JPH0741874A - Method for recovering metal slag of waste - Google Patents

Method for recovering metal slag of waste

Info

Publication number
JPH0741874A
JPH0741874A JP18313393A JP18313393A JPH0741874A JP H0741874 A JPH0741874 A JP H0741874A JP 18313393 A JP18313393 A JP 18313393A JP 18313393 A JP18313393 A JP 18313393A JP H0741874 A JPH0741874 A JP H0741874A
Authority
JP
Japan
Prior art keywords
slag
particles
component particles
magnetic force
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18313393A
Other languages
Japanese (ja)
Other versions
JP3003749B2 (en
Inventor
Setsuichi Kasai
節一 笠井
Tadao Fujimoto
忠生 藤本
Seiichi Abe
清一 阿部
Shiro Kamibayashi
史朗 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18313393A priority Critical patent/JP3003749B2/en
Publication of JPH0741874A publication Critical patent/JPH0741874A/en
Application granted granted Critical
Publication of JP3003749B2 publication Critical patent/JP3003749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To severally separate the iron component particles, aluminum component particles and copper component particles in slag powder respectively, to recycle metals and to convert the slag to high-quality raw materials for ceramics. CONSTITUTION:The slag 1 is made into fine particles having proper grain sizes by dry process pulverization 4. The slag powder in the form of the fine particles is subjected to low-magnetic force sepn. 5 at <=1000 gauss magnetic flux density, by which the iron component particles 6 in the slag powder are separated and recovered. The slag powder remaining after the low-magnetic force sepn. 5 is subjected to high-magnetic force sepn. 7 at 1000 to 13000 gauss magnetic flux density, by which the slag particles 8 are magnetized, separated and recovered. The aluminum component particles 9 and copper component particles 10 remaining after the high-magnetic force sepn. 7 are discretely screened and recovered by sp.gr.sepn. 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ごみ、下水汚泥、
産業廃棄物等の廃棄物を溶融処理して得られる溶融スラ
グから金属を回収する廃棄物溶融スラグ中の金属回収方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to municipal waste, sewage sludge,
The present invention relates to a metal recovery method for recovering metal from a molten slag obtained by melting a waste such as industrial waste.

【0002】[0002]

【従来の技術】従来、都市ごみ、下水汚泥、産業廃棄物
等の廃棄物は一般に焼却処理、埋立処理等が行われてい
るが、近年の都市ごみや産業廃棄物の増加に対処するこ
とが困難であるために、減容化のために溶融処理してガ
ラス化し、最終処分場において埋立処分している。ま
た、近年においては、廃棄物のリサイクルや再資源化の
研究が行われており、その一つとして廃棄物を溶融処理
して得られる無用で価値のない溶融スラグを有用な窯業
原料とすることが提案されている。
2. Description of the Related Art Conventionally, waste such as municipal solid waste, sewage sludge and industrial waste has generally been incinerated or landfilled, but it is possible to cope with the recent increase in the amount of municipal solid waste and industrial waste. Due to its difficulty, it is melted and vitrified to reduce the volume, and it is landfilled at the final disposal site. Further, in recent years, researches on recycling and recycling of waste have been conducted, and as one of them, useless and worthless molten slag obtained by melting treatment of waste is used as a useful ceramic raw material. Is proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、埋立地におい
ては浸出水中に有害物質が溶出し、二次公害を引き起こ
す危険があるので、最終処分場には水処理施設等の付帯
設備を設けねばならず、埋立地の確保に多額の費用を要
する問題があった。また、溶融スラグを窯業原料として
再資源化する場合には、スラグ中に含まれた鉄、銅、ア
ルミ等の金属成分が窯業製品の品質に影響を与える問題
があった。
However, in a landfill, there is a risk that harmful substances will be eluted into the leachate and cause secondary pollution. Therefore, incidental equipment such as a water treatment facility must be installed at the final disposal site. However, there was a problem that a large amount of money was required to secure the landfill. Further, when the molten slag is recycled as a ceramic raw material, there is a problem that the metal components such as iron, copper and aluminum contained in the slag affect the quality of the ceramic product.

【0004】本発明は上記課題を解決するもので、溶融
スラグ中から金属を種別に選別して回収し、回収した金
属の再利用を図るとともに、スラグの高品質な窯業原料
化を図ることができる廃棄物溶融スラグ中の金属回収方
法を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and it is possible to sort and collect metals from the molten slag by type, to reuse the collected metals, and to make a high-quality ceramic raw material for the slag. An object of the present invention is to provide a method for recovering metals in waste molten slag.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の廃棄物溶融スラグ中の金属回収方法は、
廃棄物の溶融処理により生成する溶融スラグのスラグ塊
を乾式粉砕して適当粒径をなす微細粒子となし、この微
細粒子状のスラグ粉を1000ガウス以下の磁束密度下
で低磁力選別することによりスラグ粉中の鉄成分粒子を
磁着して選別回収し、低磁力選別後に残留するスラグ粉
を1000〜13000ガウスの磁束密度下で高磁力選
別することによりスラグ粒子を磁着して選別回収し、高
磁力選別後に残留するアルミ成分粒子および銅成分粒子
を比重分離してアルミ成分粒子と銅成分粒子とを個別に
選別回収するものである。
In order to solve the above problems, the method for recovering metal in waste molten slag according to the present invention comprises:
By pulverizing the slag mass of molten slag produced by the melting process of waste into dry particles to form fine particles having an appropriate particle size, and selecting the fine particle slag powder with a low magnetic force under a magnetic flux density of 1000 gauss or less. The iron component particles in the slag powder are magnetically collected and sorted, and the slag powder remaining after the low magnetic force is sorted by a high magnetic force under a magnetic flux density of 1000 to 13000 gauss to magnetically attach and collect the slag particles. The aluminum component particles and the copper component particles remaining after the high magnetic force sorting are separated by specific gravity to separately sort and collect the aluminum component particles and the copper component particles.

【0006】本発明の廃棄物溶融スラグ中の金属回収方
法は、廃棄物の溶融処理により生成する溶融スラグのス
ラグ塊を湿式粉砕して適当粒径をなす微細粒子となし、
この微細粒子状のスラグ粉から比重分離によって鉄成分
粒子および銅成分粒子とを同時に分離回収し、分離回収
した鉄成分粒子および銅成分粒子を1000ガウス以下
の磁束密度下で低磁力選別して鉄成分粒子を磁着するこ
とにより鉄成分粒子と銅成分粒子とを個別に選別回収
し、さらに比重分離後のスラグ粉を1000〜1300
0ガウスの磁束密度下で高磁力選別してスラグ粒子を磁
着することによりアルミ成分粒子とスラグ粒子とを個別
に選別回収するものである。
In the method for recovering metal in waste molten slag according to the present invention, the slag mass of the molten slag produced by the waste melting treatment is wet pulverized to form fine particles having an appropriate particle size,
The iron component particles and the copper component particles are simultaneously separated and collected from the fine slag powder by specific gravity separation, and the separated and collected iron component particles and the copper component particles are sorted with a low magnetic force under a magnetic flux density of 1000 gauss or less to produce iron. By magnetically adhering the component particles, the iron component particles and the copper component particles are separately sorted and recovered, and the slag powder after specific gravity separation is 1000 to 1300.
The aluminum component particles and the slag particles are separately selected and recovered by magnetically adhering the slag particles by selecting a high magnetic force under a magnetic flux density of 0 gauss.

【0007】また、粉砕工程に先だってスラグ塊を低磁
力選別し、スラグ中の粗大な鉄成分塊を回収するもので
ある。
Further, prior to the crushing step, the slag mass is sorted by low magnetic force to recover the coarse iron component mass in the slag.

