JP2009006273A - Wet type magnetic separation method for separating mixture of microparticles - Google Patents

Wet type magnetic separation method for separating mixture of microparticles Download PDF

Info

Publication number
JP2009006273A
JP2009006273A JP2007170586A JP2007170586A JP2009006273A JP 2009006273 A JP2009006273 A JP 2009006273A JP 2007170586 A JP2007170586 A JP 2007170586A JP 2007170586 A JP2007170586 A JP 2007170586A JP 2009006273 A JP2009006273 A JP 2009006273A
Authority
JP
Japan
Prior art keywords
particles
dust
magnetic
converter
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007170586A
Other languages
Japanese (ja)
Inventor
Yoichi Yoshinaga
陽一 吉永
Yoshiaki Nishina
慶晃 西名
Seiji Enoeda
成治 榎枝
Hiroshi Yamamoto
浩 山本
Shigeki Fujiwara
茂樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007170586A priority Critical patent/JP2009006273A/en
Publication of JP2009006273A publication Critical patent/JP2009006273A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic separation method which enables the accurate and sure magnetic separation of a mixture of microparticles consisting of magnetic particles and nonmagnetic particles (such as converter dust comprised of iron-containing particles and iron-free particles). <P>SOLUTION: Ferromagnetic dust (such as FeO particles), weak magnetic dust (such as Fe<SB>2</SB>O<SB>3</SB>particles) and non-magnetic dust (such as ZnO particles) are respectively isolated from converter dust by first stirring the converter dust in water (by wet-stirring) to crush and disintegrate the same into individual particles and subsequently subjecting them to a two-stage magnetic sorting process with each stage having mutually different magnetism. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微細粒子が混ざり合っている混合物(微粒混合物)を選別分離する方法に関するものであり、例えば、製鉄所プロセスにおける製銑工程や製鋼工程等で発生するダスト廃棄物(製鉄ダスト)について、鉄分含有粒子(FeO粒子等)と非鉄分粒子(酸化亜鉛粒子等)を選別分離して、製鉄原料として再利用可能なダストとする方法に関するものである。   The present invention relates to a method for sorting and separating a mixture in which fine particles are mixed (fine particle mixture). For example, dust waste (iron-making dust) generated in a steelmaking process, a steelmaking process, or the like in a steelworks process. The present invention relates to a method for separating and separating iron-containing particles (such as FeO particles) and non-ferrous particles (such as zinc oxide particles) into dust that can be reused as an iron-making raw material.

通常、製銑工程で発生するダスト廃棄物(製銑ダスト、高炉ダスト)や製鋼工程で発生するダスト廃棄物(製鋼ダスト、転炉ダスト)は、以下のように処理されている。なお、高炉ダストおよび転炉ダストとも基本的な処理工程は同様なので、ここでは、転炉ダストを例に説明する。   Usually, dust waste (steel making dust, blast furnace dust) generated in the iron making process and dust waste (steel making dust, converter dust) generated in the steel making process are treated as follows. Since the basic processing steps are the same for blast furnace dust and converter dust, converter dust will be described as an example here.

転炉ダストは、転炉排ガスの集塵ダストであり、転炉排ガスを水噴してダストを湿式集塵し、その集塵水を沈殿槽で凝集して、フィルターなどで濾化脱水し、製鉄原料(焼結原料)等として再資源化・再利用されている。   The converter dust is dust collected from the converter exhaust gas, and the converter exhaust gas is sprayed with water to collect the dust wet, and the dust collected is agglomerated in a settling tank, filtered and dehydrated with a filter, etc. Recycled and reused as steelmaking raw materials (sintering raw materials).

この転炉ダストは、大部分が鉄分であり、強磁性体のFe粒子、FeO粒子、Fe粒子から成り、一部、弱磁性体のFe粒子が含まれているとともに、転炉原料に利用したスクラップに由来する酸化亜鉛粒子(ZnO粒子)が存在する。従来は、転炉でのスクラップ利用は比較的少なかったため、転炉ダスト中の亜鉛濃度が低く、そのまま焼結原料等として活用されていた。 The converter dust is mostly made of iron and consists of ferromagnetic Fe particles, FeO particles, Fe 3 O 4 particles, and partially contains weak magnetic Fe 2 O 3 particles. There are zinc oxide particles (ZnO particles) derived from scraps used as converter raw materials. Conventionally, since scrap use in a converter was relatively small, the zinc concentration in the converter dust was low, and it was used as a raw material for sintering as it was.

しかし、今後、スクラップの利用量が増加するようになった場合、転炉ダスト中に混入する酸化亜鉛粒子の量が増加して、転炉ダスト中の亜鉛濃度が高くなり、そのままでは転炉ダストを製鉄原料として再利用できなくなる恐れがある。すなわち、亜鉛は焼結機や高炉の運転に障害をもたらすからである。   However, if scrap usage increases in the future, the amount of zinc oxide particles mixed in the converter dust will increase, and the zinc concentration in the converter dust will increase. May not be reused as a raw material for steelmaking. That is, zinc causes an obstacle to the operation of the sintering machine and the blast furnace.

この問題に対して、ロータリーキルン炉や回転炉床炉を用いて、転炉ダスト等にコークスなどの還元剤を添加して、転炉ダスト等を高温下で還元し、亜鉛を金属蒸気として除去、回収する方法が提案されている(例えば、特許文献1参照)。また、転炉ダクトのガス通過系に磁気印加した筐体を設置して、転炉ダストを乾燥状態(乾式)で磁気選別し、磁性粒子(FeO粒子等)と非磁性粒子(酸化亜鉛粒子等)を分離する方法が提案されている(例えば、特許文献2参照)。
特開平09−222217号公報 特開昭58−006252号公報
For this problem, using a rotary kiln furnace or rotary hearth furnace, adding a reducing agent such as coke to converter dust, etc., reducing converter dust etc. at high temperature, removing zinc as metal vapor, A method of collecting has been proposed (see, for example, Patent Document 1). In addition, a case where magnetism is applied to the gas passage system of the converter duct is installed, the converter dust is magnetically selected in a dry state (dry type), and magnetic particles (FeO particles, etc.) and non-magnetic particles (zinc oxide particles, etc.) are selected. ) Has been proposed (see, for example, Patent Document 2).
JP 09-222217 A JP 58-006252 A

前記特許文献1に記載されているような、ロータリーキルン炉や回転炉床炉を用いて、製鉄ダスト中の酸化亜鉛を加熱還元処理して、蒸発亜鉛を回収する方法は、時間処理能力1トンを超える大量のダスト処理を行うことは適しているが、運転に伴い、炉やダクト壁面に付着物が堆積し、メンテナンスコストがかかってしまう。そのため、加熱還元処理するダスト量を事前に減らすことが求められている。   Using a rotary kiln furnace or a rotary hearth furnace as described in Patent Document 1 above, the method of heating and reducing zinc oxide in ironmaking dust and recovering evaporated zinc has a time processing capacity of 1 ton. It is suitable to process a large amount of dust, but deposits accumulate on the furnace and duct wall surfaces during operation, and maintenance costs are incurred. For this reason, it is required to reduce the amount of dust to be heat-reduced in advance.

加熱還元処理するダスト量を事前に減らす方法として、前記特許文献2に記載されているような、製鉄ダストを乾燥状態で磁気選別する方法が考えられる。   As a method of reducing the amount of dust to be heat-reduced in advance, a method of magnetically sorting iron-making dust in a dry state as described in Patent Document 2 is conceivable.

しかし、転炉ダストの性状を解析したところ、図3(a)に示すように、転炉ダスト中の個々のZnO粒子および鉄分含有粒子(FeO粒子等)の平均粒径は1〜2μmであるが、乾燥状態では、図3(b)に示すように、それらの粒子が凝集して数10〜100μmの粒径の2次粒子が形成されることが分かった。なお、高炉ダストについても、同様であり、個々の粒子の平均粒径は10〜20μmであるが、乾燥状態では凝集して2次粒子が形成される。   However, when the properties of the converter dust were analyzed, as shown in FIG. 3 (a), the average particle size of individual ZnO particles and iron-containing particles (FeO particles, etc.) in the converter dust was 1 to 2 μm. However, in the dry state, as shown in FIG. 3B, it was found that the particles aggregate to form secondary particles having a particle size of several tens to 100 μm. The same applies to blast furnace dust, and the average particle size of individual particles is 10 to 20 μm. However, in the dry state, the particles aggregate to form secondary particles.

したがって、このように個々の微細粒子が凝集して2次粒子が形成された状態では、磁性粒子(FeO粒子等)と非磁性粒子(酸化亜鉛粒子)とに的確に磁気分離することは困難である。   Therefore, it is difficult to accurately separate magnetic particles (FeO particles, etc.) and non-magnetic particles (zinc oxide particles) in a state where secondary particles are formed by agglomerating individual fine particles. is there.

本発明は、上記のような事情に鑑みてなされたものであり、磁性粒子と非磁性粒子が混合している微粒混合物(例えば、鉄分含有粒子と非鉄分粒子が混合している製鉄ダスト)に対して、的確に精度良く磁気分離を行うことができる微粒混合物の磁気分離方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and is applied to a fine particle mixture in which magnetic particles and nonmagnetic particles are mixed (for example, iron-making dust in which iron-containing particles and nonferrous particles are mixed). On the other hand, it is an object of the present invention to provide a magnetic separation method of a fine particle mixture capable of accurately and accurately performing magnetic separation.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]磁性粒子と非磁性粒子が混合している微粒混合物を磁気分離する方法であって、あらかじめ微粒混合物を湿式攪拌によって解砕してから、当該微粒混合物を磁気選別によって磁性粒子と非磁性粒子とに分離することを特徴とする微粒混合物の湿式磁気分離方法。   [1] A method of magnetically separating a fine particle mixture in which magnetic particles and nonmagnetic particles are mixed, wherein the fine particle mixture is first crushed by wet stirring, and then the fine particle mixture is magnetically separated from the nonmagnetic particles. A method for wet magnetic separation of a fine particle mixture, characterized in that the mixture is separated into particles.

[2] 前記磁気選別による分離が、磁力の同じ及び/又は異なる複数の磁気選別による分離であることを特徴とする前記[1]に記載の微粒混合物の湿式磁気離方法。   [2] The method of wet magnetic separation of a fine particle mixture according to [1], wherein the separation by magnetic sorting is separation by a plurality of magnetic sortings having the same and / or different magnetic force.

本発明においては、あらかじめ微粒混合物を湿式攪拌によって解砕してから磁気選別を行うようにしているので、乾燥状態では2次粒子に凝集していた微粒混合物が個々の微細粒子に分解・分散された状態で磁気選別されることとなり、的確に精度良く磁性粒子と非磁性粒子に分離することができる。   In the present invention, since the fine particle mixture is pulverized by wet stirring in advance and then magnetic selection is performed, the fine particle mixture aggregated into secondary particles in the dry state is decomposed and dispersed into individual fine particles. Therefore, the magnetic particles can be separated into magnetic particles and non-magnetic particles accurately and accurately.

本発明の一実施形態を図面に基づいて説明する。なお、ここでは、転炉ダストを例にして述べる。   An embodiment of the present invention will be described with reference to the drawings. Here, converter dust will be described as an example.

図1は、本発明の一実施形態における転炉ダストの湿式磁気分離方法の処理フローを示すものであり、図2は、その処理フローを模式的に示したものである。   FIG. 1 shows a process flow of a wet magnetic separation method for converter dust according to an embodiment of the present invention, and FIG. 2 schematically shows the process flow.

前述したように、転炉ダストは、大部分が鉄分であり、強磁性体のFe粒子、FeO粒子から成り、一部、弱磁性体のFe粒子が含まれているとともに、非磁性体の酸化亜鉛粒子(ZnO粒子)が存在する。そして、乾燥状態では、個々の粒子が凝集して2次粒子が形成される。 As described above, the converter dust is mostly made of iron and is composed of ferromagnetic Fe particles and FeO particles, partially containing weakly magnetic Fe 2 O 3 particles and non-magnetic. Zinc oxide particles (ZnO particles) are present. In a dry state, the individual particles aggregate to form secondary particles.

そこで、この実施形態においては、あらかじめ転炉ダストを水中で攪拌(湿式攪拌)することによって個々の粒子に解砕した後、磁力が異なる2段の磁気選別によって、強磁性ダスト(FeO粒子等)と弱磁性ダスト(Fe粒子)と非磁性ダスト(ZnO粒子)に分離するようにしている。 Therefore, in this embodiment, the converter dust is crushed into individual particles by stirring in water (wet stirring) in advance, and then ferromagnetic dust (FeO particles, etc.) is obtained by two-stage magnetic sorting with different magnetic forces. And weak magnetic dust (Fe 2 O 3 particles) and non-magnetic dust (ZnO particles).

すなわち、図1、図2に示すように、以下の(S1)〜(S8)の手順によって分離処理を行っている。   That is, as shown in FIGS. 1 and 2, the separation process is performed according to the following procedures (S1) to (S8).

(S1)転炉から発生する排ガスを湿式集塵して、転炉ダストを回収する。   (S1) The exhaust gas generated from the converter is wet-collected to collect the converter dust.

(S2)その集塵水を沈殿槽で凝集させる。   (S2) Aggregate the collected water in a sedimentation tank.

(S3)凝集させた転炉ダストをホッパー11に投入し、ホッパー11内に注水して、湿式攪拌する。これによって、転炉ダストが個々の粒子に解砕される。なお、攪拌はフロペラや循環流や超音波等によって行う。また、湿式攪拌して解砕した後、必要に応じて、再凝集を抑止するための薬品を投入してもよい。   (S3) Aggregated converter dust is put into the hopper 11, poured into the hopper 11, and wet-stirred. This breaks the converter dust into individual particles. Stirring is performed by a floppler, a circulating flow, ultrasonic waves, or the like. Moreover, after crushing by wet stirring, chemicals for suppressing reaggregation may be added as necessary.

(S4)そして、湿式攪拌により解砕された懸濁状態の転炉ダストを定常装入機構(ここでは、薄流水型振動供給機)12によって低磁力選別機(弱磁力分離機)13に装入する。ちなみに、薄流水型振動供給機は、傾斜面に薄く水を流しながら振動を加えることによって、定常的に所定量を供給する装置である。   (S4) Then, the suspended converter dust crushed by the wet stirring is loaded into the low magnetic separator (weak magnetic separator) 13 by the steady charging mechanism (here, a thin-flow water type vibration feeder) 12. Enter. Incidentally, the thin-flow water type vibration feeder is a device that constantly supplies a predetermined amount by applying vibration while flowing water thinly on an inclined surface.

(S5)低磁力選別機13において、低磁力(例えば、1000G)のもとで磁力選別を行う。これによって、低磁力選別機13の磁着物として強磁性ダスト(FeO粒子等)が分離される。   (S5) The low magnetic force sorter 13 performs magnetic force sorting under a low magnetic force (for example, 1000 G). As a result, ferromagnetic dust (FeO particles or the like) is separated as a magnetic deposit of the low magnetic force sorter 13.

(S6)次に、強磁性ダスト(FeO粒子等)が分離された後の懸濁状態の転炉ダストを沈殿槽で凝集させた後、再度湿式攪拌して解砕する。ただし、必要がなければ、この工程は省いてもよい。   (S6) Next, the suspended converter dust after the ferromagnetic dust (FeO particles, etc.) has been separated is agglomerated in a settling tank, and then wet-stirred again to crush. However, this step may be omitted if not necessary.

(S7)そして、懸濁状態の転炉ダストを定常装入機構(ここでは、薄流水型振動供給機)14によって高磁力選別機(強磁力分離機)15に装入する。   (S7) Then, the converter dust in a suspended state is charged into a high magnetic force separator (ferromagnetic separator) 15 by a steady charging mechanism (here, a thin-flow water type vibration feeder) 14.

(S8)高磁力選別機15において、高磁力(例えば、3000G)のもとで磁力選別を行う。これによって、高磁力選別機15の磁着物として弱磁性ダスト(Fe粒子)が分離され、非磁着物として非磁性ダスト(ZnO粒子)が抽出される。 (S8) The high magnetic force sorting machine 15 performs magnetic force sorting under a high magnetic force (for example, 3000 G). As a result, weak magnetic dust (Fe 2 O 3 particles) is separated as magnetic deposits of the high magnetic force sorter 15, and non-magnetic dust (ZnO particles) is extracted as non-magnetic deposits.

このようにして、この実施形態においては、あらかじめ転炉ダストを湿式攪拌によって解砕してから磁気選別を行うようにしているので、乾燥状態では2次粒子に凝集していた転炉ダストが個々の微細粒子に分解・分散された状態で磁気選別されることとなり、的確に強磁性ダスト(FeO粒子等)と弱磁性ダスト(Fe粒子)と非磁性ダスト(ZnO粒子)に分離することができる。 Thus, in this embodiment, since the converter dust is pulverized by wet stirring in advance and then magnetic sorting is performed, the converter dust that has aggregated into secondary particles in the dry state is individually obtained. Will be magnetically sorted in a state of being decomposed and dispersed into fine particles, and accurately separated into ferromagnetic dust (FeO particles, etc.), weak magnetic dust (Fe 2 O 3 particles) and nonmagnetic dust (ZnO particles). be able to.

なお、この実施形態においては、低磁力選別機13によって強磁性ダスト(FeO粒子等)を選別分離することで、非磁性ダスト(ZnO粒子)の混入を防止して、製鉄原料の回収純度の向上を図るとともに、その後の高磁力選別機15によって弱磁性ダスト(Fe粒子)を選別分離することで、製鉄原料の回収率の向上を図っているが、このような2段の磁気選別に限定されるものではなく、適宜必要な段数の磁気選別を行うようにすればよい。その際、前段の磁力と後段の磁力が同じ場合や、前段の磁力と後段の磁力が異なっている場合、あるいは両者が組み合わさっている場合等によって磁気選別を行うことができる。すなわち、磁力の同じ及び/又は異なる複数段の磁気選別によって分離するようにしてもよい。 In this embodiment, ferromagnetic dust (FeO particles or the like) is separated and separated by the low magnetic force sorter 13 to prevent the mixing of non-magnetic dust (ZnO particles) and improve the recovery purity of the iron-making raw material. In addition, the high magnetic force sorter 15 selects and separates weak magnetic dust (Fe 2 O 3 particles) to improve the recovery rate of the iron-making raw material. It is not limited to this, and it is sufficient to perform magnetic sorting with a necessary number of stages as appropriate. At this time, the magnetic selection can be performed depending on the case where the magnetic force at the front stage and the magnetic force at the rear stage are the same, when the magnetic force at the front stage and the magnetic force at the rear stage are different, or when both are combined. That is, the separation may be performed by multiple stages of magnetic sorting with the same and / or different magnetic forces.

また、ここでは、転炉ダストを例にして説明したが、高炉ダストにも同様に適用することができる。さらに、高炉ダストと転炉ダストを混合したダストにも適用することができる。また、製鉄ダストだけでなく、電気炉ダストに対しても用いることができる。   Further, here, the converter dust has been described as an example, but the present invention can be similarly applied to blast furnace dust. Furthermore, the present invention can also be applied to dust obtained by mixing blast furnace dust and converter dust. Moreover, it can be used not only for ironmaking dust but also for electric furnace dust.

すなわち、乾燥状態では磁性粒子と非磁性粒子が凝集しているような微粒混合物に対して本発明を適用することによって、磁性粒子と非磁性粒子を的確に分離することができる。   That is, by applying the present invention to a fine particle mixture in which magnetic particles and nonmagnetic particles are aggregated in a dry state, magnetic particles and nonmagnetic particles can be accurately separated.

上記の本発明の一実施形態に基づいて、転炉ダストの湿式磁気分離処理を行った。その結果を表1に示す。なお、処理前の転炉ダストのZn濃度は1.0%であった。また、低磁力選別機13の磁力は1000Gとし、高磁力選別機15の磁力は3000Gとした。   Based on one embodiment of the present invention described above, wet magnetic separation treatment of converter dust was performed. The results are shown in Table 1. In addition, the Zn concentration of the converter dust before the treatment was 1.0%. Moreover, the magnetic force of the low magnetic separator 13 was set to 1000G, and the magnetic force of the high magnetic separator 15 was set to 3000G.

Figure 2009006273
Figure 2009006273

表1に示すように、低磁力選別機の磁着物として強磁性ダスト(FeO粒子等)を分離することによって、転炉ダストの91.3%をZn濃度0.4%に希薄化して回収することができた。   As shown in Table 1, 91.3% of converter dust is diluted and recovered to a Zn concentration of 0.4% by separating ferromagnetic dust (FeO particles, etc.) as magnetic deposits of a low magnetic force sorter. I was able to.

そして、上記のように低磁力選別機によって転炉ダストの主な組成である強磁性ダストが分離回収されたので、残ったダスト量が10%程度になり、より希薄な懸濁状態になった。したがって、解砕・分散性が上がり、個々の粒子が一層分散された状態で、高磁力選別機に供給された。   And, as described above, the ferromagnetic dust which is the main composition of the converter dust was separated and collected by the low magnetic force sorter, so that the amount of the remaining dust became about 10%, and the suspension became more diluted. . Therefore, the pulverization / dispersibility improved, and the individual particles were further dispersed and supplied to a high magnetic force sorter.

そして、高磁力選別機の磁着物として、転炉ダストの6.7%がZn濃度0.7%に希薄化して回収されるとともに、高磁力選別機の非磁着物として、転炉ダストの2.1%がZn濃度26.5%に濃縮して回収された。   Then, 6.7% of the converter dust is diluted and recovered to a Zn concentration of 0.7% as the magnetic deposit of the high magnetic force sorter, and 2% of the converter dust as the non-magnetic deposit of the high magnetic force sorter. .1% was recovered by being concentrated to a Zn concentration of 26.5%.

このようにして、焼結機等の運転に障害をもたらす亜鉛の濃度を希薄化したダストを得ることができ、これによって、転炉ダストを製鉄原料として有効に再利用することが可能であることを確認することができた。   In this way, it is possible to obtain a zinc-diluted dust that interferes with the operation of a sintering machine, etc., and this makes it possible to effectively reuse converter dust as an iron-making raw material. I was able to confirm.

また、亜鉛濃度を26.5%に濃縮して回収することができたことから、亜鉛資源として再利用できる可能性があることが示された。   Moreover, since the zinc concentration was able to be recovered by concentrating to 26.5%, it was shown that it could be reused as a zinc resource.

本発明の一実施形態における転炉ダストの湿式磁気分離方法の処理フローを示す図である。It is a figure which shows the processing flow of the wet magnetic separation method of the converter dust in one Embodiment of this invention. 図1の処理フローを模式的に示した図である。It is the figure which showed the processing flow of FIG. 1 typically. 転炉ダストの粒子に状態を示した図である。It is the figure which showed the state to the particle | grains of converter dust.

符号の説明Explanation of symbols

11 ホッパー
12 薄流水型振動供給機
13 低磁力選別機(弱磁力分離機)
14 薄流水型振動供給機
15 高磁力選別機(強磁力分離機)
11 Hopper 12 Thin-flow water type vibration feeder 13 Low magnetic separator (weak magnetic separator)
14 Thin-flow water type vibration feeder 15 High magnetic separator (ferromagnetic separator)

Claims (2)

磁性粒子と非磁性粒子が混合している微粒混合物を磁気分離する方法であって、あらかじめ微粒混合物を湿式攪拌によって解砕してから、当該微粒混合物を磁気選別によって磁性粒子と非磁性粒子とに分離することを特徴とする微粒混合物の湿式磁気分離方法。   A method of magnetically separating a fine particle mixture in which magnetic particles and non-magnetic particles are mixed, wherein the fine particle mixture is first crushed by wet stirring, and the fine particle mixture is then magnetically sorted into magnetic particles and non-magnetic particles. A method for wet magnetic separation of a fine particle mixture. 前記磁気選別による分離が、磁力の同じ及び/又は異なる複数の磁気選別による分離であることを特徴とする請求項1に記載の微粒混合物の湿式磁気離方法。   The method of wet magnetic separation of a fine particle mixture according to claim 1, wherein the separation by magnetic separation is separation by a plurality of magnetic separations having the same and / or different magnetic forces.
JP2007170586A 2007-06-28 2007-06-28 Wet type magnetic separation method for separating mixture of microparticles Pending JP2009006273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170586A JP2009006273A (en) 2007-06-28 2007-06-28 Wet type magnetic separation method for separating mixture of microparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170586A JP2009006273A (en) 2007-06-28 2007-06-28 Wet type magnetic separation method for separating mixture of microparticles

Publications (1)

Publication Number Publication Date
JP2009006273A true JP2009006273A (en) 2009-01-15

Family

ID=40321925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170586A Pending JP2009006273A (en) 2007-06-28 2007-06-28 Wet type magnetic separation method for separating mixture of microparticles

Country Status (1)

Country Link
JP (1) JP2009006273A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030121A (en) * 2007-07-27 2009-02-12 Tohoku Univ Method for recovering zinc oxide from electric furnace dust
EP2208589A1 (en) 2009-01-15 2010-07-21 Panasonic Electric Works Co., Ltd. Electric shaver
WO2010084635A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Mixture treatment method and treatment device
JP2010253432A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Method of recovering manganese oxide from dry cell
JP2011038129A (en) * 2009-08-06 2011-02-24 Hamada Heavy Industries Ltd Method for reutilizing product in iron-manufacturing process
JP2011230074A (en) * 2010-04-28 2011-11-17 Hamada Heavy Industries Ltd Method of treating wet dust generated in blast furnace
KR101311080B1 (en) * 2011-10-31 2013-09-25 현대제철 주식회사 Magnetic Separating Apparatus for Powder
JP2014508853A (en) * 2011-01-04 2014-04-10 サンタナ ロペス ゴメス,ギリェルメ System and method for reclaiming steelmaking converter exhaust residue and product produced thereby
JP2022034653A (en) * 2020-08-19 2022-03-04 Jfeスチール株式会社 Method of recovering chromium-containing dust, method of producing iron manufacture raw material, and facility for recovering chromium-containing dust

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744724B2 (en) * 1978-07-15 1982-09-22
JPS5950731B2 (en) * 1978-03-28 1984-12-10 光和精鉱株式会社 How to recover metallic iron powder from converter dust
JPS6274005A (en) * 1985-09-26 1987-04-04 Nippon Jiryoku Senko Kk Manufacture of iron powder from fine converter dust
JPH0741874A (en) * 1993-07-26 1995-02-10 Setsuichi Kasai Method for recovering metal slag of waste
JPH11253889A (en) * 1998-03-09 1999-09-21 Dowa Mining Co Ltd Method and device for recovering metal from solid waste
JP2007061764A (en) * 2005-09-01 2007-03-15 Babcock Hitachi Kk Waste-treating equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950731B2 (en) * 1978-03-28 1984-12-10 光和精鉱株式会社 How to recover metallic iron powder from converter dust
JPS5744724B2 (en) * 1978-07-15 1982-09-22
JPS6274005A (en) * 1985-09-26 1987-04-04 Nippon Jiryoku Senko Kk Manufacture of iron powder from fine converter dust
JPH0741874A (en) * 1993-07-26 1995-02-10 Setsuichi Kasai Method for recovering metal slag of waste
JPH11253889A (en) * 1998-03-09 1999-09-21 Dowa Mining Co Ltd Method and device for recovering metal from solid waste
JP2007061764A (en) * 2005-09-01 2007-03-15 Babcock Hitachi Kk Waste-treating equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030121A (en) * 2007-07-27 2009-02-12 Tohoku Univ Method for recovering zinc oxide from electric furnace dust
EP2208589A1 (en) 2009-01-15 2010-07-21 Panasonic Electric Works Co., Ltd. Electric shaver
JP4714823B2 (en) * 2009-01-23 2011-06-29 国立大学法人大阪大学 Method of processing the mixture
WO2010084945A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Method and apparatus for processing mixed material
WO2010084635A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Mixture treatment method and treatment device
US8916049B2 (en) 2009-01-23 2014-12-23 Osaka University Method and apparatus for processing mixture
JP2010253432A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Method of recovering manganese oxide from dry cell
JP2011038129A (en) * 2009-08-06 2011-02-24 Hamada Heavy Industries Ltd Method for reutilizing product in iron-manufacturing process
JP2011230074A (en) * 2010-04-28 2011-11-17 Hamada Heavy Industries Ltd Method of treating wet dust generated in blast furnace
JP2014508853A (en) * 2011-01-04 2014-04-10 サンタナ ロペス ゴメス,ギリェルメ System and method for reclaiming steelmaking converter exhaust residue and product produced thereby
KR101311080B1 (en) * 2011-10-31 2013-09-25 현대제철 주식회사 Magnetic Separating Apparatus for Powder
JP2022034653A (en) * 2020-08-19 2022-03-04 Jfeスチール株式会社 Method of recovering chromium-containing dust, method of producing iron manufacture raw material, and facility for recovering chromium-containing dust
JP7264130B2 (en) 2020-08-19 2023-04-25 Jfeスチール株式会社 Method for collecting chromium-containing dust, method for producing raw materials for ironmaking, and equipment for collecting chromium-containing dust

Similar Documents

Publication Publication Date Title
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
CA2309611C (en) Method for upgrading iron ore utilizing multiple magnetic separators
US9327292B2 (en) Process and system for dry recovery of fine and superfine grained particles of oxidized iron ore and a magnetic separation unit
JP5944522B2 (en) Method of separating and recovering iron from waste nonferrous slag discharged from nonferrous metal smelting process
JP5873600B2 (en) Nonferrous metallurgical slag processing method
CN108504855A (en) A method of producing iron ore concentrate by reducing agent suspending magnetization roasting of siderite
JP2009189964A (en) Wet type magnetic separation method of fine particle mixture
CN101264464B (en) Purification technique of steel scoria magnetic separation product
CN108187880A (en) A kind of slag advanced treatment process
Ma et al. Enhancement of in-plant recycling of integrated steel mill offgas solid wastes by reallocating crucial zinc-bearing materials
JP6604346B2 (en) Method for sorting steel slag, method for reusing steel slag, and method for producing raw materials for iron making
CN107470016B (en) A method of chemical industry iron powder is prepared by raw material of zinc kiln slag
JP5832184B2 (en) Reusing wet dust in blast furnace products
CN106076506A (en) A kind of process technique of slag deep processing
JP5832183B2 (en) Reusing wet dust in blast furnace products
JP5303786B2 (en) Reuse of generated materials in steelmaking process
JP2010235962A (en) Method for recycling electric furnace dust
JP2017205715A (en) Method for recovering valuables from dephosphorized slag
CN207308087U (en) A kind of device that chemical industry iron powder is prepared using zinc kiln slag as raw material
JP6015335B2 (en) Magnetic sorting method and magnetic sorting equipment
KR100423440B1 (en) Method for separating metal from steel-making slag
CN109277184A (en) The method of enriched iron from low iron metallurgical slag
TWI820935B (en) Iron making method
JP5524097B2 (en) Method for recovering valuable metals from steelmaking slag
CN102766704B (en) Steelmaking desulfurization slag treatment system and steelmaking desulfurization slag treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120720

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422