JP3003749B2 - Metal recovery method from waste molten slag - Google Patents

Metal recovery method from waste molten slag

Info

Publication number
JP3003749B2
JP3003749B2 JP18313393A JP18313393A JP3003749B2 JP 3003749 B2 JP3003749 B2 JP 3003749B2 JP 18313393 A JP18313393 A JP 18313393A JP 18313393 A JP18313393 A JP 18313393A JP 3003749 B2 JP3003749 B2 JP 3003749B2
Authority
JP
Japan
Prior art keywords
slag
particles
component particles
magnetic force
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18313393A
Other languages
Japanese (ja)
Other versions
JPH0741874A (en
Inventor
節一 笠井
忠生 藤本
清一 阿部
史朗 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP18313393A priority Critical patent/JP3003749B2/en
Publication of JPH0741874A publication Critical patent/JPH0741874A/en
Application granted granted Critical
Publication of JP3003749B2 publication Critical patent/JP3003749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、都市ごみ、下水汚泥、
産業廃棄物等の廃棄物を溶融処理して得られる溶融スラ
グから金属を回収する廃棄物溶融スラグ中の金属回収方
法に関する。
The present invention relates to municipal solid waste, sewage sludge,
The present invention relates to a method for recovering metal from waste molten slag, which recovers metal from molten slag obtained by melting waste such as industrial waste.

【0002】[0002]

【従来の技術】従来、都市ごみ、下水汚泥、産業廃棄物
等の廃棄物は一般に焼却処理、埋立処理等が行われてい
るが、近年の都市ごみや産業廃棄物の増加に対処するこ
とが困難であるために、減容化のために溶融処理してガ
ラス化し、最終処分場において埋立処分している。ま
た、近年においては、廃棄物のリサイクルや再資源化の
研究が行われており、その一つとして廃棄物を溶融処理
して得られる無用で価値のない溶融スラグを有用な窯業
原料とすることが提案されている。
2. Description of the Related Art Conventionally, waste such as municipal solid waste, sewage sludge and industrial waste is generally incinerated and landfilled. However, it is necessary to cope with the recent increase in municipal solid waste and industrial waste. Due to the difficulty, they are melted and vitrified for volume reduction, and landfilled at final disposal sites. In recent years, research on the recycling and recycling of waste has been conducted, and one of them is to use wasteless and valuable molten slag obtained by melting and processing waste as a useful ceramic raw material. Has been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、埋立地におい
ては浸出水中に有害物質が溶出し、二次公害を引き起こ
す危険があるので、最終処分場には水処理施設等の付帯
設備を設けねばならず、埋立地の確保に多額の費用を要
する問題があった。また、溶融スラグを窯業原料として
再資源化する場合には、スラグ中に含まれた鉄、銅、ア
ルミ等の金属成分が窯業製品の品質に影響を与える問題
があった。
However, in landfills, hazardous substances may elute into leachate and cause secondary pollution. Therefore, it is necessary to provide auxiliary facilities such as water treatment facilities at the final disposal site. However, there was a problem that a large amount of money was required to secure a landfill. In the case of recycling molten slag as a raw material for ceramics, there is a problem that metal components such as iron, copper, and aluminum contained in the slag affect the quality of ceramic products.

