JP2008279353A - SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP - Google Patents
SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP Download PDFInfo
- Publication number
- JP2008279353A JP2008279353A JP2007125309A JP2007125309A JP2008279353A JP 2008279353 A JP2008279353 A JP 2008279353A JP 2007125309 A JP2007125309 A JP 2007125309A JP 2007125309 A JP2007125309 A JP 2007125309A JP 2008279353 A JP2008279353 A JP 2008279353A
- Authority
- JP
- Japan
- Prior art keywords
- mgo
- brick
- waste
- refractory
- sieve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011449 brick Substances 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000002699 waste material Substances 0.000 claims description 99
- 238000000227 grinding Methods 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 238000010298 pulverizing process Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 14
- 238000011084 recovery Methods 0.000 description 13
- 239000011819 refractory material Substances 0.000 description 9
- 238000007873 sieving Methods 0.000 description 6
- 238000009628 steelmaking Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Processing Of Solid Wastes (AREA)
- Combined Means For Separation Of Solids (AREA)
- Ceramic Products (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、電気炉や製鋼用取鍋等の耐火物として使用されたMgO−Cレンガ屑をリサイクルするために、これらのMgO−Cレンガ屑とその他の種類のレンガ屑やレンガ屑に付着した地金等から構成される耐火物屑からMgO−Cレンガ屑を分別回収する方法に関する。 The present invention adheres to these MgO-C brick scraps and other types of brick scraps and brick scraps in order to recycle MgO-C brick scraps used as refractories such as electric furnaces and ladle for steelmaking. The present invention relates to a method for separately collecting MgO-C brick scraps from refractory scraps composed of bullion and the like.
製鉄所内において、MgO−Cレンガは、電気炉や製鋼用取鍋等の耐火物として大量に使用されている。これらの耐火物レンガは、溶鋼やスラグが直接接触して損傷するため、定期的に張り替えが行われる。その際、大量のMgO−Cレンガ屑が発生する。現在、MgO−Cレンガ屑は、埋立処分されるか、あるいは耐火物原料や製鋼副原料等としてリサイクルされている。 In the steelworks, MgO-C bricks are used in large quantities as refractories such as electric furnaces and ladle for steel making. Since these refractory bricks are damaged by direct contact with molten steel and slag, they are periodically replaced. At that time, a large amount of MgO-C brick waste is generated. Currently, MgO-C brick waste is disposed of in landfills or recycled as refractory materials, steelmaking auxiliary materials, and the like.
例えば、MgO−Cレンガ屑を耐火物原料としてリサイクルする例は、MgO−Cレンガ屑から再生耐火レンガを製造する方法が開示されている(例えば、特許文献1参照。)。さらにMgO−Cレンガ屑等カーボン含有耐火物屑から吹き付け補修材を製造する方法が開示されている(例えば、特許文献2参照。)。また、MgO−Cレンガ屑を製鋼副原料としてリサイクルする例として、特許文献3にMgO−Cレンガ屑を耐火物の溶損防止のために投入される軽焼ドロマイトの代替として使用する例が開示されている。 For example, as an example of recycling MgO-C brick waste as a refractory material, a method of manufacturing recycled refractory brick from MgO-C brick waste is disclosed (for example, see Patent Document 1). Furthermore, the method of manufacturing a repair material by spraying from carbon-containing refractory waste such as MgO-C brick waste is disclosed (for example, see Patent Document 2). In addition, as an example of recycling MgO-C brick scrap as a steelmaking auxiliary material, Patent Document 3 discloses an example in which MgO-C brick scrap is used as an alternative to light-burning dolomite that is introduced to prevent refractory melts. Has been.
ところで、電気炉や製鋼用取鍋等の耐火物には、MgO−Cレンガの他、High−Al2O3レンガ、Al2O3−MgO−Cレンガ、SiO2−Al2O3レンガなど、様々な種類の耐火物が使用されている。このため、電気炉や取鍋等の耐火物の張り替え時に発生する耐火物屑には、MgO−Cレンガ屑以外の耐火物屑が混在しており、また、一部地金が付着しているものもある。したがって、MgO−Cレンガ屑を上記の例のようにリサイクルするには、種々の耐火物屑や付着した地金が混在した耐火物屑からMgO−Cレンガ屑のみを分別回収する必要がある。 Incidentally, the electric furnace and refractories such as steel making ladle, other MgO-C brick, High-Al 2 O 3 bricks, Al 2 O 3 -MgO-C bricks, SiO 2 -Al 2 O 3 bricks etc. Various types of refractories are used. For this reason, refractory waste generated at the time of replacement of refractories such as an electric furnace and a ladle is mixed with refractory waste other than MgO-C brick waste, and a part of the metal is attached. There are also things. Therefore, in order to recycle MgO-C brick waste as in the above example, it is necessary to separate and collect only MgO-C brick waste from refractory waste mixed with various refractory waste and attached metal.
従来の、取鍋から発生した耐火物屑からのMgO−Cレンガ屑の分別フローを図2に示す。従来、図2に見られるように、取鍋耐火物張り替え時の耐火物屑からのMgO−Cレンガ屑の分別は、発生した耐火物屑全量を回収し、手選によって約50mmを超える塊状のMgO−Cレンガ屑を分別回収してリサイクルしていた。すなわち、破砕処理や磁選による付着した地金除去などの処理を経て、上記した例のように、様々な方法でレンガをリサイクルしている。しかし、手選による分別では、耐火物屑の1つ1つを手に取って選別するため、大変時間がかかり、また、5〜50mm程度に細かく砕けた屑状の耐火物までは分別できていなかった。 The conventional separation flow of MgO-C brick waste from refractory waste generated from a ladle is shown in FIG. Conventionally, as shown in FIG. 2, the separation of MgO-C brick waste from refractory waste at the time of changing the ladle refractory, collects the total amount of refractory waste generated, and by hand selection is a lump exceeding about 50 mm The MgO-C brick waste was separated and collected and recycled. That is, bricks are recycled by various methods, as in the above-described example, through processing such as crushing processing or removal of attached bullion by magnetic separation. However, in manual sorting, each refractory waste is picked up and sorted, so it takes a very long time, and even refractory waste that is finely crushed to about 5 to 50 mm can be separated. There wasn't.
従って、本発明では、MgO−Cレンガ屑とその他の種類のレンガ屑や付着した地金等から構成される耐火物屑からのMgO−Cレンガ屑の分別回収において、時間と労力削減のために、手選よりも簡単で、さらに手選よりも粒度の細かいものまで分別できる方法を開発することを目的としている。 Therefore, in the present invention, in the separate collection of MgO-C brick scraps from refractory scraps composed of MgO-C brick scraps and other types of brick scraps and attached bullion, etc., in order to reduce time and labor The goal is to develop a method that is easier than manual selection and that can be classified into finer granularity than manual selection.
電気炉や取鍋などの耐火物である耐火レンガ等の使用済みのレンガ屑である、MgO−Cレンガ屑と、その他のレンガ屑や付着した地金等から構成される耐火物屑に対して、0.2〜1.5MPaの加圧蒸気を5〜10時間接触させることによって、MgO−Cレンガ屑のみを粉化させる粉化処理をした後、この粉化処理した耐火物屑を目開き1〜5mmのふるいにかけて、ふるい下産物を回収するふるい分け処理を行い、ふるい下産物であるMgO−Cレンガ屑の粉末を分別回収する。 For refractory waste composed of MgO-C brick waste and other brick waste or ingots that are used, such as refractory bricks such as electric furnaces and ladle Then, the powdered refractory waste is opened after the powdered treatment to powderize only the MgO-C brick waste by contacting the pressurized steam of 0.2 to 1.5 MPa for 5 to 10 hours. A sieve of 1 to 5 mm is passed through a sieving process to collect the product under the sieve, and the MgO-C brick waste powder that is the product under the sieve is collected separately.
この場合、MgO−Cレンガ屑を含む耐火物屑に対して、上記の条件で加圧蒸気を接触させることによって、MgO−Cレンガ屑の主成分であるMgOが水和反応を起こすため、MgO−Cレンガ屑は体積が膨張し粉化する。すなわち、
MgO+H2O→Mg(OH)2…(1)
により水和反応して粉化する。
In this case, MgO, which is the main component of MgO-C brick waste, causes a hydration reaction by bringing pressurized steam into contact with refractory waste containing MgO-C brick waste under the above conditions. -C brick waste expands in volume and is pulverized. That is,
MgO + H 2 O → Mg (OH) 2 (1)
Hydrates and powders.
一方、High−Al2O3レンガ屑、SiO2−Al2O3レンガ屑や付着した地金などMgOをほとんど含有していないものは、加圧蒸気を接触させても粉化しない。また、加圧蒸気の圧力や接触時間が上記の範囲内であれば、MgOの含有率がMgO−Cレンガ屑よりも低いAl2O3−MgO−Cレンガも、ひびが入る程度となるが、粉化するにはいたらない。このため、加圧蒸気に接触させた後の耐火物屑を目開き1〜5mmのふるいにかけ、ふるい下産物を回収することによって、ほぼMgO−Cレンガ屑のみを回収する。 On the other hand, those containing almost no MgO, such as High-Al 2 O 3 brick scrap, SiO 2 -Al 2 O 3 brick scrap and attached metal, will not be pulverized even when contacted with pressurized steam. Further, if the pressure of the pressurized steam and the contact time are within the above ranges, the Al 2 O 3 —MgO—C brick whose MgO content is lower than that of the MgO—C brick scraps will be cracked. , Don't waste to powder. For this reason, only the MgO-C brick waste is recovered by passing the refractory waste after being brought into contact with the pressurized steam through a sieve having an opening of 1 to 5 mm and recovering the product under the sieve.
さらに、上記の方法で耐火物屑に加圧蒸気を接触させる前に、耐火物屑をふるい分け処理する時に使用するものと同じ目開き1〜5mmのふるいにかけてふるい下を除去して耐火物屑の発生時から存在するMgO−Cレンガ屑以外の微粉の混入を防止した後、ふるい上の耐火物屑に0.2〜1.5MPaの加圧蒸気を5〜10時間接触させることによって、MgO−Cレンガ屑のみを粉化させる粉化処理をした後、この粉化処理した耐火物屑を目開き1〜5mmのふるいにかけて、ふるい下産物を回収することによって、より精度の高いMgO−Cレンガ屑の分別回収を実施する。 Furthermore, before contacting pressurized steam with the refractory debris by the above method, remove the bottom of the refractory debris by applying the same 1 to 5 mm sieve as that used when screening refractory debris. After preventing the mixing of fine powder other than MgO-C brick scraps existing from the time of occurrence, 0.2 to 1.5 MPa of pressurized steam is brought into contact with the refractory scraps on the sieve for 5 to 10 hours, whereby MgO- After pulverizing treatment to pulverize only C brick waste, this powdered refractory waste is passed through a sieve with a mesh opening of 1 to 5 mm, and the product under the sieve is collected, thereby providing a more accurate MgO-C brick. Separate waste collection.
加圧蒸気の圧力を0.2〜1.5MPaに定めた理由は、次の理由による。加圧蒸気の圧力が0.2MPa未満では、MgO−Cレンガ屑の一部は崩壊するものの、粉化は不十分で、粉化処理後の耐火物屑をふるいにかけると、ふるい下産物すなわちMgO−Cレンガ屑の回収量が少なくなる。また、耐火物屑にAl2O3−MgO−Cレンガ屑を含む場合、加圧蒸気の圧力が1.5MPaを超えると、Al2O3−MgO−Cレンガ屑の一部が粉化し、ふるい下産物として回収されるため、MgO−Cレンガ屑のみの分別ができないことによる。 The reason why the pressure of the pressurized steam is set to 0.2 to 1.5 MPa is as follows. When the pressure of the pressurized steam is less than 0.2 MPa, although some of the MgO-C brick scraps collapse, pulverization is insufficient, and when the refractory waste after pulverization is sieved, The amount of MgO-C brick scrap recovered is reduced. Moreover, when the refractory waste contains Al 2 O 3 —MgO—C brick waste, when the pressure of the pressurized steam exceeds 1.5 MPa, a part of the Al 2 O 3 —MgO—C brick waste is pulverized, Because it is recovered as a sieving product, it is not possible to separate only MgO-C brick waste.
加圧蒸気との接触時間を5〜10時間とした理由は、次の理由による。加圧蒸気との接触時間が5時間未満では、MgO−Cレンガ屑が十分に粉化せず、粉化処理後の耐火物屑をふるいにかけると、ふるい下産物すなわちMgO−Cレンガ屑の回収量が少なくなる。また、加圧蒸気との接触時間10時間でほとんど粉化が完了するため、これ以上時間をかけても粉化はほとんど進行しないことによる。 The reason why the contact time with the pressurized steam is 5 to 10 hours is as follows. When the contact time with the pressurized steam is less than 5 hours, the MgO-C brick waste is not sufficiently pulverized, and if the refractory waste after pulverization is sifted, Recovered volume is reduced. Moreover, since powdering is almost completed in 10 hours of contact time with pressurized steam, powdering hardly progresses even if it takes time more than this.
ふるいの目開きを1〜5mmとした理由は、次の理由による。ふるいの目開きが1mm未満ではふるい下産物すなわちMgO−Cレンガ屑の回収量が少なくなる。また、目開き5mmを超えるふるいでは、予備処理をしない場合はMgO−Cレンガ屑以外の混入割合が多くなり、予備処理をする場合は予備処理によって除去されるMgO−Cレンガ屑が多くなり、MgO−Cレンガ屑の回収量が少なくなることによる。 The reason why the sieve opening is 1 to 5 mm is as follows. When the sieve opening is less than 1 mm, the amount of the recovered product, that is, MgO-C brick waste, is reduced. Moreover, in the sieve having an opening of 5 mm or more, when pre-treatment is not performed, the mixing ratio other than MgO-C brick waste increases, and when pre-treatment, MgO-C brick waste removed by pre-treatment increases. This is because the amount of collected MgO-C brick waste is reduced.
本発明における取鍋から発生した耐火物屑からのMgO−Cレンガ屑の分別フローを図1に示す。取鍋耐火物を張り替える際に、耐火物屑全量を回収し、この回収した全量を予備処理し、目開き1〜5mmのふるいによるふるい上に対し、MgO−Cレンガ屑の粉化処理を実施し、ふるい分け処理して、ふるい下産物を回収してリサイクルする方法である。 The separation flow of MgO-C brick waste from refractory waste generated from the ladle in the present invention is shown in FIG. When the ladle refractory is replaced, the entire amount of the refractory waste is collected, the whole amount collected is preliminarily processed, and the pulverization treatment of the MgO-C brick waste is performed on the sieve with a sieve having an opening of 1 to 5 mm. It is a method of carrying out and sieving to collect and recycle the product under the sieve.
本発明の手段としたことで、MgO−Cレンガ屑と、その他の種類のレンガ屑や付着した地金等から構成される耐火物屑からMgO−Cレンガ屑の分別回収においては、手選に頼らないため、時間及び労力の削減が期待できる。また、手選では50mmを超える塊状のレンガ屑しか選別できないが、本発明では5〜50mm程度の粒度の細かい屑状のレンガも選別可能であり、MgO−Cレンガ屑の回収量を増加することができる。さらに、予備処理で予め1〜5mmの目開きのふるいを用いてふるい下を除去しておくことで、よりMgO−Cレンガ屑の分別回収の精度を高めることができる。本発明によって得られたMgO−Cレンガ屑は、耐火物の原料や、製鋼副原料等としてリサイクルすることができる。 By means of the present invention, in the separate collection of MgO-C brick scraps from refractory scraps composed of MgO-C brick scraps and other types of brick scraps and attached bullion, etc. Since it does not rely on it, time and labor can be reduced. In addition, by hand selection, only massive brick scraps exceeding 50 mm can be sorted, but in the present invention, fine scrap bricks having a particle size of about 5 to 50 mm can be sorted, and the amount of collected MgO-C brick scraps can be increased. Can do. Furthermore, the precision of fraction collection | recovery of MgO-C brick waste can be improved more by removing the bottom of a sieve beforehand using the sieve of 1-5 mm in a preliminary | backup process. The MgO-C brick scrap obtained by the present invention can be recycled as a refractory material, a steelmaking auxiliary material, or the like.
本発明を実施するための最良の形態について説明する。図1に示すように取鍋耐火物張り替えにおいて、MgO−Cレンガ屑、High−Al2O3レンガ屑、Al2O3−MgO−Cレンガ屑、SiO2−Al2O3レンガ屑、レンガ屑に付着した地金が混在した取鍋の耐火物屑からMgO−Cレンガ屑を分別回収し、その実施例および比較例を表1により示す。なお、表1および表2の予備処理の項の「無し」は予備処理のふるい分けを実施しない例を示す。 The best mode for carrying out the present invention will be described. In replacement ladle refractories, as shown in FIG. 1, MgO-C brick scraps, High-Al 2 O 3 brick chips, Al 2 O 3 -MgO-C brick chips, SiO 2 -Al 2 O 3 brick scraps, bricks The MgO-C brick waste is separated and recovered from the refractory waste of the ladle in which the bullion adhering to the waste is mixed, and Table 1 shows examples and comparative examples. Note that “None” in the preprocessing section of Tables 1 and 2 indicates an example in which preprocessing screening is not performed.
表1において、MgO−Cレンガ屑の回収率は、ふるい下産物の重量割合で評価した。表1の実施例および比較例では、処理前の耐火物屑中のMgO−Cレンガ屑の重量割合が5割程度であったため、結果の欄のMgO−Cレンガ屑回収率において、ふるい下産物の重量割合が40〜60%の場合を◎、30〜40%の場合を○、30%未満の場合を×で評価した。さらに、表1において、MgO−Cレンガ屑の成分はMgOとCで90%程度を占めている。MgO−Cレンガ屑以外のレンガが混入すると、Al、Si、Ca、Fe、Cr等の成分が上昇するため、得られた産物の成分分析を行い、表1の結果の欄のMgO−Cレンガ屑以外の混入において、Al+Si+Ca+Fe+Cr<10%であれば◎、10〜20%であれば〇、20%以上であれば×と評価した。実施例1〜6では、MgO−Cレンガ屑のみが十分に粉化したため、MgO−Cレンガ屑の回収率が良く、他の種類のレンガ屑等の混入も少なく、良好な結果が得られた。 In Table 1, the recovery rate of MgO-C brick waste was evaluated by the weight ratio of the product under sieving. In the examples and comparative examples in Table 1, since the weight ratio of MgO-C brick waste in the refractory waste before treatment was about 50%, in the MgO-C brick waste recovery rate in the result column, the sieving product The case where the weight ratio was 40 to 60% was evaluated as ◎, the case where it was 30 to 40% was evaluated as ○, and the case where it was less than 30% was evaluated as ×. Furthermore, in Table 1, the component of MgO-C brick waste occupies about 90% with MgO and C. When bricks other than MgO-C brick scraps are mixed, components such as Al, Si, Ca, Fe, Cr and the like rise, so component analysis of the obtained product is performed, and MgO-C bricks in the result column of Table 1 In the case of mixing other than scrap, it was evaluated as で あ れ ば if Al + Si + Ca + Fe + Cr <10%, ◯ if 10-20%, and x if 20% or more. In Examples 1-6, since only MgO-C brick waste was sufficiently pulverized, the recovery rate of MgO-C brick waste was good, there was little mixing of other types of brick waste, and good results were obtained. .
これに対し、比較例7では、蒸気との接触時間が本発明の下限の5時間より短いため、MgO−Cレンガ屑が十分に粉化せず、MgO−Cレンガ屑の回収率が悪かった。比較例8では、蒸気圧力が本発明の下限の0.2MPaより低いため、MgO−Cレンガ屑が十分に粉化せず、MgO−Cレンガ屑の回収率が悪かった。比較例9では、蒸気圧力が本発明の上限の1.5MPaより高いため、Al2O3−MgO−Cレンガ屑の粉化が見られ、ふるい下産物にAl2O3−MgO−Cレンガ屑が多く混入した。比較例10では、ふるいの目開きが本発明の下限の1mmより小さいため、MgO−Cレンガ屑の回収率が悪かった。比較例11では、ふるいの目開きが本発明の上限の5mmより大きい10mmであるため、予備処理時に10mm未満のレンガ屑が除去され、MgO−Cレンガ屑の回収率が悪かった。 On the other hand, in the comparative example 7, since the contact time with the steam was shorter than the lower limit of 5 hours of the present invention, the MgO-C brick waste was not sufficiently pulverized, and the recovery rate of the MgO-C brick waste was poor. . In Comparative Example 8, since the vapor pressure was lower than the lower limit of 0.2 MPa of the present invention, MgO—C brick waste was not sufficiently pulverized, and the recovery rate of MgO—C brick waste was poor. In Comparative Example 9, since the vapor pressure was higher than the upper limit of 1.5 MPa of the present invention, Al 2 O 3 —MgO—C brick waste was pulverized, and the product under the sieve was Al 2 O 3 —MgO—C brick. A lot of trash was mixed. In Comparative Example 10, since the mesh opening of the sieve was smaller than the lower limit of 1 mm of the present invention, the recovery rate of MgO-C brick waste was poor. In Comparative Example 11, since the sieve opening was 10 mm, which was larger than the upper limit of 5 mm of the present invention, brick scraps of less than 10 mm were removed during the preliminary treatment, and the recovery rate of MgO-C brick scraps was poor.
さらに図1に示すように、取鍋耐火物張り替えにおいて、MgO−Cレンガ屑、High−Al2O3レンガ屑、付着した地金が混在した耐火物屑からMgO−Cレンガ屑を分別回収した実施例12、実施例13、実施例14と、それらの比較例15、比較例16、比較例17と比較例18とを表2に示す。 Furthermore, as shown in FIG. 1, in the ladle refractory replacement, MgO-C brick waste was separated and recovered from refractory waste mixed with MgO-C brick waste, High-Al 2 O 3 brick waste, and attached metal. Example 12, Example 13, and Example 14 and Comparative Example 15, Comparative Example 16, Comparative Example 17, and Comparative Example 18 are shown in Table 2.
表2において、MgO−Cレンガ屑の回収率は、表1と同じく、ふるい下産物の重量割合で評価した。この表2の例では、処理前の耐火物屑中のMgO−Cレンガ屑の重量割合が6割程度であったため、表2の結果の欄のMgO−Cレンガ屑回収率において、ふるい下産物の重量割合が50〜70%の場合を◎、40〜50%の場合を○、40%未満の場合を×で評価した。実施例12、実施例13、実施例14では、MgO−Cレンガ屑のみが十分に粉化したためMgO−Cレンガ屑の回収率が良く、他のレンガ屑の混入も少なく良好な結果であった。比較例15は、蒸気圧力が本発明の下限の0.2MPaより低いため、MgO−Cレンガ屑の粉化が不十分で、MgO−Cレンガ屑の回収率が悪かった。比較例16は、ふるいの目開きが本発明の上限の5mmより大きい10mmであるため、予備処理時に10mm未満のレンガ屑が除去され、MgO−Cレンガ屑の回収率が悪かった。比較例17では、予備処理を行わず、ふるいの目開きが本発明の上限の5mmより大きかったため、表2の結果の欄のMgO−Cレンガ屑以外の混入において、MgO−Cレンガ屑以外が多く混入し×で評価した。また、比較例18では、予備処理で2mm未満のMgO−Cレンガ屑以外のレンガ屑を除去しても、ふるい分け処理時のふるいの目開きが10mmであるため、2〜10mmのMgO−Cレンガ屑以外のレンガ屑が混入し、表2の結果の欄のMgO−Cレンガ屑以外の混入において×で評価した。 In Table 2, the recovery rate of MgO-C brick waste was evaluated by the weight ratio of the sieving product as in Table 1. In the example of Table 2, since the weight ratio of MgO-C brick waste in the refractory waste before treatment was about 60%, in the MgO-C brick waste recovery rate in the column of the results in Table 2, sieved products The case where the weight ratio was 50 to 70% was evaluated as ◎, the case where it was 40 to 50% was evaluated as ○, and the case where it was less than 40% was evaluated as ×. In Example 12, Example 13, and Example 14, since only MgO-C brick waste was sufficiently pulverized, the recovery rate of MgO-C brick waste was good, and there was little mixing of other brick waste, which was a good result. . In Comparative Example 15, since the vapor pressure was lower than the lower limit of 0.2 MPa of the present invention, MgO—C brick waste was not sufficiently pulverized, and the recovery rate of MgO—C brick waste was poor. In Comparative Example 16, since the sieve opening was 10 mm, which was larger than the upper limit of 5 mm of the present invention, brick scraps of less than 10 mm were removed during the pretreatment, and the recovery rate of MgO-C brick scraps was poor. In Comparative Example 17, preliminary treatment was not performed, and the sieve opening was larger than the upper limit of 5 mm of the present invention. Therefore, in the mixture other than MgO-C brick waste in the result column of Table 2, except for MgO-C brick waste was Many mixed and evaluated by x. Moreover, in comparative example 18, even if it removes brick waste other than MgO-C brick waste of less than 2 mm in the preliminary treatment, the sieve opening during the screening treatment is 10 mm, so 2-10 mm MgO-C brick Brick scraps other than scraps were mixed, and evaluation was made with × in mixing other than MgO-C brick scraps in the column of the results in Table 2.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007125309A JP2008279353A (en) | 2007-05-10 | 2007-05-10 | SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007125309A JP2008279353A (en) | 2007-05-10 | 2007-05-10 | SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008279353A true JP2008279353A (en) | 2008-11-20 |
Family
ID=40140636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007125309A Pending JP2008279353A (en) | 2007-05-10 | 2007-05-10 | SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008279353A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013249245A (en) * | 2012-05-31 | 2013-12-12 | Yotai Refractories Co Ltd | Method for recycling used carbon-containing unfired brick |
JP2021152213A (en) * | 2020-03-19 | 2021-09-30 | Jfeスチール株式会社 | Blast furnace operation method |
CN114276155A (en) * | 2021-12-30 | 2022-04-05 | 四川省威远特种耐火材料有限公司 | Refractory material and preparation method thereof |
JP2022111745A (en) * | 2021-01-20 | 2022-08-01 | 品川リフラクトリーズ株式会社 | Method for producing recycled refractory raw material |
JP7139497B1 (en) | 2021-07-20 | 2022-09-20 | 株式会社ヨータイ | How to recycle used magnesia spinel refractories |
-
2007
- 2007-05-10 JP JP2007125309A patent/JP2008279353A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013249245A (en) * | 2012-05-31 | 2013-12-12 | Yotai Refractories Co Ltd | Method for recycling used carbon-containing unfired brick |
JP2021152213A (en) * | 2020-03-19 | 2021-09-30 | Jfeスチール株式会社 | Blast furnace operation method |
JP7244805B2 (en) | 2020-03-19 | 2023-03-23 | Jfeスチール株式会社 | Blast furnace operation method |
JP2022111745A (en) * | 2021-01-20 | 2022-08-01 | 品川リフラクトリーズ株式会社 | Method for producing recycled refractory raw material |
JP7328566B2 (en) | 2021-01-20 | 2023-08-17 | 品川リフラクトリーズ株式会社 | Manufacturing method of recycled refractory raw material |
JP7139497B1 (en) | 2021-07-20 | 2022-09-20 | 株式会社ヨータイ | How to recycle used magnesia spinel refractories |
JP2023015789A (en) * | 2021-07-20 | 2023-02-01 | 株式会社ヨータイ | Recycling method for used magnesia spinel refractory |
CN114276155A (en) * | 2021-12-30 | 2022-04-05 | 四川省威远特种耐火材料有限公司 | Refractory material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Holm et al. | Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany | |
Guo et al. | Antimony smelting process generating solid wastes and dust: Characterization and leaching behaviors | |
Hwang | Recovery of metals from aluminum dross and saltcake | |
JP4823175B2 (en) | Incineration ash treatment system | |
US20070158242A1 (en) | System and method for treating shredder residues and utilizing a produced fiber fraction | |
JP4077774B2 (en) | Reusing used refractories | |
JP2008279353A (en) | SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP | |
JPH0741874A (en) | Method for recovering metal slag of waste | |
US7389880B2 (en) | Unit and method for processing of shredder residues and uses of a sand fraction produced thus | |
JP2009006273A (en) | Wet type magnetic separation method for separating mixture of microparticles | |
Hanewald et al. | Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO | |
GB1564257A (en) | Manufacture of reactive metal alloys | |
JPS60135533A (en) | Treatment of stainless steel slag | |
JP5055852B2 (en) | Recovery method of iron resources | |
JP2003088845A (en) | Treatment method of spent refractory | |
JP2005188798A (en) | Recycling method for used refractory and method of forming lining protective layer of molten metal container | |
JP2021088746A (en) | Method for reusing desulfurization slag | |
CN118660978A (en) | Method for treating ferrous metal scrap comprising magnetic material and non-magnetic material and associated apparatus | |
JP2022523397A (en) | Combined melting of molten slag and residues from stainless steel and ferrochrome plants | |
Yadav et al. | Solid Wastes Recyling through Sinter-Status at Tata Steel | |
KR100548871B1 (en) | Method for recovering iron from slag | |
CN106636660B (en) | A kind of method of copper anode furnace comprehensive utilization of slag | |
CN110976068A (en) | Separation and enrichment treatment method for low-grade copper slag of blast furnace | |
KR101577023B1 (en) | Effective Treatment Method of Wastes Comprising Slag, Ash and Sludge, Generated During Pyrometallurgical Copper Production | |
KR200278865Y1 (en) | Powder omitted |