【0008】[0008]

【作用】上記した第1の構成において、スラグ粉には鉄
成分粒子、アルミ成分粒子、銅成分粒子、その他の成分
からなるスラグ粒子を含んでいる。各粒子はその成分に
よって磁力に対する吸着性状が異なり、鉄成分粒子は最
も低い低磁力で吸着性を示し、アルミ成分粒子および銅
成分粒子は最も高い高磁力でのみ吸着性を示し、スラグ
粒子は前記両者の中間の磁力で吸着性を示す。
In the first construction described above, the slag powder contains slag particles composed of iron component particles, aluminum component particles, copper component particles and other components. Each particle has different adsorptive properties to magnetic force depending on its component, iron component particles exhibit adsorptivity at the lowest low magnetic force, aluminum component particles and copper component particles exhibit adsorptivity only at the highest high magnetic force, and slag particles are The magnetic force between the two shows the adsorptivity.

【0009】したがって、磁力選別における磁力を調整
することにより、スラグ粉の中から各粒子を選別回収す
ることができる。このとき特徴的なことは、低磁力によ
って金属粒子の中から始めに鉄成分粒子のみを選別回収
し、次にさらに高い磁力によってスラグ粒子を磁着して
他の金属粒子から分離することにある。このため、スラ
グ粉中の鉄成分粒子、アルミ成分粒子、銅成分粒子を各
々別々に選別して回収できるので、回収した金属の再利
用が容易に行える。また、スラグ中の金属成分を除去す
ることにより、スラグの高品質な窯業原料化を図ること
ができる。
Therefore, each particle can be selectively collected from the slag powder by adjusting the magnetic force in the magnetic separation. At this time, the characteristic is that only the iron component particles are first sorted and recovered from the metal particles by the low magnetic force, and then the slag particles are magnetically attached and separated from the other metal particles by the higher magnetic force. . Therefore, the iron component particles, the aluminum component particles, and the copper component particles in the slag powder can be separately sorted and collected, so that the collected metal can be easily reused. Further, by removing the metal components in the slag, it is possible to make the slag a high-quality ceramic raw material.

【0010】上記した第2の構成においては、磁力選別
に先立て比重分離によってスラグ粉が、鉄成分粒子と銅
成分粒子とを含む一群と、アルミ成分粒子とスラグ粒子
とを含む他群とに分離するので、低磁力選別によって鉄
成分粒子と銅成分粒子の選別を行うことができ、高磁力
選別によってアルミ成分粒子とスラグ粒子の選別を行う
ことができる。
In the above-mentioned second construction, the slag powder is divided into one group containing iron component particles and copper component particles and another group containing aluminum component particles and slag particles by specific gravity separation prior to magnetic force selection. Since they are separated, the iron component particles and the copper component particles can be selected by the low magnetic force selection, and the aluminum component particles and the slag particles can be selected by the high magnetic force selection.

【0011】また、粉砕工程に先だってスラグ中の粗大
な鉄成分塊を回収すれば、粉砕工程における負荷を軽減
することができる。
Further, if the coarse iron component mass in the slag is recovered before the crushing step, the load in the crushing step can be reduced.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の金属回収方法の一例を示すフロ
ーチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing an example of the metal recovery method of the present invention.

【0013】スラグ1は都市ごみ、下水汚泥、飛灰等の
廃棄物を溶融処理することにより生成する溶融スラグで
あり、スラグ1は溶融炉から取り出すときに、冷却水中
に滴下して冷却固化しているので、粗大な塊状をなして
いる。
The slag 1 is a molten slag produced by melting waste such as municipal solid waste, sewage sludge, fly ash, etc. When the slag 1 is taken out from the melting furnace, it is dropped into cooling water and solidified by cooling. Therefore, it is in the form of coarse lumps.

【0014】表1に示すように、溶融スラグ中には各種
の成分が混在しており、その成分中にはスラグ1を窯業
原料として再資源化するうえで障害物となる鉄やアルミ
が酸化物の状態で存在している。このため、スラグ1を
再資源化するうえで、あるいはスラグ中の金属を再利用
するうえでもスラグ1から金属を回収するが必要であ
る。
As shown in Table 1, various components are mixed in the molten slag, and iron and aluminum, which are obstacles in recycling slag 1 as a ceramic raw material, are oxidized in the components. It exists in the state of things. Therefore, it is necessary to recover the metal from the slag 1 in order to recycle the slag 1 or to reuse the metal in the slag.

【0015】[0015]

【表1】 [Table 1]

【0016】ところで、図2に示すように、スラグ1は
その原料によって磁力に対する吸着性が異なり、都市ご
みを原料とするスラグ1a、都市ごみと飛灰を原料とす
るスラグ1b、下水汚泥を原料とするスラグ1cの順で
同磁束密度下での吸着量が多くなる。また、各スラグ1
a、1b、1cとも3000ガウス以下の磁束密度下で
は吸着性を示さず、逆に一番吸着性が悪いスラグ1cで
も13000ガウス付近において100%の吸着量とな
る。
By the way, as shown in FIG. 2, the slag 1 has different adsorptivity to magnetic force depending on its raw material, and the slag 1a made from municipal waste, the slag 1b made from municipal waste and fly ash, and the sewage sludge as raw material. The adsorption amount under the same magnetic flux density increases in the order of the slag 1c. Also, each slag 1
Under a magnetic flux density of 3000 Gauss or less, a, 1b, and 1c do not exhibit adsorptivity, and conversely, even the slag 1c, which has the worst adsorptivity, has an adsorptivity of 100% near 13000 Gauss.

【0017】一方、スラグ1に含まれる鉄Fe,アルミ
Al,銅Cuの各金属のうち、鉄Feは磁束密度100
0ガウス付近の低磁力において100%の吸着量である
に対し、アルミAlおよび銅Cuは15000ガウスの
高磁力においても10%程度の吸着量しかない。したが
って、磁力を調整して使用すればスラグ1中の金属を選
別して分離することができる。
On the other hand, among the metals Fe Fe, aluminum Al, and copper Cu contained in the slag 1, iron Fe has a magnetic flux density of 100.
The amount of adsorption is 100% at low magnetic force around 0 gauss, whereas the amount of adsorption of aluminum Al and copper Cu is only about 10% even at high magnetic force of 15,000 gauss. Therefore, if the magnetic force is adjusted and used, the metal in the slag 1 can be selected and separated.

【0018】以下に金属回収の手順を説明する。始め
に、粗大な塊状をなすスラグ1を低磁力選別2し、スラ
グ1中に含まれた粗大な鉄成分塊3を磁着して回収し、
後工程の乾式粉砕4における負荷を軽減する。
The procedure of metal recovery will be described below. First, the slag 1 in the form of a coarse lump is subjected to a low magnetic force selection 2 and the coarse iron component lump 3 contained in the slag 1 is magnetically collected and recovered.
The load in the dry pulverization 4 in the subsequent step is reduced.

【0019】次に、スラグ1を乾式粉砕4して適当な粒
径の微細粒子となし、この微細粒子状のスラグ粉を10
00ガウス以下の磁束密度下で低磁力選別5してスラグ
粉中の微細な鉄成分粒子6のみを磁着して選別回収す
る。
Next, the slag 1 is dry-pulverized 4 into fine particles having an appropriate particle size, and the fine particle-like slag powder is made into 10 particles.
Under a magnetic flux density of not more than 00 gauss, a low magnetic force is selected 5 and only the fine iron component particles 6 in the slag powder are magnetically adhered to be selectively recovered.

【0020】そして、低磁力選別後に残留するスラグ粉
を1000〜13000ガウスの磁束密度下で高磁力選
別7し、スラグ粒子8のみを磁着して選別回収する。さ
らに、高磁力選別7後に残留するアルミ成分粒子9およ
び銅成分粒子10の一群を比重分離11してアルミ成分
粒子9と銅成分粒子10とを個別に選別回収する。
Then, the slag powder remaining after the low magnetic force selection is subjected to the high magnetic force selection 7 under the magnetic flux density of 1000 to 13000 gauss, and only the slag particles 8 are magnetically adhered to be recovered. Further, a group of the aluminum component particles 9 and the copper component particles 10 remaining after the high magnetic force sorting 7 is subjected to specific gravity separation 11 and the aluminum component particles 9 and the copper component particles 10 are separately sorted and collected.

【0021】図3は本発明の他の金属回収方法の一例を
示すフローチャートであり、図3に基づいて金属回収の
手順を説明する。始めに、粗大な塊状をなすスラグ21
を低磁力選別22し、スラグ21中に含まれた粗大な鉄
成分塊23を磁着して回収し、後工程の湿式粉砕24に
おける負荷を軽減する。
FIG. 3 is a flow chart showing an example of another metal recovery method of the present invention, and the procedure of metal recovery will be described with reference to FIG. First, coarse slag 21
Is subjected to low magnetic force selection 22, and the coarse iron component lumps 23 contained in the slag 21 are magnetically adhered and collected to reduce the load in the wet crushing 24 in the subsequent step.

【0022】次に、スラグ21を湿式粉砕24して適当
粒径をなす微細粒子となし、この微細粒子状のスラグ粉
を比重分離25して鉄成分粒子26および銅成分粒子2
7とを同時に一群として分離回収するとともに、残りの
スラグ粒子28およびアルミ成分粒子29を一群として
分離回収する。
Next, the slag 21 is wet crushed 24 to form fine particles having an appropriate particle size, and the fine slag powder is subjected to specific gravity separation 25 to obtain iron component particles 26 and copper component particles 2.
7 and 7 are separated and collected simultaneously as a group, and the remaining slag particles 28 and aluminum component particles 29 are separated and collected as a group.

【0023】そして、分離回収した鉄成分粒子26およ
び銅成分粒子27を1000ガウス以下の磁束密度下で
低磁力選別30して鉄成分粒子26を磁着することによ
り鉄成分粒子26と銅成分粒子27とを個別に選別回収
する。また、比重分離25した後のスラグ粉を1000
〜13000ガウスの磁束密度下で高磁力選別31して
アルミ成分粒子29を磁着することによりアルミ成分粒
子29とスラグ粒子28とを個別に選別回収する。
Then, the iron component particles 26 and the copper component particles 27 are separated from each other by separating the iron component particles 26 and the copper component particles 27 which have been separated and recovered into a magnetic powder having a magnetic force density of 1000 gausses or less, and magnetically adhering the iron component particles 26. 27 and 27 are individually selected and collected. In addition, the slag powder after the specific gravity separation 25 is 1000
The aluminum component particles 29 and the slag particles 28 are individually sorted and collected by magnetically adhering the aluminum component particles 29 by high magnetic force sorting 31 under a magnetic flux density of ˜13,000 gauss.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、磁力
選別と比重分離を組み合わせ、さらに磁力選別における
磁力を調整することにより、スラグ粉中の鉄成分粒子、
アルミ成分粒子、銅成分粒子を各々別々に選別して回収
できるので、回収した金属の再利用が容易に行える。ま
た、スラグ中の金属成分を除去することにより、スラグ
の高品質な窯業原料化を図ることができる。さらに、粉
砕工程に先だってスラグ中の粗大な鉄成分塊を回収すれ
ば、粉砕工程における負荷を軽減することができる。
As described above, according to the present invention, by combining magnetic separation and specific gravity separation and adjusting the magnetic force in the magnetic separation, iron component particles in the slag powder,
Since the aluminum component particles and the copper component particles can be separately sorted and collected, the collected metal can be easily reused. Further, by removing the metal components in the slag, it is possible to make the slag a high-quality ceramic raw material. Further, if the coarse iron component mass in the slag is collected before the crushing step, the load in the crushing step can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における金属回収方法のフロ
ーチャートである。
FIG. 1 is a flowchart of a metal recovery method according to an embodiment of the present invention.

【図2】各種スラグと金属の吸着性を示す吸着量−磁束
密度図である。
FIG. 2 is an adsorption amount-flux density diagram showing adsorption properties of various slags and metals.

【図3】本発明の他の実施例における金属回収方法のフ
ローチャートである。
FIG. 3 is a flowchart of a metal recovery method according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 スラグ 2 低磁力選別 4 乾式粉砕 5 低磁力選別 7 高磁力選別 11 比重分離 1 Slag 2 Low magnetic force sorting 4 Dry grinding 5 Low magnetic force sorting 7 High magnetic force sorting 11 Specific gravity separation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 清一 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 (72)発明者 上林 史朗 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiichi Abe 1-47 Shishitsu Higashi, Naniwa-ku, Osaka City, Osaka Prefecture Kubota Corporation (72) Inventor Shiro Uebayashi Shiritsu, Naniwa-ku, Osaka City, Osaka Prefecture 2-47 Higashi 1-chome Kubota Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物の溶融処理により生成する溶融ス
ラグのスラグ塊を乾式粉砕して適当粒径をなす微細粒子
となし、この微細粒子状のスラグ粉を1000ガウス以
下の磁束密度下で低磁力選別することによりスラグ粉中
の鉄成分粒子を磁着して選別回収し、低磁力選別後に残
留するスラグ粉を1000〜13000ガウスの磁束密
度下で高磁力選別することによりスラグ粒子を磁着して
選別回収し、高磁力選別後に残留するアルミ成分粒子お
よび銅成分粒子を比重分離してアルミ成分粒子と銅成分
粒子とを個別に選別回収することを特徴とする廃棄物溶
融スラグ中の金属回収方法。
1. A slag mass of molten slag produced by melting treatment of waste is dry pulverized to form fine particles having an appropriate particle diameter, and the fine slag powder has a low magnetic flux density of 1000 gauss or less. The iron component particles in the slag powder are magnetically adhered by magnetic force selection to be collected and recovered, and the slag powder remaining after the low magnetic force selection is magnetically adhered by high magnetic force selection under a magnetic flux density of 1000 to 13000 gauss. The metal in the waste molten slag is characterized in that the aluminum component particles and the copper component particles remaining after the high magnetic force sorting are separated by specific gravity and the aluminum component particles and the copper component particles are separately sorted and collected. Recovery method.
【請求項2】 廃棄物の溶融処理により生成する溶融ス
ラグのスラグ塊を湿式粉砕して適当粒径をなす微細粒子
となし、この微細粒子状のスラグ粉から比重分離によっ
て鉄成分粒子および銅成分粒子とを同時に分離回収し、
分離回収した鉄成分粒子および銅成分粒子を1000ガ
ウス以下の磁束密度下で低磁力選別して鉄成分粒子を磁
着することにより鉄成分粒子と銅成分粒子とを個別に選
別回収し、さらに比重分離後のスラグ粉を1000〜1
3000ガウスの磁束密度下で高磁力選別してスラグ粒
子を磁着することによりアルミ成分粒子とスラグ粒子と
を個別に選別回収することを特徴とする廃棄物溶融スラ
グ中の金属回収方法。
2. A slag mass of molten slag generated by melting treatment of waste is wet pulverized to form fine particles having an appropriate particle size, and iron component particles and copper components are separated from the fine slag powder by specific gravity separation. Separate and collect particles and
The iron component particles and the copper component particles that have been separated and collected are sorted with a low magnetic force under a magnetic flux density of 1000 gauss or less to magnetically attach the iron component particles, so that the iron component particles and the copper component particles are separately sorted and collected, and the specific gravity is further increased. 1000 to 1 after separation of slag powder
A method for recovering metals in waste molten slag, characterized by separately selecting aluminum component particles and slag particles by magnetically selecting slag particles with high magnetic force selection under a magnetic flux density of 3000 gauss.
【請求項3】 粉砕工程に先だってスラグ塊を低磁力選
別し、スラグ中の粗大な鉄成分塊を回収することを特徴
とする請求項1または請求項2記載の廃棄物溶融スラグ
中の金属回収方法。
3. The metal recovery in the waste molten slag according to claim 1 or 2, wherein the slag mass is sorted by low magnetic force prior to the crushing step to recover a coarse iron component mass in the slag. Method.
JP18313393A 1993-07-26 1993-07-26 Metal recovery method from waste molten slag Expired - Fee Related JP3003749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18313393A JP3003749B2 (en) 1993-07-26 1993-07-26 Metal recovery method from waste molten slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18313393A JP3003749B2 (en) 1993-07-26 1993-07-26 Metal recovery method from waste molten slag

Publications (2)

Publication Number Publication Date
JPH0741874A true JPH0741874A (en) 1995-02-10
JP3003749B2 JP3003749B2 (en) 2000-01-31

Family

ID=16130379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18313393A Expired - Fee Related JP3003749B2 (en) 1993-07-26 1993-07-26 Metal recovery method from waste molten slag

Country Status (1)

Country Link
JP (1) JP3003749B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237559A (en) * 1997-02-20 1998-09-08 Mitsubishi Materials Corp Recovery of valuable metal in municipal garbage incineration ash
JPH11158562A (en) * 1997-11-27 1999-06-15 Setsuichi Kasai Method for separating and recovering useful metal from waste
JPH11179334A (en) * 1997-12-19 1999-07-06 Nkk Corp Method and apparatus for collecting slag from melt of waste melting furnace
JPH11179333A (en) * 1997-12-19 1999-07-06 Nkk Corp Method and apparatus for separating water granulated slag of waste melting furnace
JP2001240917A (en) * 2000-02-29 2001-09-04 Nippon Steel Corp Method for utilizing metal in refuse
JP2001276795A (en) * 2000-03-31 2001-10-09 Hitachi Zosen Corp Method for separating aluminum in slag
JP2003088845A (en) * 2001-09-18 2003-03-25 Nippon Steel Corp Treatment method of spent refractory
KR100466005B1 (en) * 1998-12-18 2005-04-13 주식회사 포스코 Briquette manufacturing method of steelmaking slag
KR100797255B1 (en) * 2001-12-24 2008-01-23 주식회사 포스코 Treatment method of iron bearing concentrate for high iron content
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles
CN102211055A (en) * 2011-06-07 2011-10-12 黄石大江集团有限公司 Heavy magnetic suspension joint production method for recovering copper from copper smelting slag with high elemental copper content
CN102294297A (en) * 2011-09-16 2011-12-28 大冶有色金属股份有限公司 Magnetic suspension beneficiation combined method for recycling copper from copper melting converter slag
JP2012529003A (en) * 2009-12-30 2012-11-15 ヒュンダイ スチール カンパニー Method for recovering valuable metals from slag
JP2014500142A (en) * 2010-11-29 2014-01-09 ビーエーエスエフ ソシエタス・ヨーロピア Magnetic recovery of valuables from slag materials
JP2015219948A (en) * 2014-05-14 2015-12-07 松田産業株式会社 Method for recovering valuables from lithium ion secondary battery
CN105126996A (en) * 2015-09-15 2015-12-09 怀宁县江镇代家凹铜矿有限公司 Copper ore crushing process
KR20160119346A (en) * 2015-04-03 2016-10-13 한국지질자원연구원 Method for producting iron concentrate from low grade iron ore using dry separating proocess
JP2017174517A (en) * 2016-03-18 2017-09-28 三菱マテリアル株式会社 Method for collecting valuable substance from used lithium ion battery
WO2018025585A1 (en) * 2016-08-01 2018-02-08 株式会社神戸製鋼所 Reduced iron production method and production apparatus
JP2018058059A (en) * 2016-09-28 2018-04-12 太平洋セメント株式会社 Processing apparatus of incineration ash and processing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237559A (en) * 1997-02-20 1998-09-08 Mitsubishi Materials Corp Recovery of valuable metal in municipal garbage incineration ash
JPH11158562A (en) * 1997-11-27 1999-06-15 Setsuichi Kasai Method for separating and recovering useful metal from waste
JPH11179334A (en) * 1997-12-19 1999-07-06 Nkk Corp Method and apparatus for collecting slag from melt of waste melting furnace
JPH11179333A (en) * 1997-12-19 1999-07-06 Nkk Corp Method and apparatus for separating water granulated slag of waste melting furnace
KR100466005B1 (en) * 1998-12-18 2005-04-13 주식회사 포스코 Briquette manufacturing method of steelmaking slag
JP2001240917A (en) * 2000-02-29 2001-09-04 Nippon Steel Corp Method for utilizing metal in refuse
JP2001276795A (en) * 2000-03-31 2001-10-09 Hitachi Zosen Corp Method for separating aluminum in slag
JP2003088845A (en) * 2001-09-18 2003-03-25 Nippon Steel Corp Treatment method of spent refractory
KR100797255B1 (en) * 2001-12-24 2008-01-23 주식회사 포스코 Treatment method of iron bearing concentrate for high iron content
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles
EP2471962A4 (en) * 2009-12-30 2016-10-19 Hyundai Steel Co Method for recovering valuable metals from slag
JP2012529003A (en) * 2009-12-30 2012-11-15 ヒュンダイ スチール カンパニー Method for recovering valuable metals from slag
JP2014500142A (en) * 2010-11-29 2014-01-09 ビーエーエスエフ ソシエタス・ヨーロピア Magnetic recovery of valuables from slag materials
CN102211055A (en) * 2011-06-07 2011-10-12 黄石大江集团有限公司 Heavy magnetic suspension joint production method for recovering copper from copper smelting slag with high elemental copper content
CN102294297A (en) * 2011-09-16 2011-12-28 大冶有色金属股份有限公司 Magnetic suspension beneficiation combined method for recycling copper from copper melting converter slag
JP2015219948A (en) * 2014-05-14 2015-12-07 松田産業株式会社 Method for recovering valuables from lithium ion secondary battery
KR20160119346A (en) * 2015-04-03 2016-10-13 한국지질자원연구원 Method for producting iron concentrate from low grade iron ore using dry separating proocess
CN105126996A (en) * 2015-09-15 2015-12-09 怀宁县江镇代家凹铜矿有限公司 Copper ore crushing process
JP2017174517A (en) * 2016-03-18 2017-09-28 三菱マテリアル株式会社 Method for collecting valuable substance from used lithium ion battery
WO2018025585A1 (en) * 2016-08-01 2018-02-08 株式会社神戸製鋼所 Reduced iron production method and production apparatus
JP2018021215A (en) * 2016-08-01 2018-02-08 株式会社神戸製鋼所 Method for producing reduced iron and production device therefor
JP2018058059A (en) * 2016-09-28 2018-04-12 太平洋セメント株式会社 Processing apparatus of incineration ash and processing method thereof

Also Published As

Publication number Publication date
JP3003749B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
JPH0741874A (en) Method for recovering metal slag of waste
Holm et al. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany
US9539581B2 (en) Method for recycling ash
US7681813B2 (en) System and method for treating shredder residues
US8056729B2 (en) System and method for treating shredder residues and utilizing a produced fiber fraction
JP4823175B2 (en) Incineration ash treatment system
JP3617767B2 (en) Method and apparatus for recovering metal from solid waste
US7389880B2 (en) Unit and method for processing of shredder residues and uses of a sand fraction produced thus
JP6421765B2 (en) Method for sorting steel slag, method for reusing steel slag, and method for producing raw materials for iron making
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
JP2019065374A (en) Noble metal recovery method from incineration ash
JPS60135533A (en) Treatment of stainless steel slag
JP3862575B2 (en) Counterweight and recycling method
JPH06320137A (en) Treatment of burned ash of shredder dust
US20190329268A1 (en) Methods and systems for polishing and recovering aluminum from a waste material
JP2000005702A (en) Method and device for recovering metal from solid waste
JPH08168694A (en) Method of recovering valuable object from sludge of burned trash
JP2008279353A (en) SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP
JP2013138975A (en) Incineration ash treatment system
JP2881393B2 (en) How to treat shredder dust incineration ash
JP2016159210A (en) Treatment method and treatment device of incineration ash
JPH1110129A (en) Manufacture of sand for backfilling material
JPH1024282A (en) Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
JP3374709B2 (en) Separation method and apparatus for granulated slag in waste melting furnace
JP2000107736A (en) Treatment of shredder dust dry distillate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees