source, and the mass of the entire sample is 900 g. experiment. As MgO sources, MgO—C refractory scraps, brucite, and dolomite, which had low pulverization in the lumpy zone, were used.

上述のように黒鉛坩堝に装入した実験試料に対して、高炉雰囲気を模した温度、ガス組成、荷重を付与して、坩堝内圧損と試料層厚の変位を調査した。炉内温度は、室温から900℃までを5℃/min、900℃から1100℃までを2℃/min、1100℃から1650℃までを5℃/minの昇温速度となるよう調整した。ガス組成は室温から炉内温度が300℃まではNガスのみ導入し、300℃以上の温度では、表2のように炉内温度によって組成を変化させ、合計のガス流量が30NL/minとなるように調整した。荷重は、炉内温度が1000℃となるまでは、1000℃において80kgf/cmとなるよう、炉内温度に対して直線的に荷重を与え、1000℃以降は80kgf/cm一定となるよう調整した。 The temperature, gas composition, and load simulating the atmosphere of a blast furnace were applied to the experimental sample charged into the graphite crucible as described above, and the pressure loss in the crucible and the variation in thickness of the sample layer were investigated. The temperature inside the furnace was adjusted so that the rate of temperature increase was 5°C/min from room temperature to 900°C, 2°C/min from 900°C to 1100°C, and 5°C/min from 1100°C to 1650°C. As for the gas composition, only N2 gas was introduced from room temperature to the furnace temperature of 300°C. adjusted to be The load is applied linearly with respect to the furnace temperature so that it will be 80 kgf/ cm2 at 1000°C until the furnace temperature reaches 1000°C, and after 1000°C it will be constant at 80 kgf/ cm2 . It was adjusted.

Figure 0007244805000002
Figure 0007244805000002

試験結果の一例として、MgO源の混合量を24gとした場合の、炉内温度に対する坩堝内圧損の推移を図2に示す。この時のMgO源の混合量は実機での混合量44kg/t(t:溶銑ton。以下同様)に相当する。図2によれば、MgO源としてドロマイトを使用した場合と比較して、MgO-C耐火物屑、ブルーサイトを使用した場合は、圧損がピークとなる温度が高温となり、かつ最大圧損も低位となった。これは、MgO-C耐火物屑に含有されるMgOや、ブルーサイト中の水酸化マグネシウムが熱分解して生じたMgOが、未還元状態のFeOに固溶して高融点化合物を形成したためであると考えられる。また、MgO-C耐火物屑の方が、ブルーサイトよりも最大圧損が低位となったのは、融着状態においてもMgO粒子が残存し、高い粒子間空隙率が維持されたためと考えられる。実験後の黒鉛坩堝内のジルコニアボール以外の残存物を回収したが、いずれのサンプルにおいても未溶解のMgO源は回収されなかった。このことから、融着状態において残存していたMgO-C耐火物屑は、さらなる高温となる溶け落ちの段階ではスラグ中に溶解し、未溶解物としては炉内に残留しなかったものと考えられる。使用済みのMgO-C耐火物は特に融点が高く、これを塊状で使用することによる溶け残りが懸念されたが、このように溶け残りのおそれはないと考えられる。これらの結果から、融着帯での通気性改善効果は、MgO-C耐火物屑が最も高いことが判った。 As an example of the test results, FIG. 2 shows the transition of pressure loss in the crucible with respect to the temperature in the furnace when the mixed amount of the MgO source is 24 g. The mixed amount of the MgO source at this time corresponds to the mixed amount of 44 kg/t (t: ton of hot metal; the same shall apply hereinafter) in the actual machine. According to FIG. 2, compared to the case of using dolomite as the MgO source, when MgO—C refractory scraps and brucite are used, the temperature at which the pressure loss peaks is higher, and the maximum pressure loss is lower. became. This is because MgO contained in MgO—C refractory scraps and MgO generated by thermal decomposition of magnesium hydroxide in brucite dissolved in unreduced FeO to form a high melting point compound. It is believed that there is. In addition, the reason why the maximum pressure loss of the MgO--C refractory scraps was lower than that of the brucite is considered to be that the MgO particles remained even in the fused state and the high inter-particle porosity was maintained. Residuals other than zirconia balls in the graphite crucible after the experiment were recovered, but no undissolved MgO source was recovered in any of the samples. From this, it is considered that the MgO-C refractory scrap remaining in the fused state melted in the slag at the burn-through stage where the temperature was further increased, and did not remain in the furnace as unmelted matter. be done. The used MgO—C refractory has a particularly high melting point, and there was a concern that it would remain unmelted when used in bulk. From these results, it was found that MgO--C refractory scraps had the highest effect of improving air permeability in the cohesive zone.

融着帯においてMgO-C耐火物屑が反応・溶解し切らずに、未溶解物が炉下部に残存すると、FeO濃度の低い高炉スラグへのMgOの溶解速度は低く、炉下部にMgOの未溶解物が滞留してしまうため、通気性の悪化を引き起こす。このためMgO-C耐火物屑は、高炉において必要とされるMgO濃度に応じて、適量を混合することが好ましい。MgO-C耐火物屑の未溶解が発生する可能性について、実機で使用するMgO-C耐火物屑の代表粒径である20-25mmに整粒した試料を用いて調査した。その結果、MgO-C耐火物屑の混合量を、粒径が10-15mmの時と同様に24g(実機での混合量44kg/tに相当)にして試験を行ったところ、最大圧損は0.42kPaとなり、粒径が10-15mmの時よりも若干の低減が認められたが、試験後の黒鉛坩堝内への未溶解物の残存は認められなかった。ここで、MgO-C耐火物屑の混合量として44kg/tは、通常、高炉で必要とされるMgO濃度に対して十分に大きい混合量であり、したがって、MgO源としてMgO-C耐火物屑を用いても、溶解性の面での問題はないことが判った。 If the MgO—C refractory scraps do not completely react and dissolve in the cohesive zone and the unmelted material remains in the lower part of the furnace, the dissolution rate of MgO into the blast furnace slag with a low FeO concentration is low, and the unmelted MgO in the lower part of the furnace is low. Because the melted material stays, it causes deterioration of air permeability. Therefore, the MgO—C refractory scraps are preferably mixed in an appropriate amount according to the MgO concentration required in the blast furnace. The possibility of undissolved MgO--C refractory scrap was investigated using a sample sized to 20-25 mm, which is the representative particle size of MgO--C refractory scrap used in actual equipment. As a result, when the test was conducted with the mixed amount of MgO-C refractory scraps set to 24 g (equivalent to the mixed amount of 44 kg/t in the actual machine), the same as when the particle size was 10-15 mm, the maximum pressure loss was 0. 42 kPa, which was slightly lower than when the particle size was 10-15 mm, but no undissolved matter remained in the graphite crucible after the test. Here, 44 kg / t as the mixed amount of MgO-C refractory scraps is a sufficiently large mixed amount with respect to the MgO concentration normally required in the blast furnace. was found to pose no problem in terms of solubility.

そこで、本発明では、鉱石原料の少なくとも一部に副原料を混合して炉内に装入する高炉操業方法において、鉱石原料に混合する副原料(MgO源)の少なくとも一部として、塊状のMgO-C耐火物屑(MgO-C系廃耐火物)を用いる。
ここで、MgO-C系耐火物(所謂「MgO-C耐火物」)とは、MgO(マグネシア原料)とC(カーボン原料)を主成分とし、必要に応じて金属添加物などの添加物を少量含有するものであり、一般的な組成としては、MgO(マグネシア原料)と8~25mass%程度のC(カーボン原料)からなる耐火性原料に対して、外割で1.5mass%以下(無添加の場合を含む)の添加物を含有するものである。
MgO-C系耐火物(定形耐火物、不定形耐火物)は、製鉄所内の精錬工程などで使用される反応容器や搬送容器の内張りなどに使用されており、これら反応容器や搬送容器の補修(内張りの張り替えなど)時に使用済み耐火物が発生する。本発明で使用するMgO-C耐火物屑は、主としてそのような使用済み耐火物を破砕および整粒(通常、篩い分けによる整粒)して得られた塊状の耐火物屑である。
Therefore, in the present invention, in a method of operating a blast furnace in which at least a part of an ore raw material is mixed with an auxiliary raw material and charged into a furnace, at least a part of the auxiliary raw material (MgO source) mixed with the ore raw material is massive MgO. -C refractory scraps (MgO-C waste refractories) are used.
Here, the MgO-C refractory (so-called "MgO-C refractory") is mainly composed of MgO (magnesia raw material) and C (carbon raw material), and if necessary, additives such as metal additives are added. It contains a small amount, and the general composition is 1.5 mass% or less (no (including the case of addition).
MgO-C refractories (shaped refractories, monolithic refractories) are used for the lining of reaction vessels and transport vessels used in the refining process in steelworks, etc., and repair of these reaction vessels and transport vessels. Used refractories are generated at times (such as when replacing linings). The MgO—C refractory scrap used in the present invention is mainly lump-like refractory scrap obtained by crushing and sizing such used refractories (usually sieving).

塊状のMgO-C耐火物屑は、高炉に装入する鉱石原料の全てに混合してもよいし、後述する形態のように鉱石原料の一部(例えば、1チャージ分の鉱石原料を複数バッチで装入する場合、一部のバッチの鉱石原料)にのみ混合してもよい。鉱石原料にMgO-C耐火物屑を混合するには、例えば、装入コンベアで搬送中の鉱石原料上にMgO-C耐火物屑を切り出せばよい。
なお、MgO-C耐火物屑が混合される鉱石原料には、他の副原料を混合してもよい。
Massive MgO—C refractory scraps may be mixed with all of the ore raw material charged into the blast furnace, or may be part of the ore raw material (for example, multiple batches of ore raw material for one charge) as in the form described later. may be mixed only with a part of the batch of ore raw material). In order to mix the MgO--C refractory scrap with the ore raw material, for example, the MgO--C refractory scrap may be cut out on the ore raw material being conveyed by the charging conveyor.
The ore raw material mixed with the MgO—C refractory scrap may be mixed with other auxiliary raw materials.

塊状のMgO-C耐火物屑は、粒径が大き過ぎると融着帯で反応・溶解し切らずに、未溶解物が炉下部に残存してしまう恐れがあり、一方、粒径が小さ過ぎると炉内の通気性を阻害するおそれがあるため、粒径は10~50mm程度が好ましく、10~40mmがより好ましい。ここで、粒径10~50mmとは、目開き10mmの篩を通過せず、且つ目開き50mmの篩を通過する粒径であり、また、粒径10~40mmとは、目開き10mmの篩を通過せず、且つ目開き40mmの篩を通過する粒径である。
鉱石原料としては、採掘された鉄鉱石を破砕・分級して得られる塊鉱石と、塊鉱石よりも小さい鉄鉱石を塊成化した焼結鉱やペレット等の処理鉱石が挙げられる。塊鉱石と処理鉱石とは、高炉の操業条件に応じて選択的に使用されるが、一般には処理鉱石を主体として塊鉱石+処理鉱石が用いられるか、処理鉱石のみが用いられる。
If the particle size of the massive MgO-C refractory scrap is too large, it may not react and dissolve completely in the cohesive zone, and unmelted material may remain in the lower part of the furnace, while the particle size is too small. The particle size is preferably about 10 to 50 mm, more preferably 10 to 40 mm, because there is a risk of impairing air permeability in the furnace. Here, the particle size of 10 to 50 mm is the particle size that does not pass through a sieve with an opening of 10 mm and does not pass through a sieve with an opening of 50 mm. It is a particle size that does not pass through a sieve with an opening of 40 mm.
Examples of ore raw materials include lump ore obtained by crushing and classifying mined iron ore, and treated ore such as sintered ore and pellets obtained by agglomerating iron ore smaller than lump ore. Lump ore and treated ore are selectively used depending on the operating conditions of the blast furnace. In general, treated ore is mainly used, and lump ore + treated ore is used, or only treated ore is used.

また、MgO-C耐火物屑は鉱石原料中の脈石成分の中ではFeOと最も反応するため、MgO-C耐火物屑を融着帯で適切に反応・溶解させ、炉下部で未溶解の残留物が生じないようにするという観点からは、融着帯において鉱石原料中にFeOが残存している方が望ましい。ここで、処理鉱石と塊鉱石とでは、塊鉱石の方が被還元性が低く、融着帯においてFeOが還元されずに残存しやすいため、MgO-C耐火物屑を塊鉱石の周りに置いた方が溶解しやすく、有利であると言える。そこで、鉱石原料が処理鉱石と塊鉱石からなる場合に、1チャージ分の鉱石原料を2バッチに分割して装入し、そのうち塊鉱石の質量比率の高いバッチの方にのみMgO-C耐火物屑を混合することが好ましい。これによりMgO-C耐火物屑の融着帯における溶解を促進させ、炉下部で未溶解の残留物が生じにくくすることができる。また、同様の趣旨で、1チャージ分の鉱石原料を2バッチに分割して装入し、各バッチにMgO-C耐火物屑を混合するとともに、2バッチのうち塊鉱石の質量比率の高い方のバッチのMgO-C耐火物屑の混合比率(鉱石原料とMgO-C耐火物屑の合計量に対するMgO-C耐火物屑量の割合。以下同様)を、塊鉱石の質量比率の低い方のバッチのMgO-C耐火物屑の混合比率と同じかそれよりも高くするようにしてもよい。このようにした場合でも、上記のように塊鉱石の質量比率の高いバッチの方にのみMgO-C耐火物屑を混合する場合よりも効果は若干低くなることはあるものの、MgO-C耐火物屑の融着帯における溶解を促進させ、炉下部で未溶解の残留物が生じにくくすることができる。 In addition, since MgO-C refractory scrap reacts most with FeO among the gangue components in the ore raw material, the MgO-C refractory scrap is appropriately reacted and melted in the cohesive zone, and unmelted in the lower part of the furnace. From the viewpoint of preventing the formation of residues, it is desirable that FeO remains in the ore raw material in the cohesive zone. Here, between the treated ore and the lump ore, the reducibility of the lump ore is lower, and FeO tends to remain without being reduced in the cohesive zone, so MgO—C refractory scraps are placed around the lump ore. It can be said that it is advantageous because it is easier to dissolve. Therefore, when the ore raw material consists of treated ore and lump ore, the ore raw material for one charge is divided into two batches and charged, and only the batch with a high mass ratio of lump ore is MgO-C refractory. It is preferred to mix the waste. As a result, the melting of the MgO--C refractory scraps in the cohesive zone can be promoted, and unmelted residue is less likely to occur in the lower part of the furnace. In addition, for the same purpose, one charge of ore raw material is divided into two batches and charged, each batch is mixed with MgO-C refractory scrap, and one of the two batches with a higher mass ratio of lump ore is charged. The mixing ratio of MgO—C refractory scraps in the batch (the ratio of the amount of MgO—C refractory scraps to the total amount of ore raw materials and MgO—C refractory scraps; the same applies hereinafter) is set to the lower mass ratio of lump ore The mixing ratio may be the same as or higher than that of the MgO--C refractory scrap in the batch. Even in this case, although the effect may be slightly lower than when the MgO-C refractory scrap is mixed only in the batch having a high lump ore mass ratio as described above, the MgO-C refractory Dissolution of the scrap in the cohesive zone can be accelerated and undissolved residue is less likely to occur in the lower part of the furnace.

なお、MgO-C耐火物屑の混合量の実質的な上限を確認するため、さらに、MgO-C耐火物屑の混合量を、実機での混合量54kg/tに相当する30gに増加させて試験を行ったところ、最大圧損は0.37kPaとなり、さらに圧損が低減したが、試験後の黒鉛坩堝内に未溶解物と思われる試料が視認され、化学分析の結果、MgO-C耐火物屑であることが確認された。この結果からして、実機におけるMgO-C耐火物屑の混合量は50kg/t程度を上限とするのが好ましい。 In addition, in order to confirm the substantial upper limit of the mixed amount of MgO—C refractory scrap, the mixed amount of MgO—C refractory scrap was further increased to 30 g, which corresponds to the mixed amount of 54 kg / t in the actual machine. As a result of the test, the maximum pressure loss was 0.37 kPa, and the pressure loss was further reduced. It was confirmed that Based on this result, it is preferable that the upper limit of the mixed amount of MgO—C refractory scraps in an actual machine is about 50 kg/t.

実機のベルレス高炉(内容積:5153m、炉口径:11.4m)用いて、以下のような試験操業を行った。1チャージ分の原料は、コークスを1バッチで、塊鉱石および焼結鉱からなる鉱石原料を2バッチでそれぞれ装入した。鉱石原料の装入では、高炉ガスの中心流と周辺流の比率を適正に保ち、炉内の通気性を確保するために、第1バッチでは鉱石原料に対する焼結鉱の割合(処理鉱比)が67mass%の鉱石原料a-1を、第2バッチでは鉱石原料に対する焼結鉱の割合(処理鉱比)が73mass%の鉱石原料a-2を、それぞれ装入した。ここで、鉱石原料を構成する塊鉱石はT.Feが63mass%、同じく焼結鉱はT.Feが57mass%であった。 Using an actual bell-less blast furnace (inner volume: 5153 m 3 , furnace caliber: 11.4 m), the following test operation was performed. As raw materials for one charge, one batch of coke and two batches of ore raw materials consisting of lump ore and sintered ore were charged. In charging the ore raw materials, in order to keep the ratio of the central flow and the peripheral flow of the blast furnace gas at an appropriate level and to ensure the ventilation inside the furnace, the ratio of sintered ore to the raw ore (processed ore ratio) is adjusted in the first batch. In the second batch, the ore raw material a-1 having a ratio of sintered ore to the ore raw material (processed ore ratio) of 73 mass% was charged, respectively. Here, the lump ore constituting the ore raw material is T.I. Fe is 63 mass%, and the sintered ore is T.I. Fe was 57 mass%.

使用したコークスの平均粒径(分級した目開きをもとに算出される調和平均径)は40mmであり、鉱石原料a-1および鉱石原料a-2のそれぞれの平均粒径(分級した目開きをもとに算出される調和平均径)は12mmであった。ここで、調和平均径は、適正にサンプリングしたサンプルを、コークスは表5、鉱石は表6に示す目開きの篩で篩い分け、それぞれの表に示した代表径を使用して計算した。
鉱石原料a-1および鉱石原料a-2のそれぞれの装入量は、出銑比とコークス比とから決定され、1バッチ当たり90~100tの範囲となった。
MgO源としては、MgO-C耐火物屑、ブルーサイト、ドロマイト、マグネサイトを用いた。これらMgO源は、目開き50mmの篩で篩った篩下材を、さらに目開き10mmの篩で篩った篩上材を用い、これを鉱石原料a-1または/および鉱石原料a-2に混合量を変えて混合した。本実施例の操業結果を表3および表4に示す。
なお、MgO源を鉱石原料a-1、a-2の両方に混合した実施例のうち、発明例3、6と比較例7~12については、鉱石原料a-1、a-2それぞれの鉱石原料量に対して同じ混合比率になるようにMgO源を混合し、一方、発明例8~11については、鉱石原料a-1の鉱石原料量に対する混合比率が鉱石原料a-2の鉱石原料量に対する混合比率よりも高くなるようにMgO源を混合した。
The average particle diameter of the coke used (harmonic mean diameter calculated based on the classified opening) was 40 mm, and the average particle diameter of each of the ore raw material a-1 and the ore raw material a-2 (classified opening The harmonic mean diameter calculated based on ) was 12 mm. Here, the harmonic mean diameter was calculated by sieving properly sampled samples with the sieves of coke shown in Table 5 and the ore with meshes shown in Table 6, and using the representative diameters shown in each table.
The charging amounts of ore raw material a-1 and ore raw material a-2 were determined from the tapping ratio and the coke ratio, and ranged from 90 to 100 tons per batch.
As MgO sources, MgO—C refractory scrap, brucite, dolomite, and magnesite were used. These MgO sources use the unsieved material sieved through a sieve with an opening of 50 mm and the sieved material further sieved through a sieve with an opening of 10 mm. was mixed while changing the mixing amount. Tables 3 and 4 show the operation results of this example.
Among the examples in which the MgO source was mixed with both ore raw materials a-1 and a-2, in invention examples 3 and 6 and comparative examples 7 to 12, the ores of ore raw materials a-1 and a-2 were used. The MgO source was mixed so as to have the same mixing ratio with respect to the raw material amount, while in Examples 8 to 11, the mixing ratio of ore raw material a-1 to the ore raw material amount was the ore raw material amount of ore raw material a-2. The MgO source was mixed so as to be higher than the mixing ratio for .

発明例1~11では、MgO-C耐火物屑の混合量を50kg/t以下として、鉱石原料中に混合した。これらの発明例では、高炉内の融着帯において、MgOが未還元状態のFeOに固溶して高融点化合物を形成したことに加えて、融点の高いMgO源が存在することで粒子間空隙率が高められ、炉内通気性が改善されたものと考えられる。その結果、出銑比を低下させることなく微粉炭比を増加させることができ、コークス比を350kg/t以下とすることができた。
発明例1~3、8、9では、MgO-C耐火物屑の混合量を10kg/tとし、それぞれ鉱石原料a-1、鉱石原料a-2、鉱石原料a-1およびa-2に混合した。これらの発明例では、MgO-C耐火物屑の混合量が比較的少ないために、融着帯でのMgO-C耐火物屑の融解挙動に差異はなく、いずれの条件においてもコークス比は350kg/tとなった。
In Examples 1 to 11, the MgO—C refractory scrap was mixed in the ore raw material at a mixing amount of 50 kg/t or less. In these invention examples, in the cohesive zone in the blast furnace, MgO dissolved in unreduced FeO to form a high-melting compound. This is thought to be due to the increased air permeability in the furnace. As a result, the pulverized coal ratio could be increased without lowering the tapping ratio, and the coke ratio could be 350 kg/t or less.
In Invention Examples 1 to 3, 8, and 9, the mixed amount of MgO—C refractory scraps was 10 kg/t, and mixed with ore raw material a-1, ore raw material a-2, ore raw material a-1 and a-2, respectively. bottom. In these invention examples, since the mixed amount of MgO—C refractory scraps is relatively small, there is no difference in the melting behavior of the MgO—C refractory scraps in the cohesive zone, and the coke ratio is 350 kg under any conditions. /t.

一方、発明例4~6、10、11では、MgO-C耐火物屑の混合量を25kg/tとし、それぞれ鉱石原料a-1、鉱石原料a-2、鉱石原料a-1およびa-2に混合した。これらの発明例のうち、MgO-C耐火物屑を鉱石原料a-1にのみ混合した発明例4のコークス比が347kg/tと最も低位となり、MgO-C耐火物屑を鉱石原料a-1およびa-2に対して混合比率が鉱石原料a-1≧鉱石原料a-2となるように混合した発明例6、10、11のコークス比が348kg/tと次に低く、MgO-C耐火物屑を鉱石原料a-2にのみ混合した発明例5のコークス比が349kg/tと最も高くなった。これは、発明例4では、MgO-C耐火物屑を塊鉱石の質量比率が相対的に高い鉱石原料a-1にのみ混合したことで、融着帯でのMgO-C耐火物屑の溶解が最も進行し、未溶解耐火物屑による炉下部への通気阻害が起きにくくなったためであると考えられる。また、発明例6、10、11では、MgO-C耐火物屑を鉱石原料a-1およびa-2に混合したが、鉱石原料a-1およびa-2への混合比率を同等にし若しくは塊鉱石の質量比率が相対的に高い鉱石原料a-1の方に多く混合したことで、発明例4に次いで、融着帯でのMgO-C耐火物屑の溶解が進行し、未溶解耐火物屑による炉下部への通気阻害が起きにくくなったためであると考えられる。すなわち、発明例4~6、10、11は、MgO-C耐火物屑の混合量は同じであるが、鉱石原料a-1へのMgO-C耐火物屑の混合割合でいうと発明例4>発明例6,10,11>発明例5であり、この順にMgO-C耐火物屑が溶解しやすい(未溶解耐火物屑が少ない)ため、コークス比に上記のような差が生じたものと考えられる。
発明例7ではMgO-C耐火物屑を鉱石原料a-1にのみ混合したが、混合量が45kg/tと多いため未溶解の耐火物屑による炉下部への通気阻害が生じたものと考えられ、コークス比が349kg/tまで増加した。
On the other hand, in Invention Examples 4 to 6, 10, and 11, the mixed amount of MgO—C refractory scrap was 25 kg/t, and ore raw material a-1, ore raw material a-2, ore raw material a-1 and a-2, respectively. mixed into Among these invention examples, the coke ratio of invention example 4, in which MgO-C refractory scrap was mixed only with ore raw material a-1, was the lowest at 347 kg/t. and a-2, the coke ratio of invention examples 6, 10, and 11, which were mixed so that the mixing ratio of ore raw material a-1 ≧ ore raw material a-2, was the next lowest at 348 kg / t, The coke ratio of Invention Example 5, in which waste was mixed only with ore raw material a-2, was the highest at 349 kg/t. This is because, in Invention Example 4, the MgO—C refractory scrap was mixed only with the ore raw material a-1, which has a relatively high lump ore mass ratio, and the MgO—C refractory scrap melted in the cohesive zone. This is thought to be due to the fact that the unmelted refractory scraps are less likely to hinder ventilation to the lower part of the furnace. In addition, in Invention Examples 6, 10, and 11, the MgO—C refractory scrap was mixed with ore raw materials a-1 and a-2, but the mixing ratio with ore raw materials a-1 and a-2 was made equal or lumps were mixed. Since more of the ore raw material a-1, which has a relatively high mass ratio of ore, was mixed, the melting of MgO—C refractory scrap in the cohesive zone progressed next to Invention Example 4, and undissolved refractory It is believed that this is due to the fact that the obstruction of ventilation to the lower part of the furnace by scraps is less likely to occur. That is, in Invention Examples 4 to 6, 10, and 11, the mixed amount of MgO—C refractory scraps is the same, but in terms of the mixing ratio of MgO—C refractory scraps to ore raw material a-1, Invention Example 4 >Invention Examples 6, 10, 11>Invention Example 5, in which the MgO-C refractory scraps are easily dissolved in this order (undissolved refractory scraps are small), so the above difference in the coke ratio occurred. it is conceivable that.
In Invention Example 7, the MgO—C refractory scrap was mixed only with the ore raw material a-1, but it is thought that the unmelted refractory scrap hindered ventilation to the lower part of the furnace because the mixed amount was as large as 45 kg/t. and the coke ratio increased to 349 kg/t.

一方、MgO源としてブルーサイトを鉱石原料a-1にのみ混合した比較例1、2、同じく鉱石原料a-1およびa-2に混合した比較例7、8では、融着帯において、MgOが未還元状態のFeOに固溶して高融点化合物を形成したことによる通気性の改善効果はあるが、MgO源(ブルーサイト)はMgO-C耐火物屑のように高融点ではないため、融着層においてMgO源により粒子間空隙率が高められる効果が得られず、そのため発明例1~11と比較すると通気改善効果が低く、コークス比は351kg/t以上となった。
MgO源としてドロマイトを鉱石原料a-1にのみ混合した比較例3、4、同じく鉱石原料a-1およびa-2に混合した比較例9、10では、スラグボリュームの増加による通気悪化の影響により、コークス比は352kg/t以上となった。
MgO源としてマグネサイトを鉱石原料a-1にのみ混合した比較例5、6、同じく鉱石原料a-1およびa-2に混合した比較例11、12では、塊状帯における粉化の進行により通気が悪化したため、コークス比は352kg/t以上となった。
On the other hand, in Comparative Examples 1 and 2 in which brucite was mixed only in ore raw material a-1 as an MgO source, and in Comparative Examples 7 and 8 in which brucite was similarly mixed in ore raw materials a-1 and a-2, MgO was Although there is an effect of improving air permeability by forming a high melting point compound by dissolving in unreduced FeO, the MgO source (brucite) does not have a high melting point like MgO—C refractory scrap, so it is difficult to melt. In layering, the effect of increasing the void ratio between particles by the MgO source was not obtained. Therefore, compared with Invention Examples 1 to 11, the effect of improving ventilation was low, and the coke ratio was 351 kg/t or more.
In Comparative Examples 3 and 4, in which dolomite was mixed only with ore raw material a-1 as the MgO source, and in Comparative Examples 9 and 10, in which dolomite was mixed with ore raw materials a-1 and a-2 as well, the increase in slag volume caused deterioration of ventilation. , the coke ratio became 352 kg/t or more.
In Comparative Examples 5 and 6, in which magnesite as the MgO source was mixed only with ore raw material a-1, and in Comparative Examples 11 and 12, where magnesite was mixed with ore raw materials a-1 and a-2 as the MgO source, aeration occurred due to progress of pulverization in the massive zone. deteriorated, the coke ratio became 352 kg/t or more.

Figure 0007244805000003
Figure 0007244805000003

Figure 0007244805000004
Figure 0007244805000004

Figure 0007244805000005
Figure 0007244805000005

Figure 0007244805000006
Figure 0007244805000006

Claims (5)

鉱石原料の少なくとも一部に副原料を混合して炉内に装入する高炉操業方法であって、
鉱石原料に混合する副原料の少なくとも一部が、塊状のMgO-C系廃耐火物であり、
該塊状のMgO-C系廃耐火物が、使用済みのMgO-C系耐火物を破砕および整粒して得られたものであることを特徴とする高炉操業方法。
A blast furnace operating method of mixing at least a part of an ore raw material with an auxiliary raw material and charging it into a furnace,
At least part of the auxiliary raw material mixed with the ore raw material is a massive MgO—C-based waste refractory,
A method of operating a blast furnace, wherein the massive MgO—C-based waste refractories are obtained by crushing and granulating used MgO—C-based refractories.
MgO-C系廃耐火物の粒径が10~50mmであることを特徴とする請求項1に記載の高炉操業方法。 2. The method of operating a blast furnace according to claim 1, wherein the particle size of the MgO—C-based waste refractories is 10 to 50 mm. 鉱石原料が処理鉱石と塊鉱石からなることを特徴とする請求項1または2に記載の高炉操業方法。 3. The method of operating a blast furnace according to claim 1 or 2, wherein the ore raw material comprises treated ore and lump ore. 1チャージ分の鉱石原料を2バッチに分割して装入し、そのうち塊鉱石の質量比率の高い方のバッチにのみMgO-C系廃耐火物を混合することを特徴とする請求項に記載の高炉操業方法。 4. The method according to claim 3 , wherein the ore raw material for one charge is divided into two batches and charged, and only the batch having a higher lump ore mass ratio is mixed with the MgO—C-based waste refractories. blast furnace operation method. 1チャージ分の鉱石原料を2バッチに分割して装入し、各バッチにMgO-C系廃耐火物を混合するとともに、2バッチのうち塊鉱石の質量比率の高い方のバッチのMgO-C系廃耐火物の混合比率を、塊鉱石の質量比率の低い方のバッチのMgO-C系廃耐火物の混合比率と同じかそれよりも高くすることを特徴とする請求項に記載の高炉操業方法。 One charge of ore raw material is divided into two batches and charged, each batch is mixed with MgO-C-based waste refractories, and the MgO-C of the batch with the higher lump ore mass ratio among the two batches. The blast furnace according to claim 3 , wherein the mixing ratio of the waste refractories is the same as or higher than the mixing ratio of the MgO—C waste refractories of the batch with the lower lump ore mass ratio. Operation method.
JP2021030607A 2020-03-19 2021-02-26 Blast furnace operation method Active JP7244805B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048769 2020-03-19
JP2020048769 2020-03-19

Publications (2)

Publication Number Publication Date
JP2021152213A JP2021152213A (en) 2021-09-30
JP7244805B2 true JP7244805B2 (en) 2023-03-23

Family

ID=77886513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021030607A Active JP7244805B2 (en) 2020-03-19 2021-02-26 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP7244805B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244681A (en) 2003-02-14 2004-09-02 Nippon Steel Corp Method for reducing sulfur in molten iron in blast furnace
JP2008279353A (en) 2007-05-10 2008-11-20 Sanyo Special Steel Co Ltd SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP
JP2011127197A (en) 2009-12-18 2011-06-30 Kobe Steel Ltd Method for operating blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004244681A (en) 2003-02-14 2004-09-02 Nippon Steel Corp Method for reducing sulfur in molten iron in blast furnace
JP2008279353A (en) 2007-05-10 2008-11-20 Sanyo Special Steel Co Ltd SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP
JP2011127197A (en) 2009-12-18 2011-06-30 Kobe Steel Ltd Method for operating blast furnace

Also Published As

Publication number Publication date
JP2021152213A (en) 2021-09-30

Similar Documents

Publication Publication Date Title
RU2404264C2 (en) Composition of conditioning addition for slag, method for its obtaining, and method of its application during steel making
RU2671781C2 (en) Fluxing material, method for production thereof, sintering mixture and use of secondary metallurgy slag
JPWO2009123115A1 (en) Method for producing reduced iron
US20240247330A1 (en) Process for manufacturing a slag conditioning agent for steel desulfurization
US10407744B2 (en) Production method of granular metallic iron
JP7244805B2 (en) Blast furnace operation method
JP5884186B2 (en) Desulfurization slag regeneration method and desulfurization slag recycling method
JP2009019224A (en) Method for manufacturing sintered ore
JP2024515791A (en) Method for producing slag having desired qualities
JP5098518B2 (en) Hot phosphorus dephosphorization method
JP5082678B2 (en) Hot metal production method using vertical scrap melting furnace
US20170130284A1 (en) Products and processes for producing steel alloys using an electric arc furnace
JPS61194125A (en) Simultaneous treatment of sludge and steel making slag
JP2024524153A (en) Iron briquette
JP4637528B2 (en) Molten iron making material and method of using the same
JP2011179090A (en) Method for producing granulated iron
JP2006241478A (en) Method for operating converter
JP2010138428A (en) MATERIAL FOR ADJUSTING CONCENTRATION OF MgO IN CONVERTER SLAG, AND STEEL MANUFACTURING PROCESS IN CONVERTER
JP2006265687A (en) Method for manufacturing sintered ore using magnesium oxide-containing refractory
WO2018068066A2 (en) Method of producing a low carbon ferrochrome by means of metallorthermic reduction and oxygen refining
JP5303915B2 (en) Usage of used MgO-C brick
JP5397020B2 (en) Reduced iron production method
WO2023054345A1 (en) Molten iron production method
EP3693478A1 (en) Process for refining steel and dephosphorization agent used in said process
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7244805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150