【0004】本発明は上記課題を解決するもので、溶融
スラグ中から金属を種別に選別して回収し、回収した金
属の再利用を図るとともに、スラグの高品質な窯業原料
化を図ることができる廃棄物溶融スラグ中の金属回収方
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to sort and recover metals from molten slag by type, to reuse the recovered metals, and to use slag as a high-quality ceramic raw material. An object of the present invention is to provide a method for recovering metal in waste molten slag that can be performed.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の廃棄物溶融スラグ中の金属回収方法は、
廃棄物の溶融処理により生成する溶融スラグのスラグ塊
を乾式粉砕して適当粒径をなす微細粒子となし、この微
細粒子状のスラグ粉を1000ガウス以下の磁束密度下
で低磁力選別することによりスラグ粉中の鉄成分粒子を
磁着して選別回収し、低磁力選別後に残留するスラグ粉
を1000〜13000ガウスの磁束密度下で高磁力選
別することによりスラグ粒子を磁着して選別回収し、高
磁力選別後に残留するアルミ成分粒子および銅成分粒子
を比重分離してアルミ成分粒子と銅成分粒子とを個別に
選別回収するものである。
Means for Solving the Problems To solve the above problems, a method for recovering metal in waste molten slag of the present invention comprises:
The slag mass of the molten slag generated by the melting treatment of the waste is dry-pulverized into fine particles having an appropriate particle size, and the fine particle slag powder is subjected to low magnetic force sorting under a magnetic flux density of 1,000 gauss or less. The iron component particles in the slag powder are magnetically deposited and sorted and collected, and the slag particles remaining after low magnetic force sorting are magnetically deposited and sorted and collected by performing high magnetic force sorting under a magnetic flux density of 1000 to 13000 gauss. In addition, the aluminum component particles and the copper component particles remaining after the high magnetic force sorting are separated by specific gravity to separate and collect the aluminum component particles and the copper component particles individually.

【0006】本発明の廃棄物溶融スラグ中の金属回収方
法は、廃棄物の溶融処理により生成する溶融スラグのス
ラグ塊を湿式粉砕して適当粒径をなす微細粒子となし、
この微細粒子状のスラグ粉から比重分離によって鉄成分
粒子および銅成分粒子とを同時に分離回収し、分離回収
した鉄成分粒子および銅成分粒子を1000ガウス以下
の磁束密度下で低磁力選別して鉄成分粒子を磁着するこ
とにより鉄成分粒子と銅成分粒子とを個別に選別回収
し、さらに比重分離後のスラグ粉を1000〜1300
0ガウスの磁束密度下で高磁力選別してスラグ粒子を磁
着することによりアルミ成分粒子とスラグ粒子とを個別
に選別回収するものである。
The method for recovering metal from waste molten slag according to the present invention comprises the steps of: wet crushing a slag lump of molten slag produced by a melting treatment of waste into fine particles having an appropriate particle size;
The iron component particles and the copper component particles are simultaneously separated and recovered from the fine particle slag powder by specific gravity separation, and the separated and recovered iron component particles and copper component particles are subjected to low magnetic force sorting under a magnetic flux density of 1,000 gauss or less to remove iron. By ironing the component particles, the iron component particles and the copper component particles are individually separated and collected, and the slag powder after specific gravity separation is 1000 to 1300.
The slag particles are magnetically adhered under high magnetic force selection under a magnetic flux density of 0 Gauss, whereby aluminum component particles and slag particles are individually separated and collected.

【0007】また、粉砕工程に先だってスラグ塊を低磁
力選別し、スラグ中の粗大な鉄成分塊を回収するもので
ある。
[0007] Further, prior to the pulverizing step, the slag mass is sorted with low magnetic force, and the coarse iron component mass in the slag is recovered.

【0008】[0008]

【作用】上記した第1の構成において、スラグ粉には鉄
成分粒子、アルミ成分粒子、銅成分粒子、その他の成分
からなるスラグ粒子を含んでいる。各粒子はその成分に
よって磁力に対する吸着性状が異なり、鉄成分粒子は最
も低い低磁力で吸着性を示し、アルミ成分粒子および銅
成分粒子は最も高い高磁力でのみ吸着性を示し、スラグ
粒子は前記両者の中間の磁力で吸着性を示す。
In the first configuration described above, the slag powder contains iron component particles, aluminum component particles, copper component particles, and slag particles composed of other components. Each particle has a different adsorptive property to magnetic force depending on its component, iron component particles exhibit adsorbability at the lowest low magnetic force, aluminum component particles and copper component particles exhibit adsorbability only at the highest high magnetic force, and slag particles Shows adsorptivity with a magnetic force intermediate between the two.

【0009】したがって、磁力選別における磁力を調整
することにより、スラグ粉の中から各粒子を選別回収す
ることができる。このとき特徴的なことは、低磁力によ
って金属粒子の中から始めに鉄成分粒子のみを選別回収
し、次にさらに高い磁力によってスラグ粒子を磁着して
他の金属粒子から分離することにある。このため、スラ
グ粉中の鉄成分粒子、アルミ成分粒子、銅成分粒子を各
々別々に選別して回収できるので、回収した金属の再利
用が容易に行える。また、スラグ中の金属成分を除去す
ることにより、スラグの高品質な窯業原料化を図ること
ができる。
Therefore, by adjusting the magnetic force in the magnetic force selection, each particle can be selectively collected from the slag powder. What is characteristic at this time is that only the iron component particles are firstly selected and recovered from the metal particles by a low magnetic force, and then the slag particles are magnetically magnetized by a higher magnetic force to be separated from other metal particles. . For this reason, since iron component particles, aluminum component particles, and copper component particles in the slag powder can be separately selected and collected, the collected metal can be easily reused. In addition, by removing the metal component in the slag, it is possible to use the slag as a high-quality ceramic raw material.

【0010】上記した第2の構成においては、磁力選別
に先立て比重分離によってスラグ粉が、鉄成分粒子と銅
成分粒子とを含む一群と、アルミ成分粒子とスラグ粒子
とを含む他群とに分離するので、低磁力選別によって鉄
成分粒子と銅成分粒子の選別を行うことができ、高磁力
選別によってアルミ成分粒子とスラグ粒子の選別を行う
ことができる。
[0010] In the above-mentioned second configuration, the slag powder is divided into a group containing iron component particles and copper component particles and another group containing aluminum component particles and slag particles by prior gravity separation by magnetic force sorting. Since separation is performed, iron component particles and copper component particles can be separated by low magnetic force sorting, and aluminum component particles and slag particles can be sorted by high magnetic force sorting.

【0011】また、粉砕工程に先だってスラグ中の粗大
な鉄成分塊を回収すれば、粉砕工程における負荷を軽減
することができる。
[0011] Further, if the coarse iron component mass in the slag is collected prior to the pulverizing step, the load in the pulverizing step can be reduced.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の金属回収方法の一例を示すフロ
ーチャートである。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing one example of the metal recovery method of the present invention.

【0013】スラグ1は都市ごみ、下水汚泥、飛灰等の
廃棄物を溶融処理することにより生成する溶融スラグで
あり、スラグ1は溶融炉から取り出すときに、冷却水中
に滴下して冷却固化しているので、粗大な塊状をなして
いる。
The slag 1 is a molten slag produced by melting and processing waste such as municipal solid waste, sewage sludge, fly ash, etc. When the slag 1 is taken out of the melting furnace, it is dropped into cooling water and solidified by cooling. So that it is in a coarse lump.

【0014】表1に示すように、溶融スラグ中には各種
の成分が混在しており、その成分中にはスラグ1を窯業
原料として再資源化するうえで障害物となる鉄やアルミ
が酸化物の状態で存在している。このため、スラグ1を
再資源化するうえで、あるいはスラグ中の金属を再利用
するうえでもスラグ1から金属を回収するが必要であ
る。
As shown in Table 1, various components are mixed in the molten slag, and iron and aluminum which are obstacles in recycling the slag 1 as a raw material for ceramics are oxidized in the components. It exists in the state of things. For this reason, it is necessary to recover the metal from the slag 1 also in recycling the slag 1 or in reusing the metal in the slag.

【0015】[0015]

【表1】 [Table 1]

【0016】ところで、図2に示すように、スラグ1は
その原料によって磁力に対する吸着性が異なり、都市ご
みを原料とするスラグ1a、都市ごみと飛灰を原料とす
るスラグ1b、下水汚泥を原料とするスラグ1cの順で
同磁束密度下での吸着量が多くなる。また、各スラグ1
a、1b、1cとも3000ガウス以下の磁束密度下で
は吸着性を示さず、逆に一番吸着性が悪いスラグ1cで
も13000ガウス付近において100%の吸着量とな
る。
As shown in FIG. 2, the slag 1 has different magnetic absorptivity depending on the raw material. The slag 1a is made of municipal solid waste, the slag 1b is made of municipal solid waste and fly ash, and the slag 1 is made of sewage sludge. The amount of adsorption at the same magnetic flux density increases in the order of the slag 1c. In addition, each slag 1
Both a, 1b, and 1c do not exhibit adsorbability under a magnetic flux density of 3000 gauss or less. Conversely, even the slag 1c having the worst adsorbability has a 100% adsorption amount near 13000 gauss.

【0017】一方、スラグ1に含まれる鉄Fe,アルミ
Al,銅Cuの各金属のうち、鉄Feは磁束密度100
0ガウス付近の低磁力において100%の吸着量である
に対し、アルミAlおよび銅Cuは15000ガウスの
高磁力においても10%程度の吸着量しかない。したが
って、磁力を調整して使用すればスラグ1中の金属を選
別して分離することができる。
On the other hand, among the metals of iron Fe, aluminum Al and copper Cu contained in the slag 1, iron Fe has a magnetic flux density of 100%.
Aluminum Al and copper Cu have only about 10% adsorption at a high magnetic force of 15000 gauss while 100% of the amount of adsorption is at a low magnetic force near 0 gauss. Therefore, if the magnetic force is adjusted and used, the metal in the slag 1 can be selected and separated.

【0018】以下に金属回収の手順を説明する。始め
に、粗大な塊状をなすスラグ1を低磁力選別2し、スラ
グ1中に含まれた粗大な鉄成分塊3を磁着して回収し、
後工程の乾式粉砕4における負荷を軽減する。
The procedure for recovering the metal will be described below. First, the coarse slag 1 forming a large lump is subjected to low magnetic force sorting 2 and the coarse iron component lump 3 contained in the slag 1 is magnetically collected and collected.
The load in the dry grinding 4 in the subsequent step is reduced.

【0019】次に、スラグ1を乾式粉砕4して適当な粒
径の微細粒子となし、この微細粒子状のスラグ粉を10
00ガウス以下の磁束密度下で低磁力選別5してスラグ
粉中の微細な鉄成分粒子6のみを磁着して選別回収す
る。
Next, the slag 1 is dry-pulverized 4 to obtain fine particles having an appropriate particle size.
Low magnetic force sorting 5 is performed under a magnetic flux density of 00 gauss or less, and only the fine iron component particles 6 in the slag powder are magnetized and sorted and collected.

【0020】そして、低磁力選別後に残留するスラグ粉
を1000〜13000ガウスの磁束密度下で高磁力選
別7し、スラグ粒子8のみを磁着して選別回収する。さ
らに、高磁力選別7後に残留するアルミ成分粒子9およ
び銅成分粒子10の一群を比重分離11してアルミ成分
粒子9と銅成分粒子10とを個別に選別回収する。
Then, the slag powder remaining after the low magnetic force sorting is subjected to a high magnetic force sorting 7 under a magnetic flux density of 1000 to 13000 gauss, and only the slag particles 8 are magnetically attached and sorted and collected. Further, a group of the aluminum component particles 9 and the copper component particles 10 remaining after the high magnetic force separation 7 is subjected to a specific gravity separation 11 to separate and collect the aluminum component particles 9 and the copper component particles 10 individually.

【0021】図3は本発明の他の金属回収方法の一例を
示すフローチャートであり、図3に基づいて金属回収の
手順を説明する。始めに、粗大な塊状をなすスラグ21
を低磁力選別22し、スラグ21中に含まれた粗大な鉄
成分塊23を磁着して回収し、後工程の湿式粉砕24に
おける負荷を軽減する。
FIG. 3 is a flowchart showing an example of another metal recovery method according to the present invention. The procedure of metal recovery will be described with reference to FIG. First, a coarse slag 21 is formed.
Is subjected to low magnetic force sorting 22 to collect and collect the coarse iron component clumps 23 contained in the slag 21 to reduce the load on the wet pulverization 24 in the subsequent step.

【0022】次に、スラグ21を湿式粉砕24して適当
粒径をなす微細粒子となし、この微細粒子状のスラグ粉
を比重分離25して鉄成分粒子26および銅成分粒子2
7とを同時に一群として分離回収するとともに、残りの
スラグ粒子28およびアルミ成分粒子29を一群として
分離回収する。
Next, the slag 21 is wet-pulverized 24 to form fine particles having an appropriate particle size. The fine particle slag powder is separated by specific gravity 25 to separate the iron component particles 26 and the copper component particles 2.
7 are simultaneously separated and collected as a group, and the remaining slag particles 28 and aluminum component particles 29 are separated and collected as a group.

【0023】そして、分離回収した鉄成分粒子26およ
び銅成分粒子27を1000ガウス以下の磁束密度下で
低磁力選別30して鉄成分粒子26を磁着することによ
り鉄成分粒子26と銅成分粒子27とを個別に選別回収
する。また、比重分離25した後のスラグ粉を1000
〜13000ガウスの磁束密度下で高磁力選別31して
アルミ成分粒子29を磁着することによりアルミ成分粒
子29とスラグ粒子28とを個別に選別回収する。
The separated and recovered iron component particles 26 and copper component particles 27 are subjected to a low magnetic force selection 30 under a magnetic flux density of 1000 gauss or less, and the iron component particles 26 are magnetically attached. 27 are individually selected and collected. Further, the slag powder after specific gravity separation 25 is 1000
The aluminum component particles 29 and the slag particles 28 are individually separated and collected by magnetically attaching the aluminum component particles 29 by performing high magnetic force selection 31 under a magnetic flux density of 〜13000 gauss.

【0024】[0024]

【発明の効果】以上述べたように本発明によれば、磁力
選別と比重分離を組み合わせ、さらに磁力選別における
磁力を調整することにより、スラグ粉中の鉄成分粒子、
アルミ成分粒子、銅成分粒子を各々別々に選別して回収
できるので、回収した金属の再利用が容易に行える。ま
た、スラグ中の金属成分を除去することにより、スラグ
の高品質な窯業原料化を図ることができる。さらに、粉
砕工程に先だってスラグ中の粗大な鉄成分塊を回収すれ
ば、粉砕工程における負荷を軽減することができる。
As described above, according to the present invention, by combining magnetic separation and specific gravity separation, and further adjusting the magnetic force in magnetic separation, iron component particles in slag powder can be obtained.
Since the aluminum component particles and the copper component particles can be separately selected and recovered, the recovered metal can be easily reused. In addition, by removing the metal component in the slag, it is possible to use the slag as a high-quality ceramic raw material. Furthermore, if the coarse iron component mass in the slag is collected prior to the pulverizing step, the load in the pulverizing step can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における金属回収方法のフロ
ーチャートである。
FIG. 1 is a flowchart of a metal recovery method according to an embodiment of the present invention.

【図2】各種スラグと金属の吸着性を示す吸着量−磁束
密度図である。
FIG. 2 is an adsorption amount-magnetic flux density diagram showing the adsorption of various slags and metals.

【図3】本発明の他の実施例における金属回収方法のフ
ローチャートである。
FIG. 3 is a flowchart of a metal recovery method according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 スラグ 2 低磁力選別 4 乾式粉砕 5 低磁力選別 7 高磁力選別 11 比重分離 Reference Signs List 1 slag 2 low magnetic force sorting 4 dry grinding 5 low magnetic force sorting 7 high magnetic force sorting 11 specific gravity separation

フロントページの続き (72)発明者 阿部 清一 大阪府大阪市浪速区敷津東一丁目2番47 号 株式会社クボタ内 (72)発明者 上林 史朗 大阪府大阪市浪速区敷津東一丁目2番47 号 株式会社クボタ内 (58)調査した分野(Int.Cl.7,DB名) C22B 7/00 - 7/04 B03C 1/00 B09B 5/00 Continued on the front page (72) Inventor Seiichi Abe 2-47, Shikitsu Higashi 1-chome, Naniwa-ku, Osaka-shi, Osaka (72) Inventor Shiro Uebayashi 1-chome, Shikitsu-higashi, Naniwa-ku, Osaka, Osaka No. 2 47 Inside Kubota Corporation (58) Field surveyed (Int. Cl. 7 , DB name) C22B 7 /00-7/04 B03C 1/00 B09B 5/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 廃棄物の溶融処理により生成する溶融ス
ラグのスラグ塊を乾式粉砕して適当粒径をなす微細粒子
となし、この微細粒子状のスラグ粉を1000ガウス以
下の磁束密度下で低磁力選別することによりスラグ粉中
の鉄成分粒子を磁着して選別回収し、低磁力選別後に残
留するスラグ粉を1000〜13000ガウスの磁束密
度下で高磁力選別することによりスラグ粒子を磁着して
選別回収し、高磁力選別後に残留するアルミ成分粒子お
よび銅成分粒子を比重分離してアルミ成分粒子と銅成分
粒子とを個別に選別回収することを特徴とする廃棄物溶
融スラグ中の金属回収方法。
1. A slag mass of molten slag produced by a melting treatment of waste is dry-pulverized into fine particles having an appropriate particle size, and the fine particle slag powder is reduced under a magnetic flux density of 1,000 gauss or less. By magnetically sorting, the iron component particles in the slag powder are magnetized to separate and collect, and the slag particles remaining after the low magnetic force sorting are magnetically magnetized to the slag particles by high magnetic force sorting under a magnetic flux density of 1,000 to 13,000 gauss. Metal in waste molten slag, characterized in that the aluminum component particles and copper component particles remaining after high magnetic force sorting are separated and separated by specific gravity to separate and collect aluminum component particles and copper component particles. Collection method.
【請求項2】 廃棄物の溶融処理により生成する溶融ス
ラグのスラグ塊を湿式粉砕して適当粒径をなす微細粒子
となし、この微細粒子状のスラグ粉から比重分離によっ
て鉄成分粒子および銅成分粒子とを同時に分離回収し、
分離回収した鉄成分粒子および銅成分粒子を1000ガ
ウス以下の磁束密度下で低磁力選別して鉄成分粒子を磁
着することにより鉄成分粒子と銅成分粒子とを個別に選
別回収し、さらに比重分離後のスラグ粉を1000〜1
3000ガウスの磁束密度下で高磁力選別してスラグ粒
子を磁着することによりアルミ成分粒子とスラグ粒子と
を個別に選別回収することを特徴とする廃棄物溶融スラ
グ中の金属回収方法。
2. A slag mass of molten slag generated by a melting treatment of waste is wet-pulverized into fine particles having an appropriate particle size, and iron component particles and copper component are separated from the fine particle slag powder by specific gravity separation. Separate and collect particles simultaneously
The iron component particles and the copper component particles are separated and recovered by low magnetic force sorting under a magnetic flux density of 1000 gauss or less and the iron component particles are magnetized to separately separate and collect the iron component particles and the copper component particles, and further, specific gravity Separated slag powder from 1000 to 1
A method for recovering metal in waste molten slag, wherein aluminum component particles and slag particles are individually separated and recovered by magnetically bonding slag particles by high magnetic force selection under a magnetic flux density of 3000 Gauss.
【請求項3】 粉砕工程に先だってスラグ塊を低磁力選
別し、スラグ中の粗大な鉄成分塊を回収することを特徴
とする請求項1または請求項2記載の廃棄物溶融スラグ
中の金属回収方法。
3. The metal recovery in molten slag of waste according to claim 1 or 2, wherein the slag mass is sorted by low magnetic force prior to the pulverizing step, and the coarse iron component mass in the slag is collected. Method.
JP18313393A 1993-07-26 1993-07-26 Metal recovery method from waste molten slag Expired - Fee Related JP3003749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18313393A JP3003749B2 (en) 1993-07-26 1993-07-26 Metal recovery method from waste molten slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18313393A JP3003749B2 (en) 1993-07-26 1993-07-26 Metal recovery method from waste molten slag

Publications (2)

Publication Number Publication Date
JPH0741874A JPH0741874A (en) 1995-02-10
JP3003749B2 true JP3003749B2 (en) 2000-01-31

Family

ID=16130379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18313393A Expired - Fee Related JP3003749B2 (en) 1993-07-26 1993-07-26 Metal recovery method from waste molten slag

Country Status (1)

Country Link
JP (1) JP3003749B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384270B2 (en) * 1997-02-20 2003-03-10 三菱マテリアル株式会社 Recovery of valuable metals from incinerated ash from municipal waste
JP3558513B2 (en) * 1997-11-27 2004-08-25 節一 笠井 Method for separating and recovering useful metals from waste
JPH11179334A (en) * 1997-12-19 1999-07-06 Nkk Corp Method and apparatus for collecting slag from melt of waste melting furnace
JPH11179333A (en) * 1997-12-19 1999-07-06 Nkk Corp Method and apparatus for separating water granulated slag of waste melting furnace
KR100466005B1 (en) * 1998-12-18 2005-04-13 주식회사 포스코 Briquette manufacturing method of steelmaking slag
JP4875233B2 (en) * 2000-02-29 2012-02-15 新日鉄エンジニアリング株式会社 How to use metals in waste
JP2001276795A (en) * 2000-03-31 2001-10-09 Hitachi Zosen Corp Method for separating aluminum in slag
JP3704301B2 (en) * 2001-09-18 2005-10-12 新日本製鐵株式会社 Disposal of used refractories
KR100797255B1 (en) * 2001-12-24 2008-01-23 주식회사 포스코 Treatment method of iron bearing concentrate for high iron content
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles
KR101175422B1 (en) * 2009-12-30 2012-08-20 현대제철 주식회사 Method for recovering valuable metals from slag
MX2013006028A (en) * 2010-11-29 2013-07-29 Basf Corp Magnetic recovery of valuables from slag material.
CN102211055A (en) * 2011-06-07 2011-10-12 黄石大江集团有限公司 Heavy magnetic suspension joint production method for recovering copper from copper smelting slag with high elemental copper content
CN102294297B (en) * 2011-09-16 2013-01-02 大冶有色金属股份有限公司 Magnetic suspension beneficiation combined method for recycling copper from copper melting converter slag
JP6469362B2 (en) * 2014-05-14 2019-02-13 松田産業株式会社 Method for recovering valuable materials from lithium ion secondary batteries
KR101667651B1 (en) * 2015-04-03 2016-10-21 한국지질자원연구원 Method for producting iron concentrate from low grade iron ore using dry separating proocess
CN105126996A (en) * 2015-09-15 2015-12-09 怀宁县江镇代家凹铜矿有限公司 Copper ore crushing process
JP6859598B2 (en) * 2016-03-18 2021-04-14 三菱マテリアル株式会社 How to recover valuables from used lithium-ion batteries
JP6623127B2 (en) * 2016-08-01 2019-12-18 株式会社神戸製鋼所 Method and apparatus for producing reduced iron
JP7017855B2 (en) * 2016-09-28 2022-02-09 太平洋セメント株式会社 Incinerator ash treatment equipment and treatment method

Also Published As

Publication number Publication date
JPH0741874A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
JP3003749B2 (en) Metal recovery method from waste molten slag
JP3617767B2 (en) Method and apparatus for recovering metal from solid waste
US9539581B2 (en) Method for recycling ash
Schlesinger Aluminum recycling
JP2009056362A (en) Incinerator ash treatment system
US5437709A (en) Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction
US7389880B2 (en) Unit and method for processing of shredder residues and uses of a sand fraction produced thus
AU2023202715A1 (en) Methods and systems for polishing and recovering aluminum from a waste material
US8905241B2 (en) Methods for treating bottom ash generated from waste-to-energy facilities to reduce the dependence on bonding agents such as lime or concrete prior to disposal
JP2019065374A (en) Noble metal recovery method from incineration ash
JP2000005702A (en) Method and device for recovering metal from solid waste
JPS60135533A (en) Treatment of stainless steel slag
JPH06320137A (en) Treatment of burned ash of shredder dust
JPH08168694A (en) Method of recovering valuable object from sludge of burned trash
JP2881393B2 (en) How to treat shredder dust incineration ash
JP2001046975A (en) Treatment of composite waste and treating device
JP2008279353A (en) SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP
JP3222076B2 (en) Metal recovery method from waste molten slag
JPH1024282A (en) Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
JP2021138579A (en) Method for producing chromium-reduced cement raw material
JP4907284B2 (en) Method for processing ferrous waste materials
KR200278865Y1 (en) Powder omitted
JPS644572B2 (en)
RU2111795C1 (en) Continuous production line for processing schlich materials
JP2021133346A (en) Chromium reduction method for mix metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees