JP3994988B2 - Method of recovering and using metal components contained in slag slag containing chromium - Google Patents

Method of recovering and using metal components contained in slag slag containing chromium Download PDF

Info

Publication number
JP3994988B2
JP3994988B2 JP2004161171A JP2004161171A JP3994988B2 JP 3994988 B2 JP3994988 B2 JP 3994988B2 JP 2004161171 A JP2004161171 A JP 2004161171A JP 2004161171 A JP2004161171 A JP 2004161171A JP 3994988 B2 JP3994988 B2 JP 3994988B2
Authority
JP
Japan
Prior art keywords
slag
blast furnace
refining
molten iron
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004161171A
Other languages
Japanese (ja)
Other versions
JP2004244728A (en
Inventor
康夫 岸本
宏泰 森岡
寛 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004161171A priority Critical patent/JP3994988B2/en
Publication of JP2004244728A publication Critical patent/JP2004244728A/en
Application granted granted Critical
Publication of JP3994988B2 publication Critical patent/JP3994988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、転炉、AOD炉またはVOD炉等の精錬炉にてクロム含有鋼を精錬する際に発生するスラグ中の金属成分を回収利用する方法に関する。   The present invention relates to a method for recovering and utilizing a metal component in slag generated when refining chromium-containing steel in a refining furnace such as a converter, an AOD furnace, or a VOD furnace.

従来、クロム含有鋼、例えばステンレス鋼は、電気炉にてスクラップを主たる原料としてクロム含有溶湯を溶製し、その後AOD炉あるいはVOD炉を用いて、クロム酸化ロスを最小限とする酸化精錬を施して製造するのが一般的である。また、近年になって、高炉からの溶銑と合金鉄を用いて、上底吹き転炉にて酸化精錬を行う技術、あるいは合金鉄を用いずに直接クロム鉱石を上底吹き転炉内に添加し、溶融還元を行って得た粗溶湯を、別の上底吹き転炉に装入し、ここで酸化精錬を行う技術など、種々のステンレス鋼の製造技術が提案されている。   Conventionally, chromium-containing steel, for example, stainless steel, is made by melting chromium-containing molten metal as a main raw material in an electric furnace, and then using an AOD furnace or a VOD furnace to perform oxidative refining to minimize chromium oxidation loss. It is common to manufacture. Also, in recent years, technology to perform oxidative refining in the top-bottom converter using hot metal and alloy iron from the blast furnace, or directly add chromium ore into the top-bottom converter without using alloy iron. Various types of stainless steel manufacturing techniques have been proposed, such as a technique in which a crude molten metal obtained by smelting reduction is charged into another top-bottom blowing converter and subjected to oxidative refining.

これらのステンレス鋼の製造プロセスでは、精錬炉において脱炭反応と同時に進行するクロムの酸化反応により、スラグ中に高価なクロムが移行することが共通の問題であり、このスラグ中の(T,Cr) で代表される、酸化クロム量をどこまで低減できるかが経済的に極めて重要になる。ここで、酸化クロムとはクロムが酸化され、2価、3価あるいは6価の個数になった状態を意味し、通常スラグの分析においてはそれらの総計をクロム換算にて表わしてトータルクロム(T・Cr) と称している。従って、この発明においても(T・Cr) 濃度は、上記した如く、酸化状態にあるクロムの総計の濃度を表わすこととする。   In these stainless steel manufacturing processes, it is a common problem that expensive chromium migrates into the slag due to the oxidation of chromium that proceeds simultaneously with the decarburization reaction in the smelting furnace. The extent to which the amount of chromium oxide, represented by) can be reduced, is extremely important economically. Here, chromium oxide means a state in which chromium is oxidized to a divalent, trivalent or hexavalent number. In the analysis of normal slag, the total of these is expressed in terms of chromium, and the total chromium (T・ Cr). Accordingly, in this invention as well, the (T · Cr) concentration represents the total concentration of chromium in the oxidized state as described above.

そこで、生成した(T・Cr) を回収するため、酸化精錬後にFeSi等による還元回収処理が行われている。しかし、酸化クロムを還元回収するにつれて、スラグ中のクロム濃度が低くなって、その還元効率も低くなるため、還元に用いるFeSiやAlなどの還元材の使用量が必然的に増える結果、コストの増加をまねいてしまう。従って、(T・Cr) 濃度が0.7 〜3wt%程度となるまで還元を行って、その後スラグを排出するのが一般的である。   Therefore, in order to recover the generated (T · Cr), reduction recovery treatment with FeSi or the like is performed after oxidative refining. However, as the chromium oxide is reduced and recovered, the chromium concentration in the slag decreases and the reduction efficiency also decreases, so the amount of reducing materials such as FeSi and Al used for the reduction inevitably increases. It will mimic the increase. Accordingly, reduction is generally performed until the (T · Cr) concentration becomes about 0.7 to 3 wt%, and then slag is discharged.

しかしながら、この処理方法では、還元処理がばらついたり、あるいは冷却後の状態によって、スラグ中のクロムが再酸化して有害な過酸化クロム、いわゆる6価クロムが発生することがあり、このスラグを埋め立て等の用途に供する際の大きな障害となる。なぜなら、大半のスラグが問題のない場合でも、過酸化クロムを含有するスラグが混入すると、全てのスラグの再利用ができなくなるからである。   However, in this treatment method, the reduction treatment varies, or depending on the state after cooling, chromium in the slag may be reoxidized to generate harmful chromium peroxide, so-called hexavalent chromium, and this slag is reclaimed. It becomes a big obstacle when it is used for such applications. This is because even when most of the slag is not problematic, if slag containing chromium peroxide is mixed, it is impossible to reuse all of the slag.

この問題に対して、特許文献1では、スラグ中での過酸化クロムの発生を抑制するために、FeSを添加する方法が提案されている。
特開平8−104553号公報
With respect to this problem, Patent Document 1 proposes a method of adding FeS in order to suppress generation of chromium peroxide in slag.
JP-A-8-104553

しかし、スラグ中にFeSを添加すると、大量のS含有ガスが発生して環境に悪影響を与えるため、この排ガスを回収する必要があるが、回収の際にS含有ガスに起因して配管腐食が生じること、また排ガス中のSが高いため燃焼ガスとして再利用するのが難しいこと、など、FeSを添加することによる弊害が多いことから、実際の採用は難しい。   However, when FeS is added to the slag, a large amount of S-containing gas is generated and adversely affects the environment. Therefore, it is necessary to recover this exhaust gas. The actual adoption is difficult because there are many harmful effects due to the addition of FeS, such as the fact that it is generated and that S in the exhaust gas is high and it is difficult to reuse it as a combustion gas.

また、スラグ中の磁鉄分は磁選で回収できるが、ステンレス鋼精錬スラグにはスラグと分離困難な金属分が多く含まれていて、この金属成分の回収が困難であり、この回収の実現も望まれている。   In addition, the magnetic iron content in the slag can be recovered by magnetic separation, but the stainless steel refining slag contains a large amount of metal that is difficult to separate from the slag, and it is difficult to recover this metal component. It is rare.

この発明は、クロム含有鋼精錬スラグ中の金属成分の有効な回収利用方法について提案することを目的とする。   An object of the present invention is to propose an effective method for recovering and using metal components in slag slag containing chromium.

発明者らは、上記目的に適う、クロム含有鋼精錬スラグの再生利用について種々の検討を行ったところ、精錬炉が製鉄所内に立地していることに着目し、製鋼において精錬炉の上流過程にある高炉に対して、スラグを再生利用するのが有利であることを見出した。すなわち、スラグを高炉に戻すことによって、スラグ中の金属成分を溶鉄に回収するとともに、ここで改質されたスラグを土木や建築の用途に再利用することが可能になるのである。   The inventors have made various studies on the recycling of slag slag containing chromium that meets the above-mentioned purpose, and paid attention to the fact that the smelting furnace is located in the steelworks, and in the steelmaking upstream process of the smelting furnace. It has been found that it is advantageous to recycle slag for a blast furnace. That is, by returning the slag to the blast furnace, the metal component in the slag can be recovered into molten iron, and the slag modified here can be reused for civil engineering and architectural purposes.

この発明は、上記の知見に由来するものである。
すなわち、この発明は、精錬炉内に装入したクロム含有溶湯に、酸素を供給して行う酸化精錬に伴って発生するスラグに、還元処理を施してスラグ中の(T・Cr) 濃度を 0.3〜 3.0wt%に調整し、次いで該スラグにほう素酸化物を添加しスラグを固化してから、該スラグを直接または焼結後に高炉へ添加し、高炉にてスラグ中の金属成分を溶鉄内に還元回収し、その後高炉から出湯した溶鉄は、脱炭精錬に先立ち、酸素を酸素原単位が2Nm 3 /t溶鉄以上で供給する溶銑予備処理を行って、高炉内でスラグから溶鉄内に還元回収されたBを除去してから、当該溶鉄を精錬炉に装入して脱炭精錬を行うことを特徴とするクロム含有鋼精錬スラグに含有される金属成分の回収利用方法である。
This invention is derived from the above findings.
That is, in the present invention, the chromium-containing molten metal charged into the smelting furnace is subjected to a reduction treatment on the slag generated by the oxidative refining performed by supplying oxygen to reduce the (T · Cr) concentration in the slag to 0.3. Adjust to ~ 3.0wt%, then add boron oxide to the slag to solidify the slag, then add the slag directly or after sintering to the blast furnace, and in the blast furnace, add the metal components in the slag to the molten iron Before the decarburization refining, the molten iron recovered and recovered from the blast furnace is subjected to hot metal pretreatment that supplies oxygen at an oxygen unit of 2 Nm 3 / t or more, and reduced from the slag into the molten iron in the blast furnace. This is a method for recovering and using a metal component contained in a chromium-containing steel refining slag, wherein the recovered B is removed, and then the molten iron is charged into a refining furnace to perform decarburization refining.

ここで、脱炭精錬中に生成するスラグを直接または焼結後に高炉へ添加してスラグ中の金属成分の回収利用に供することが実施に当たり有利に適合する。 Here, subjecting added to blast furnace slag produced during decarburization refining directly or after sintering the recovery and reuse of the metal components in the slag is compatible advantageously Upon implementation.

この発明によれば、従来は困難であったステンレス鋼精錬スラグの再生利用を、ほぼ完全に実現できるため、精錬、さらには製銑工程における、コストの低下および生産性の向上を共に達成し得る。   According to the present invention, recycling of stainless steel refining slag, which has been difficult in the past, can be realized almost completely, so that both cost reduction and productivity improvement can be achieved in refining and further in the ironmaking process. .

さて、ステンレス鋼の精錬時に発生するスラグを高炉に添加すると、スラグ中に含有された金属およびFeO ,Cr2O3 ,MnO などの金属酸化物は、溶融あるいは還元されて、高炉内溶銑中に回収される。一方、スラグ自体は、高炉内で完全に還元されて、酸化物の含まれない、いわゆる高炉スラグに改質されるから、この改質スラグを、路盤材、セメントまたは生コン骨材などの土木、建設用途に再利用することができる。 Now, when the slag generated during refining of stainless steel is added to the blast furnace, the metal contained in the slag and the metal oxides such as FeO, Cr 2 O 3 and MnO are melted or reduced, and are put into the hot metal in the blast furnace. Collected. On the other hand, since the slag itself is completely reduced in the blast furnace and reformed into a so-called blast furnace slag that does not contain oxides, the modified slag is converted into civil engineering such as roadbed material, cement, or raw concrete aggregate, Can be reused for construction purposes.

ここで、ステンレス鋼精錬スラグ中の(T・Cr) 濃度が高すぎると、このスラグを高炉に添加した際、溶鉄へのクロムの還元量が増加して、溶鉄中のクロム濃度が高くなる。溶鉄中クロム濃度が上昇することは、高炉溶鉄の全てをクロム含有鋼の精錬原料として使用するのであれば、特に問題とはならないが、通常は普通鋼の精錬原料としても使用するから、その際に支障を来さない程度のクロム含有量に止めることが必要になる。つまり、スラグ中の(T・Cr) 濃度をある程度低下させる必要があるのである。一方、上述したように、スラグ中の(T・Cr) を極低濃度域まで低下させるには、還元効率の低下に伴って還元材の使用量を増加しなくてはならないため、(T・Cr) 濃度に反比例して還元に要するコストが増加する。   Here, if the (T · Cr) concentration in the stainless steel refining slag is too high, when this slag is added to the blast furnace, the amount of chromium reduced to the molten iron increases, and the chromium concentration in the molten iron increases. The increase in the chromium concentration in the molten iron is not particularly a problem if all of the blast furnace molten iron is used as a refining raw material for chromium-containing steel, but it is usually used as a refining raw material for ordinary steel. It is necessary to stop the chromium content to such an extent that it does not cause problems. In other words, it is necessary to reduce the (T · Cr) concentration in the slag to some extent. On the other hand, as described above, in order to reduce the (T ・ Cr) in the slag to an extremely low concentration range, the amount of reducing material used must be increased along with the reduction in reduction efficiency. The cost for reduction increases in inverse proportion to the Cr) concentration.

発明者らの知見によれば、(T・Cr) 濃度が0.3 wt%程度以下となるまで完全に還元処理を行うと、過酸化クロムの問題は解消されるが、ばらつきを含めて(T・Cr) 濃度を0.3 wt%以下となるまで還元するには、図1に示すように、多大の還元コストが必要になる。一方、スラグの再利用を行うには、高炉で再利用するためのリサイクルコスト、具体的にはコレマナイト費用やハンドリング費用あるいは、Cr濃度を抑制するためにNiスラグ等の安価な原料の使用が制限されることに伴う原料費の増加および製鋼課程での脱クロムに伴う副原料増加等に起因してコストが増加する。このリサイクルコストおよび還元コストと、両者を合計した精錬コストとを、図1に示すように、(T・Cr) 濃度が3wt%をこえると、(T・Cr)濃度を0.3 wt%未満にする場合と同等以上のコストが必要になることがわかる。すなわち、(T・Cr) 濃度を3wt%以下としてスラグの再利用を行わないと、コスト面では不利となる。また、(T・Cr) 濃度が3wt%をこえると、破砕後に塊が粉化する傾向が強くなることも、問題である。この理由は明らかではないが、(T・Cr) 濃度が3wt%をこえるとスラグの性状が変化して、炉内で添加したコレマイトの添加歩留まりが低下するものと推定される。従って、スラグの再利用をコスト増および粉化などの問題点なく行うには、(T・Cr) 濃度を3wt%以下とする必要がある。   According to the knowledge of the inventors, when the reduction treatment is completely performed until the (T · Cr) concentration is about 0.3 wt% or less, the problem of chromium peroxide is solved, but the variation (T · In order to reduce the Cr) concentration to 0.3 wt% or less, as shown in FIG. 1, a great reduction cost is required. On the other hand, in order to reuse slag, the recycling cost for reuse in the blast furnace, specifically, the cost of colemanite and handling, or the use of inexpensive raw materials such as Ni slag to limit the Cr concentration is restricted. The cost increases due to the increase in raw material costs accompanying the increase in the amount of raw materials and the increase in auxiliary materials accompanying dechromation in the steelmaking process. As shown in Fig. 1, if the (T · Cr) concentration exceeds 3 wt%, the recycling and reduction costs, and the refining cost that combines both, make the (T · Cr) concentration less than 0.3 wt%. It turns out that the cost equal to or more than the case is necessary. That is, if the (T · Cr) concentration is 3 wt% or less and slag is not reused, it will be disadvantageous in terms of cost. Another problem is that when the (T · Cr) concentration exceeds 3 wt%, the mass tends to be pulverized after crushing. The reason for this is not clear, but it is presumed that when the (T · Cr) concentration exceeds 3 wt%, the properties of the slag change and the addition yield of the collimite added in the furnace decreases. Therefore, in order to reuse slag without problems such as cost increase and powdering, it is necessary to make the (T · Cr) concentration 3 wt% or less.

また、スラグ中の酸化クロムの還元材には、FeSi等のSi含有物質を用いることが一般的であるが、FeSiによって還元を行うと、溶鋼中のSi濃度が増加する。すなわち、スラグ中の(T・Cr) 濃度と溶鋼中のSi濃度との関係について、FeSiで還元した場合を、図2に示す。同図から、溶鋼中のSi濃度を0.1 wt%以上にすることによって、スラグ中の(T・Cr) 濃度を 3.0wt%以下に抑制できることがわかる。   Moreover, it is common to use Si containing substances, such as FeSi, for the reducing material of chromium oxide in the slag, but when reducing with FeSi, the Si concentration in the molten steel increases. That is, FIG. 2 shows the relationship between the (T · Cr) concentration in the slag and the Si concentration in the molten steel when it is reduced with FeSi. From the figure, it can be seen that the (T · Cr) concentration in the slag can be suppressed to 3.0 wt% or less by making the Si concentration in the molten steel 0.1 wt% or more.

一方、溶鋼中のSi濃度が高くなると、二次精錬での脱炭処理中にSiが酸化してスラグボリュームが増加し、その後の合金添加歩留まりの低下や介在物の生成など、種々の問題を引き起こす、おそれがある。また、Si含有量が高いと、出鋼中の窒素吸着量が多くなり、極低窒素鋼の溶製が困難になる。そして、発明者らの調査によれば、これらの現象はSi含有量が0.3 wt%をこえると頻繁に発生することから、Si含有量を0.3 wt%以下に制限することが望ましい。
以上の知見から、還元処理は、FeSiを用いて、かつ溶鋼中のSi量が0.10〜0.30wt%の条件下で行うのが好ましいことがわかる。
On the other hand, when the Si concentration in the molten steel increases, Si is oxidized during the decarburization process in the secondary refining, and the slag volume increases, resulting in various problems such as a decrease in alloy addition yield and formation of inclusions. May cause. In addition, when the Si content is high, the amount of nitrogen adsorbed in the steel output increases, and it becomes difficult to melt extremely low nitrogen steel. According to the investigations by the inventors, these phenomena frequently occur when the Si content exceeds 0.3 wt%, so it is desirable to limit the Si content to 0.3 wt% or less.
From the above knowledge, it can be seen that the reduction treatment is preferably performed using FeSi and under the condition that the amount of Si in the molten steel is 0.10 to 0.30 wt%.

さらに、FeSi等のSi含有物質を用いて還元を行う第2の理由は、スラグ中のAl2O3 濃度の上昇を抑制するためである。すなわち、スラグ中のAl2O3 濃度が高いと、スラグを高炉へ投入した場合に、高炉スラグの粘度が高くなって排滓や出銑作業に支障を来す。ここに、高炉スラグ中のAl2O3 濃度は、通常14または15wt%以下に調整しなければならないが、他の原料からもAl2O3 は混入するから、スラグ中のAl2O3 は低ければ低いほど良い。現実的にスラグを再利用するレベル(高炉出銑当り5〜50kg/t)を考慮すると、Al2O3 は10wt%以下、望ましくは5wt%以下とする必要がある。実際にステンレス精錬を行った後還元材として、例えばFeSiを用いると、Al2O3 量は2wt%以下程度に維持することができる。 Furthermore, the second reason for performing reduction using a Si-containing substance such as FeSi is to suppress an increase in the Al 2 O 3 concentration in the slag. In other words, when the Al 2 O 3 concentration in the slag is high, when the slag is put into the blast furnace, the viscosity of the blast furnace slag becomes high and hinders the discharge and unloading work. Here, the Al 2 O 3 concentration in the blast furnace slag usually has to be adjusted to 14 or 15 wt% or less, but since Al 2 O 3 is mixed from other raw materials, the Al 2 O 3 in the slag is The lower the better. Considering the level at which slag is practically reused (5 to 50 kg / t per blast furnace discharge), Al 2 O 3 needs to be 10 wt% or less, preferably 5 wt% or less. If, for example, FeSi is used as the reducing material after the actual refining of stainless steel, the amount of Al 2 O 3 can be maintained at about 2 wt% or less.

次に、ステンレス鋼精錬スラグを高炉に添加するに当たり、ステンレス鋼精錬スラグが粉化し易いが、粉化したステンレス鋼スラグについては高炉で使用するのが困難であることを見出した。すなわち、ステンレス鋼精錬スラグは、いわゆるダイカルシウムシリケート{(CaO)2SiO2 }の相変態の際に生じる体積膨張により、冷却後に粉化が進行しやすく、とりわけステンレス鋼精錬スラグは、普通鋼精錬スラグと比較して、Pの含有量が少なくて相が不安定であるために、この粉化は顕著である。この自然に粉化したスラグは極めて微粉であり、その運搬などに際して飛翔する問題がある上に、高炉に添加した際に高炉内の通気性を阻害することから、高炉での使用は困難であることがわかった。 Next, when adding the stainless steel refining slag to the blast furnace, the stainless steel refining slag was easily pulverized, but the powdered stainless steel slag was found to be difficult to use in the blast furnace. That is, stainless steel refining slag is likely to be pulverized after cooling due to volume expansion that occurs during the phase transformation of so-called dicalcium silicate {(CaO) 2 SiO 2 }. Compared to slag, this powdering is remarkable because the P content is low and the phase is unstable. This naturally pulverized slag is extremely fine and has the problem of flying when transported, etc. In addition, when added to the blast furnace, it impedes the air permeability in the blast furnace, so it is difficult to use in the blast furnace. I understood it.

そこで発明者らは、スラグの冷却に先立って、還元処理後のスラグにほう素酸化物を添加して、スラグの粉化を防止して冷却、固化した後再度粉砕し整粒化して使用することを試みた。すなわち、上述のように、自然に冷却、固化したスラグは大半が粉化し、そのスラグの粒径は、表1に例示するように、極めて小さいため、運搬時に飛翔したり、また高炉内の通気性を妨げることになる。そこで、還元処理後のスラグにほう素酸化物を添加してスラグの粉化を防止して固化させ、固化後のスラグを破砕してから、篩にかけることによって、スラブを10mm径を境として選別すれば、塊状のスラグがより多く得られ、一方10mm径以下のスラグも比較的大きな径のものとすることができ、高炉または焼結炉への導入を有利に行うことができるのである。ちなみに、ほう素酸化物を添加して固化させた、スラグを破砕して得たスラグの粒径分布は、表2および表3に例示するとおりである。   Therefore, prior to cooling the slag, the inventors add boron oxide to the slag after the reduction treatment to prevent slag from being pulverized, cool and solidify, and then pulverize and adjust the particle size again. I tried to do that. That is, as described above, most of the slag that is naturally cooled and solidified is pulverized, and the particle size of the slag is extremely small as illustrated in Table 1. Will interfere with sex. Therefore, boron oxide is added to the slag after the reduction treatment to prevent slag from becoming pulverized and solidified. After the solidified slag is crushed and then passed through a sieve, the slab is separated from the 10mm diameter. By sorting, a larger amount of massive slag can be obtained, while a slag having a diameter of 10 mm or less can also have a relatively large diameter, and can be advantageously introduced into a blast furnace or a sintering furnace. Incidentally, the particle size distribution of the slag obtained by crushing the slag, which is solidified by adding boron oxide, is as shown in Tables 2 and 3.

また、塊状スラグと粉状スラグの比率は破砕機等の選択にも依存するが、概ね各々40〜60wt%程度、つまり半々程度とすることが好ましい。なお、スラグを固化させるには、スラグ中のほう素酸化物(B2O3)濃度が0.1 〜0.5 wt%程度となる添加が必要である。この場合、出鋼後排滓前に炉内にほう素酸化物を添加し、底吹き羽口からのガスで攪拌しながら排滓する方法が用いられる。一方、スラグ排出容器へ事前に入れる方法では、充分に攪拌されず、ほう素の添加歩留りが低くなる。 Moreover, although the ratio of massive slag and powdered slag depends on the selection of a crusher or the like, it is preferably about 40 to 60 wt%, that is, about half. In order to solidify the slag, it is necessary to add boron oxide (B 2 O 3 ) concentration in the slag to be about 0.1 to 0.5 wt%. In this case, a method is used in which boron oxide is added to the furnace after the steel is discharged and discharged, while stirring with gas from the bottom blowing tuyere. On the other hand, in the method of putting in the slag discharge container in advance, the agitation is not sufficiently performed and the yield of boron addition is lowered.

Figure 0003994988
Figure 0003994988

Figure 0003994988
Figure 0003994988

Figure 0003994988
Figure 0003994988

ここで、スラグを固化するのに用いるほう素酸化物は、そのままスラグによって高炉内に持ち込まれ、高炉内で還元されて溶鉄中に含まれるため、ステンレス鋼精錬スラグを添加したのちの操業で得られる溶鉄は、B濃度が高くなる。このBが製品段階にまで残存していると、鋼種によっては材質上の問題となるため、製鋼工程で除去する必要がある。このBは、次工程の転炉における酸化精錬にて除去できるけれども、この転炉精錬で除去すると、その後のスラグの再生利用の点で問題があることが、新たに判明した。   Here, the boron oxide used to solidify the slag is directly brought into the blast furnace by the slag, and is reduced in the blast furnace and contained in the molten iron. The resulting molten iron has a high B concentration. If this B remains in the product stage, depending on the steel type, there will be a problem in the material, so it is necessary to remove it in the steel making process. Although this B can be removed by oxidation refining in the converter of the next process, it has been newly found that if this B is removed by refining, there is a problem in terms of the subsequent recycling of slag.

すなわち、転炉スラグについても、上記したステンレス鋼精錬スラグと同様に、高炉へ添加して、転炉スラグ中のCaO や鉄分を回収するのが有効であるが、転炉でBを除去すると、転炉スラグに移行したBが高炉の溶鉄に再度還元回収されてしまい、以上のサイクルを繰り返すことによってBが循環濃化してしまうことがわかった。そこで、溶銑予備処理でBを除去することを試みた。溶銑予備処理では、その処理温度が低いことから、Bを除去しきれない可能性があったが、図3に示すように、酸素を酸素原単位を2Nm3/t 溶鉄以上にすれば、Bを除去できることがわかった。なお、図3は、各種濃度のB含有溶鉄をトピードカー内にて酸素を供給した際の、供給酸素量とB濃度との関係を調査したものである。 That is, for the converter slag as well as the above-described stainless steel refining slag, it is effective to add to the blast furnace and recover CaO and iron content in the converter slag, but if B is removed by the converter, It was found that B transferred to the converter slag was reduced and recovered again to the molten iron of the blast furnace, and B was circulated and concentrated by repeating the above cycle. Then, it tried to remove B by hot metal preliminary treatment. In the hot metal pretreatment, since the treatment temperature was low, there was a possibility that B could not be removed. However, as shown in FIG. 3, if oxygen was increased to 2 Nm 3 / t molten iron or more, It was found that can be removed. In addition, FIG. 3 investigated the relationship between supply oxygen amount and B density | concentration at the time of supplying oxygen in various concentrations of B containing molten iron in a topped car.

ここで、酸素とは通常の酸素ガス以外に、鉄鉱石やスケールなどの、いわゆる溶鉄中で反応して酸化反応を生じる固体酸素でも良い。また、酸素の添加方法についても、石灰等と共にインジェクションする方法あるいは上吹きランスから酸素のみを熱供給の目的と共に行う方法など、適宜選択すれば良い。   Here, in addition to normal oxygen gas, oxygen may be solid oxygen that reacts in so-called molten iron such as iron ore or scale to cause an oxidation reaction. Also, the method of adding oxygen may be selected as appropriate, such as a method of injecting together with lime or the like, or a method of performing only oxygen from the top blowing lance with the purpose of supplying heat.

以上述べたように、ステンレス鋼の精錬において、まず酸化精錬を行った後に、例えば溶鋼中のSi濃度を0.10〜0.30wt%とするFeSiを添加して、生成したスラグ中の(T・Cr) 濃度を0.3 〜 3.0wt%に調整し、次いで溶鋼を排出後に、精錬炉内にて、スラグにほう素酸化物を添加した後排出し、冷却、固化させ、その後固化したスラグを粉砕して篩にかけ、径が10mmをこえる塊スラグは高炉に直接添加すると共に、径が10mm以下の粉スラグのみを焼結炉に入れて焼結鉱としてから高炉へ添加し、スラグの金属成分は高炉の溶鉄へ回収し、改質されて高炉スラグとなったスラグは路盤材等の従来の高炉スラグと同様の用途に供する。   As described above, in the refining of stainless steel, after performing oxidation refining first, for example, by adding FeSi with a Si concentration in the molten steel of 0.10 to 0.30 wt%, (T · Cr) in the generated slag After adjusting the concentration to 0.3 to 3.0 wt% and then discharging the molten steel, in the smelting furnace, boron oxide is added to the slag and then discharged, cooled and solidified, and then the solidified slag is crushed and sieved In addition, lump slag with a diameter exceeding 10 mm is added directly to the blast furnace, and only powdered slag with a diameter of 10 mm or less is added to the sintering furnace and added to the blast furnace. The slag recovered and reformed into blast furnace slag is used for the same applications as conventional blast furnace slag such as roadbed materials.

また、高炉より出銑された溶鉄に関しては、溶銑予備処理等の酸化精錬を行って、好ましくは酸素原単位が2Nm3/t 溶鉄以上の酸素を供給して、溶銑中のBを実質1ppm 以下程度となるまで除去する。その後、溶鉄を転炉に装入し、通常の脱炭精錬を行って、ここで排出された転炉スラグについては、上記ステンレス鋼精錬スラグと同様に高炉へ添加して再生利用することによって、高炉での石灰使用量を削減する。 In addition, the molten iron discharged from the blast furnace is subjected to oxidative refining such as hot metal pretreatment, and preferably oxygen of 2 Nm 3 / t molten iron or more is supplied and oxygen in the molten iron is substantially 1 ppm or less. Remove until about. Then, the molten iron is charged into the converter, and normal decarburization refining is performed.For the converter slag discharged here, by adding it to the blast furnace and recycling it as in the above stainless steel refining slag, Reduce the amount of lime used in the blast furnace.

この発明に従う方法は、いわゆる転炉法によりステンレス鋼を溶製する操業の他にも、AOD法やVOD法によってステンレス鋼を溶製する操業にも有効である。とりわけ、還元時に脱硫を行うことを目的に、スラグの塩基度を1.8 以上に高める操業に有効である。なぜならば、塩基度が1.8 以上ではスラグの粉化が激しくなるためである。この還元時に脱硫を行う場合、スラグ塩基度の上限について、この発明においては特に制限する必要はないが、3.0 以上では滓化が悪化して転炉での脱硫効率が高まらずに脱硫精錬中のスラグボリュームが多くなる結果、クロムロスが増加するなどの経済上の弊害が多くなることから、3.0 程度が事実上の上限となる。   The method according to the present invention is effective not only for the operation of melting stainless steel by the so-called converter method but also for the operation of melting stainless steel by the AOD method or VOD method. In particular, it is effective in operations that increase the basicity of slag to 1.8 or more for the purpose of desulfurization during reduction. This is because slag powdering becomes severe when the basicity is 1.8 or more. When desulfurization is performed at the time of reduction, the upper limit of slag basicity is not particularly limited in the present invention, but at 3.0 or higher, hatching deteriorates and desulfurization efficiency in the converter does not increase, and desulfurization refining is not performed. As the slag volume increases, there are many economic adverse effects such as an increase in chrome loss, so a practical upper limit is around 3.0.

なお、上述したステンレス鋼精錬に用いる精錬炉は特に限定されることはなく、浴面下から精錬ガスを底吹きしても横吹きしても問題はないが、通常用いられる上底吹き転炉が好適である。また、溶銑予備処理として用いる反応容器はトピードカーのほか鍋や転炉など、酸素および酸化鉄等をインジェクションあるいは上吹きする、いかなる形式の反応容器を用いても構わない。これは、引き続き行われる、普通鋼の精錬においても同様であり、転炉等の反応容器についても特に制限はない。   In addition, the refining furnace used for the above-described stainless steel refining is not particularly limited, and there is no problem whether the refining gas is blown from the bottom or the side of the bath from below the bath surface. Is preferred. The reaction vessel used as the hot metal preliminary treatment may be any type of reaction vessel that injects or top blows oxygen, iron oxide, or the like, in addition to a topped car, a pan or a converter. This also applies to the refining of ordinary steel, which is subsequently performed, and there is no particular limitation on the reaction vessel such as the converter.

容量175 tの上底吹き転炉を用いて、ステンレス鋼の精錬を行った。ここでは2基の上底吹き転炉を用いて、いわゆるCr鉱石の溶融還元を行った後、もう一基の上底吹き転炉で脱炭を行うプロセスを例に説明する。すなわち、クロム含有溶湯(C:5.5 wt%, Cr:9〜13wt%) を装入した転炉において、酸化精錬を60〜70分間にわたって施して脱炭し、精錬終了時のCを0.07〜0.20wt%の範囲に調整した。吹錬中の CaOはFeCr中のSiを計算してスラグの塩基度が2.0 になるようにした。引き続く還元精錬は、還元前に行ったサンプリングの分析結果を基に、スラグの塩基度を1.8 〜2.5 程度に変化させて行った。具体的には、酸化したクロムを推定して還元用のFeSiを決定し、FeSiで生成されるSiO2に見合うようにCaOを投入した。また、流動性を高めるために、ホタル石を石灰投入量の5〜10wt%で投入すると共に、転炉内の耐火物保護のためにスラグ中にMgO が数wt%残留するように調整した。 Stainless steel was refined using an upper-bottom converter with a capacity of 175 t. Here, an example will be described in which a so-called Cr ore is smelted and reduced using two upper bottom blowing converters and then decarburized in another upper bottom blowing converter. That is, in a converter charged with a chromium-containing molten metal (C: 5.5 wt%, Cr: 9-13 wt%), oxidative refining is applied for 60-70 minutes to decarburize, and C at the end of refining is 0.07-0.20. Adjusted to the wt% range. For CaO during blowing, the Si in FeCr was calculated so that the slag basicity was 2.0. Subsequent reduction refining was performed by changing the basicity of the slag to about 1.8 to 2.5 based on the analysis result of the sampling performed before the reduction. Specifically, the oxidized chromium was estimated and FeSi for reduction was determined, and CaO was added to match the SiO 2 produced by FeSi. In order to improve fluidity, fluorite was added at 5 to 10 wt% of the lime input, and MgO was adjusted to remain several wt% in the slag to protect the refractory in the converter.

次いで、溶製したステンレス溶鋼を出鋼温度1680〜1720℃で出鋼した後、炉内に残留するスラグにコレマナイト(B2O3:39.7wt%, FeO3:1〜2wt%,SiO2:11wt%,CuO:21wt%, MgO:2.9 wt%)を添加した。ここで、コレマナイト中のB2O3含有率は約40wt%および結晶水は7〜8wt%であった。スラグ中の(T・Cr)濃度は 0.5〜3wt%であった。またスラグ中のB2O3は 0.3〜0.5 wt%であった。コレマナイトを添加する際、炉内は底吹き羽口よりN2を110 Nm3 /min 吹きこみ攪拌を行った。 Next, after the molten stainless steel was produced at a temperature of 1680 to 1720 ° C., the slag remaining in the furnace was colemanite (B 2 O 3 : 39.7 wt%, FeO 3 : 1 to 2 wt%, SiO 2 : 11 wt%, CuO: 21 wt%, MgO: 2.9 wt%). Here, the B 2 O 3 content in the colemanite was about 40 wt% and the crystal water was 7 to 8 wt%. The (T · Cr) concentration in the slag was 0.5 to 3 wt%. B 2 O 3 in the slag was 0.3 to 0.5 wt%. When adding the colemanite, N 2 was blown into the furnace from the bottom blowing tuyere and stirred at 110 Nm 3 / min.

その後、スラグを冷却固化させた後に、粉砕してから篩い分けを行って、径が10mmをこえる塊状のスラグは直接高炉の炉上ホッパから高炉内へ投入した。一方、径が10mm以下の粉スラグは、ベッデングを行い他の焼結原料と混合してから焼結炉にて焼結鉱とした。得られた焼結鉱は、上記塊スラグと共に高炉内へ添加した。   After the slag was cooled and solidified, it was crushed and sieved, and massive slag with a diameter exceeding 10 mm was directly put into the blast furnace from the hopper hopper. On the other hand, the powder slag having a diameter of 10 mm or less was subjected to bedding and mixed with other sintering raw materials, and then made into sintered ore in a sintering furnace. The obtained sintered ore was added into the blast furnace together with the lump slag.

以上の手順に従って、精錬のチャージ毎に精錬スラグを高炉へ添加することを繰り返し行った。なお、高炉へ添加した精錬スラグの組成は、表4に示すとおりである。また、上記精錬操業に並行して行われた高炉操業において、その出銑毎の溶鉄成分および高炉スラグ成分について、調査した結果を、表5および6に示す。   According to the above procedure, the refining slag was repeatedly added to the blast furnace for every refining charge. The composition of the refining slag added to the blast furnace is as shown in Table 4. Moreover, in the blast furnace operation performed in parallel with the said refining operation, the result of having investigated about the molten iron component and blast furnace slag component for every tapping is shown in Table 5 and 6.

Figure 0003994988
Figure 0003994988

Figure 0003994988
Figure 0003994988

Figure 0003994988
Figure 0003994988

表5から、高炉から排出された高炉スラグは通常の高炉スラグと全く差異がなく、炉盤材、セメント原料および生コン骨材などの土木、建築用として活用できた。さらに、表4の精錬スラグの組成と表5の高炉スラグの組成との比較から、精錬スラグ中の金属成分が高炉内溶鉄中に回収されたことが明らかである。ちなみに、高炉にて再生利用される精錬スラグ量は、2400〜3000t/月であり、その間に溶製された溶銑量は 300,000tであった。   From Table 5, the blast furnace slag discharged from the blast furnace was completely different from the normal blast furnace slag, and could be used for civil engineering and construction such as hearth materials, cement raw materials, and ready-mixed aggregates. Furthermore, it is clear from the comparison between the composition of the smelting slag in Table 4 and the composition of the blast furnace slag in Table 5 that the metal components in the smelting slag were recovered in the molten iron in the blast furnace. Incidentally, the amount of refining slag recycled in the blast furnace was 2400 to 3000 t / month, and the amount of molten iron produced during that time was 300,000 t.

次に、高炉で溶製された溶鉄をトピードカーに受けた後、トピードカーにて溶銑予備処理を行った。なお、溶鉄中の成分を表6に示したように、そのB濃度は3〜8ppm であった。
すなわち、 250tの溶鉄をトピードカーに受けて、この溶鉄に対してランスから酸素を20Nm3/min およびインジェクションランスから酸素を15Nm3/min 吹き込むとともに、インジェクションランスからは酸化鉄を350kg/min およびCaO を50〜200kg/min 吹き込む処理を、およそ10〜25分間行った。この処理における、有効酸素原単位は3.3 〜8.2Nm3/t溶鉄であった。
Next, after the molten iron melted in the blast furnace was received by the topped car, the hot metal preliminary treatment was performed by the topped car. As shown in Table 6, the concentration of B in the molten iron was 3 to 8 ppm.
That is, by receiving the molten iron of 250t to Topidoka, with blown 15 Nm 3 / min of oxygen oxygen from the lance from 20 Nm 3 / min and an injection lance relative to the molten iron, the 350 kg / min and CaO iron oxide from the injection lance 50 to 200 kg / min The blowing process was performed for approximately 10 to 25 minutes. The effective oxygen intensity in this treatment was 3.3 to 8.2 Nm 3 / t molten iron.

ここで、有効酸素原単位とは、次の式で定められるように、上吹き酸素の二次燃焼に使用される酸素を除去した酸素の溶鉄当たりの使用原単位である。
[数1]
有効酸素原単位
=(インジェクション酸素+インジェクション酸化鉄中酸素+上吹き酸素/
(1+ PCR))/溶銑重量
ここで、PCR:二次燃焼率=CO2 / (CO+CO2)
CO, CO2 :排ガス中CO, CO2 濃度
Here, the effective oxygen basic unit is a basic unit used per molten iron of oxygen from which oxygen used for secondary combustion of top blown oxygen is removed, as defined by the following equation.
[Equation 1]
Effective oxygen intensity = (injection oxygen + oxygen in injection iron oxide + top-blown oxygen /
(1 + PCR)) / molten metal weight Here, PCR: secondary combustion rate = CO 2 / (CO + CO 2 )
CO, CO 2 : CO, CO 2 concentration in exhaust gas

上記の溶銑予備処理によって、図3に示すように、溶鉄中のBはいずれも1ppm 以下に抑制された。その後、転炉に溶鉄を装入し、脱炭精錬を行った。吹き止めC量は0.03〜0.20%であったが、いずれもBは1ppm 以下のままであった。ここで、転炉から出鋼後にスラグ中のB2O3を調査したところ、いずれのチャージにおいても分析検出範囲では認められなかった。次いで、転炉から排出される転炉スラグを、全て高炉へ添加して、上記した精錬スラグと同様に再生利用に供した。 As shown in FIG. 3, B in the molten iron was suppressed to 1 ppm or less by the hot metal preliminary treatment. Thereafter, molten iron was charged into the converter and decarburized and refined. The amount of blown-off C was 0.03 to 0.20%, but in all cases, B remained at 1 ppm or less. Here, when B 2 O 3 in the slag was investigated after the steel was discharged from the converter, it was not recognized in the analytical detection range in any charge. Subsequently, all the converter slag discharged from the converter was added to the blast furnace, and it was used for recycling in the same manner as the above-described refining slag.

スラグ中の(T・Cr) 濃度と精錬コストとの関係を示すグラフである。It is a graph which shows the relationship between (T * Cr) density | concentration in slag and refining cost. 溶鋼中のSi含有量とスラグ中の(T・Cr) 濃度との関係を示すグラフである。It is a graph which shows the relationship between Si content in molten steel, and (T * Cr) density | concentration in slag. 溶鉄に供給する酸素原単位と溶鉄中のB濃度との関係を示すグラフである。It is a graph which shows the relationship between the oxygen basic unit supplied to molten iron, and B density | concentration in molten iron.

Claims (2)

精錬炉内に装入したクロム含有溶湯に、酸素を供給して行う酸化精錬に伴って発生するスラグに、還元処理を施してスラグ中の(T・Cr) 濃度を 0.3〜 3.0wt%に調整し、次いで該スラグにほう素酸化物を添加しスラグを固化してから、該スラグを直接または焼結後に高炉へ添加し、高炉にてスラグ中の金属成分を溶鉄内に還元回収し、その後高炉から出湯した溶鉄は、脱炭精錬に先立ち、酸素を酸素原単位が2Nm 3 /t溶鉄以上で供給する溶銑予備処理を行って、高炉内でスラグから溶鉄内に還元回収されたBを除去してから、当該溶鉄を精錬炉に装入して脱炭精錬を行うことを特徴とするクロム含有鋼精錬スラグに含有される金属成分の回収利用方法。 The slag generated by the oxidative refining performed by supplying oxygen to the chromium-containing molten metal charged in the smelting furnace is reduced to adjust the (T · Cr) concentration in the slag to 0.3 to 3.0 wt%. Then, boron oxide is added to the slag to solidify the slag, and then the slag is added directly or after sintering to the blast furnace, and the metal components in the slag are reduced and recovered in the molten iron in the blast furnace, and then Prior to decarburization and refining, the molten iron discharged from the blast furnace is subjected to a hot metal pretreatment that supplies oxygen at an oxygen unit of 2 Nm 3 / t or more to remove B that is reduced and recovered from the slag into the molten iron in the blast furnace. And then, the molten iron is charged into a smelting furnace and decarburized for refining, and a method for recovering and using a metal component contained in a chromium-containing steel smelting slag. 脱炭精錬中に生成するスラグを、直接または焼結後に高炉へ添加してスラグ中の金属成分の回収利用に供する請求項1に記載のクロム含有鋼精錬スラグに含有される金属成分の回収利用方法。 The slag generated during decarburization refining is added to a blast furnace directly or after sintering and used for recovering and using metal components in the slag according to claim 1. Method.
JP2004161171A 2004-05-31 2004-05-31 Method of recovering and using metal components contained in slag slag containing chromium Expired - Fee Related JP3994988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161171A JP3994988B2 (en) 2004-05-31 2004-05-31 Method of recovering and using metal components contained in slag slag containing chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161171A JP3994988B2 (en) 2004-05-31 2004-05-31 Method of recovering and using metal components contained in slag slag containing chromium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7174797A Division JPH10265827A (en) 1997-03-25 1997-03-25 Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag

Publications (2)

Publication Number Publication Date
JP2004244728A JP2004244728A (en) 2004-09-02
JP3994988B2 true JP3994988B2 (en) 2007-10-24

Family

ID=33028714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161171A Expired - Fee Related JP3994988B2 (en) 2004-05-31 2004-05-31 Method of recovering and using metal components contained in slag slag containing chromium

Country Status (1)

Country Link
JP (1) JP3994988B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835708B1 (en) 2016-07-26 2018-03-07 주식회사 심팩 메탈 Method for recovering valuable metals from stainless steelmaking converter slag by Submerged Arc Furnace

Also Published As

Publication number Publication date
JP2004244728A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4196997B2 (en) Hot metal processing method
US6843828B2 (en) Method for treating slags or slag mixtures on an iron bath
CN105506226A (en) Method for carrying out pre-desiliconization, pre-decarburization and pre-dephosphorization on molten iron in molten iron tank
JP5531536B2 (en) Method for recovering iron and phosphorus from steelmaking slag
CN105063266B (en) A kind of converter steel making method
JP2008063645A (en) Steelmaking method
Duan et al. EAF steelmaking process with increasing hot metal charging ratio and improving slagging regime
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
JP3744133B2 (en) Method for removing slag generated during the manufacture of stainless steel and method for reusing waste slag
JP4192503B2 (en) Manufacturing method of molten steel
JPH10263768A (en) Method for reusing converter slag
JP3511808B2 (en) Stainless steel smelting method
JP4364456B2 (en) Method for melting stainless steel
JP3063537B2 (en) Stainless steel manufacturing method
JP3644307B2 (en) Hot phosphorus dephosphorization method
JP5332769B2 (en) How to use electric furnace slag
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP2757707B2 (en) Hot metal dephosphorization slag treatment method
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
US6261339B1 (en) Method for desiliconizing pig iron before refining it to steel
CN116024402A (en) Fluxing agent for semisteel steelmaking and slagging method thereof
JP2002069520A (en) Method for recovering chromium in slag
JPH08120318A (en) Method for reusing slag from refining furnace
JP2022027515A (en) Method for desulfurizing molten steel and desulfurization flux

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees