JP2011230074A - Method of treating wet dust generated in blast furnace - Google Patents

Method of treating wet dust generated in blast furnace Download PDF

Info

Publication number
JP2011230074A
JP2011230074A JP2010103813A JP2010103813A JP2011230074A JP 2011230074 A JP2011230074 A JP 2011230074A JP 2010103813 A JP2010103813 A JP 2010103813A JP 2010103813 A JP2010103813 A JP 2010103813A JP 2011230074 A JP2011230074 A JP 2011230074A
Authority
JP
Japan
Prior art keywords
wet
blast furnace
iron
wet dust
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010103813A
Other languages
Japanese (ja)
Inventor
Kensuke Shimomura
健介 下村
Yoshihiro Kamikawa
義弘 上川
Tomoyuki Kamijo
知幸 上條
Takakuni Shimizu
隆邦 清水
Masaya Okamoto
征也 岡本
Hiroshi Oda
博史 織田
Takashi Hiromatsu
隆 廣松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Original Assignee
Hamada Heavy Industries Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamada Heavy Industries Co Ltd, Nippon Steel Corp filed Critical Hamada Heavy Industries Co Ltd
Priority to JP2010103813A priority Critical patent/JP2011230074A/en
Publication of JP2011230074A publication Critical patent/JP2011230074A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To specifically provide a simple, practical and effective method for separating wet dust in gas emissions from a blast furnace for iron manufacturing containing a large amount of carbon (C) into iron (Fe) and carbon (C) to reuse them in iron manufacturing.SOLUTION: A slurry mixture is made from wet dust and ultrasonication is carried out to the slurry. Then wet separation such as wet magnetic separation is applied to the slurry to separate it into a recovered material mainly containing iron and a recovered material mainly containing carbon. The recovered material mainly containing iron can be reused as an iron source for iron manufacturing after dezincification in a reduction furnace.

Description

本発明は、製鉄工程で生じる発生物を再度製鉄工程で有効利用するためのリサイクル方法、より詳しくは、製鉄高炉排ガスの集塵中の湿ダスト中の鉄(Fe)と炭素(C)の分離によるFe分の製鉄工程での再活用方法に関する。   The present invention relates to a recycling method for effectively using a product generated in an iron making process again in the iron making process, more specifically, separation of iron (Fe) and carbon (C) in wet dust during dust collection of an iron making blast furnace exhaust gas. It is related with the reuse method in the iron-making process of Fe content.

高炉排ガスから集塵されるダストには、乾式で集塵される粗粒の一次集塵ダストと湿式で集塵される微粒の二次ダストとがある。   The dust collected from the blast furnace exhaust gas includes a coarse primary dust collected by a dry process and a fine secondary dust collected by a wet process.

乾式集塵ダストは、Feの回収のためほぼ全量が焼結原料として再利用されている。   Most of the dry dust collection dust is reused as a sintering raw material for the recovery of Fe.

ところが、湿式ダストは、Fe源として焼結工程で利用するにしても、微粒であるため含水率が高く、脱水しても焼結操業への悪影響があることにもまして、一般に亜鉛(Zn)の含有量が多く、高炉内の炉材の損傷や炉壁付着物生成の助長の原因となるなどの悪影響が有り、高炉原料としてのリサイクル使用が制約され、廃棄されることも多い。   However, even when wet dust is used as a Fe source in the sintering process, it is fine and therefore has a high moisture content. Even if it is dehydrated, it generally has an adverse effect on the sintering operation. The content of the blast furnace is adversely affected, such as damage to the furnace material in the blast furnace and the promotion of the generation of deposits on the furnace wall.

この高炉排ガスから集塵された湿ダストは脱Zn処理を行なう必要があり、従来法のプロセス全体の一例を示す図2のように、還元炉による処理が行われることが多い。   The wet dust collected from the blast furnace exhaust gas needs to be subjected to Zn removal treatment, and is often treated in a reduction furnace as shown in FIG.

その還元炉操業では、還元剤としてカーボンが使用されるものの、カーボンの装入総量は還元反応との関連で適正範囲があり、過剰な配合Cは還元ペレットに強度劣化をもたらす原因となり、品質に悪影響を与える。   In the reduction furnace operation, although carbon is used as a reducing agent, the total amount of carbon charged is within an appropriate range in relation to the reduction reaction, and excessive compounding C causes strength deterioration in the reduced pellets, resulting in quality reduction. Adversely affected.

然るに、高炉湿ダストには、表1(鉄鋼便覧第四版より引用)に示すようにCが大量に含まれており、還元炉原料として大量に使用できず、図2に示すように一部は破棄せざるを得ないという問題がある。   However, the blast furnace wet dust contains a large amount of C as shown in Table 1 (cited from the 4th edition of the Steel Handbook) and cannot be used in large quantities as a reducing furnace raw material. Has a problem that it must be destroyed.

Figure 2011230074
Figure 2011230074

また、高炉へのZnの悪影響を回避するため、溶銑予備処理や製鋼工程で使用する場合もある。しかしながら、C含有量が多いために、精練用酸素の消費や酸化により発生するCOガスによるスラグフォーミングなどの弊害が生じやすく、その使用が制約される。   Moreover, in order to avoid the bad influence of Zn to a blast furnace, it may be used by hot metal pretreatment or a steelmaking process. However, since the C content is large, adverse effects such as slag foaming due to the consumption of scouring oxygen and CO gas generated by oxidation are likely to occur, and its use is restricted.

この観点から、高炉ダスト中のCをFeから分離する方法は、従来から多く提案されている。   From this viewpoint, many methods for separating C in blast furnace dust from Fe have been proposed.

例えば、特許文献1には、水選処理あるいは水中での磁選による分離法が提案され、水選処理をすることにより容易に沈降して沈殿する重い酸化鉄粉および炭素質物質に酸化鉄が食い込んだ形の重量分と、浮遊および浮上する軽い炭素質微粉、酸化鉄微粉、亜鉛、錫などの酸化物微粉の軽量分とに分別できるとしている。しかしながら、この特許文献1には、Feは焼結原料としてのリサイクルに、また、Cは活性炭原料として利用するというFeとCの分離の目的は示されているが、分離のための具体的な処理についての記載はない。さらには、Fe回収側のC混入濃度も示されていないため、Fe活用の際の障害となるC除去の目的に対して有効な技術であるか否かの判断も困難である。   For example, Patent Document 1 proposes a separation method by water separation treatment or magnetic separation in water, and iron oxide bites into heavy iron oxide powder and carbonaceous material that easily settles and precipitates by water separation treatment. It is said that it can be divided into the weight of the oval and the light weight of fine carbonaceous powder, iron oxide fine powder, zinc oxide and tin oxide that float and float. However, this Patent Document 1 discloses the purpose of separation of Fe and C in which Fe is used as a raw material for recycling and C is used as a raw material for activated carbon. There is no description about processing. Further, since the concentration of C contamination on the Fe recovery side is not shown, it is difficult to determine whether or not the technique is effective for the purpose of removing C which becomes an obstacle when using Fe.

特許文献2には、水などによる比重選鉱法が示されている。二次ダストに含まれているFe・Zn・Pbなどの金属および酸化金属分と、コークス粉など炭素分および脈石成分は比重が異なることから比重選鉱によって容易に分離することができるとし、その比重選鉱の方法として、比重により二次ダストを分離できるものであれば、とくに、制限なしで利用でき、乾式でも湿式でも適用できるとしている。また、選鉱率を高めるために遠心分離機を使用してもよいこと、とくに、湿式比重選鉱を採用する場合は、重力沈降法を用いるものでも流体サイクロンを用いるものでもよいが、好ましくは遠心分離機を使用することが記載されている。しかしながら、比重選鉱の方式として「重力沈降法」、「流体サイクロン」、「遠心分離機」を例示しているのみで、具体的な分離条件や分離結果の例示は皆無である。文献記載のように、「重力沈降法により容易に分離可能」であれば、高炉集塵の湿ダスト処理設備としてしばしば設置されるシックナーでも十分に分離ができるはずである。   Patent Document 2 discloses a specific gravity beneficiation method using water or the like. Since metal and metal oxides such as Fe, Zn, and Pb contained in secondary dust and carbon and gangue components such as coke powder have different specific gravity, they can be easily separated by specific gravity beneficiation. As a method of specific gravity beneficiation, any method that can separate secondary dust by specific gravity can be used without particular limitation, and can be applied both dry and wet. In addition, a centrifuge may be used to increase the beneficiation rate. In particular, when wet specific gravity beneficiation is adopted, a gravity sedimentation method or a fluid cyclone may be used, but preferably a centrifuge is used. The use of a machine is described. However, only “gravity sedimentation method”, “fluid cyclone”, and “centrifugal separator” are illustrated as specific gravity beneficiation methods, and there are no specific examples of separation conditions and separation results. As described in the literature, if it can be easily separated by gravity sedimentation, a thickener often installed as a wet dust treatment facility for blast furnace dust collection should be able to be sufficiently separated.

また、特許文献3や特許文献4には、必要に応じての湿式破砕処理および浮遊選鉱によるCの分離が開示されている。これも原理としては粒子を機械的に分離して微粒子に乖離した後にFe系物質とC系物質の密度差を利用するものである。何れにも、黒鉛を主成分とする浮遊物と酸化鉄ないしその他のものが沈下物に分離できることが開示されている。しかしながら、何れの文献に示されている浮遊選鉱は、Fe系物質とC系物質のそれぞれ粒子とが、充分に分離されていないと、密度差を利用した粒子の浮遊選鉱処理は不可能であるという問題がある。そして、何らかの粒子乖離処置がなければ有効にFe系物質とC系物質に分離できないという問題がある。さらには、大きなものの破砕、例えば数センチ以上の大きなものを数ミリなどに破砕することは比較的容易であるが、さらにミクロン単位へ微破砕することが難しいこと、負荷の掛かることは一般的に良く知られている。機械的な破砕法で、数ミクロン〜数十ミクロンの粒子からなる凝集固着物を、元の粒子に完全分離することはかなり難しい。適切な設備の選定が必要であり、また操業負荷も大きいという問題がある。   Patent Document 3 and Patent Document 4 disclose wet crushing treatment as necessary and separation of C by flotation. This also uses the difference in density between the Fe-based material and the C-based material after mechanically separating the particles and separating them into fine particles. In any case, it is disclosed that a suspended substance mainly composed of graphite and iron oxide or other substances can be separated into sediments. However, the flotation shown in any of the literature is not possible for the flotation treatment of particles using the density difference unless the particles of Fe-based material and C-based material are sufficiently separated. There is a problem. In addition, there is a problem that the Fe-based material and the C-based material cannot be effectively separated without any particle separation treatment. Furthermore, it is relatively easy to crush large objects, for example, crushing large objects of several centimeters or more into several millimeters, etc. Well known. It is quite difficult to completely separate agglomerated fixed matter composed of particles of several microns to several tens of microns into original particles by a mechanical crushing method. There is a problem that appropriate equipment needs to be selected and the operation load is large.

さらに、特許文献5には、有機溶媒による接触浮上分離の方法が示されている。ダスト中の炭素分はグラファイト質が多く活性炭のように有機物を選択的に吸着する性質をもっているので、炭素分を水より比重が軽くかつ水に対して溶解性が少なく水に分散して浮上効果のある有機物と接触吸着させて静置することにより浮上捕集することが開示されている。しかしながら、有機溶媒による接触浮上分離法は、有機溶媒を使用することに対する安全衛生上の対策や環境面の対策を必要とし、設備・操業の制約が多い。また、高炉ガス灰の中に、有機溶媒に易溶の成分、不純物が含まれていると有機溶媒へ抽出されて蓄積濃縮するので、有機溶媒の繰返し使用が困難となりコストが増加するという問題がある。   Further, Patent Document 5 discloses a method of contact levitation separation using an organic solvent. The carbon content in the dust is high in graphite and has the property of selectively adsorbing organic matter like activated carbon. Therefore, the carbon content is lighter than water and less soluble in water, so it is dispersed in water and has a floating effect. It has been disclosed that it floats and collects by contact adsorption with a certain organic substance and leaving it to stand. However, the contact flotation method using an organic solvent requires safety and hygiene measures and environmental measures for using an organic solvent, and has many restrictions on facilities and operations. In addition, if the blast furnace gas ash contains easily soluble components and impurities in the organic solvent, it is extracted and accumulated in the organic solvent, which makes it difficult to use the organic solvent repeatedly and increases the cost. is there.

またさらに、特許文献6には、FeとZnの分離を目的として、分散剤および超音波処理を施し静置による沈降・浮上分離をすることにより高炉ガス灰の元素分離を行うことが開示され、その実施例の結果を示す表にはCの挙動も記載されている。しかしながら、この文献における開示事項において、成分分離の促進のために、分散剤と超音波処理という前処理を併用していることが注目されるが、沈静・比重分離において、FeとZnとの分離は良好ではあるにしても、FeとCとの分離に関しての効果が窺えない。   Furthermore, Patent Document 6 discloses that for the purpose of separating Fe and Zn, elemental separation of the blast furnace gas ash is performed by performing a dispersing agent and ultrasonic treatment and performing sedimentation / floating separation by standing, The table showing the results of the example also describes the behavior of C. However, in the disclosure in this document, it is noted that a pretreatment such as a dispersing agent and ultrasonic treatment is used in combination to promote component separation, but in the calm / specific gravity separation, separation of Fe and Zn. Although it is good, there is no effect on the separation of Fe and C.

特開昭48−52694号公報JP-A-48-52694 特開2004−105801号公報JP 2004-105801 A 特開昭53−88601号公報JP-A-53-88601 特開昭55−14864号公報Japanese Patent Laid-Open No. 55-14864 特開昭53−23896号公報JP-A-53-23896 特開昭52−2807号公報Japanese Patent Laid-Open No. 52-2807

本発明の課題は、高炉排ガスの湿ダストに関して、鉄(Fe)を製鉄プロセスで再活用するために、炭素(C)と分離する簡易で、実用的かつ有効な方法を提供することにある。   An object of the present invention is to provide a simple, practical and effective method for separating iron (Fe) from carbon (C) in order to reuse iron (Fe) in a steelmaking process with respect to wet dust of blast furnace exhaust gas.

本発明の鉄を主とする物質と炭素分を主とする物質に分離する高炉発生物中の湿ダストの処理方法は、製鉄用の高炉から発生する排ガスを湿式集塵した際に捕集される湿ダストをスラリー状とし、そのスラリー状の湿ダストに超音波処理を施した後に、鉄を主とする粒子と炭素を主とする粒子の物性値の差を利用して湿式分離を行うことをその基本構成とする。   The method of treating wet dust in the blast furnace product that separates the iron-based material and the carbon-based material of the present invention is collected when the exhaust gas generated from the blast furnace for iron making is wet-collected. The wet dust is made into a slurry, and the wet wet dust is subjected to ultrasonic treatment, and then wet separation is performed using the difference in physical properties between the particles mainly composed of iron and the particles composed mainly of carbon. Is the basic configuration.

本発明によって、高炉湿ダストに大量に含有されるC分を、Feを主とする部分から分離する。その結果、Feを主とする部分を脱亜鉛のための還元炉に装入する際の総炭素量制約による高炉湿ダスト使用量制約を減少でき、高炉湿ダストの鉄源としての再利用可能量を増加できる。いいかえれば、利用できずに廃棄される高炉湿ダスト量を減少させる効果がある。 According to the present invention, the C content contained in a large amount in the blast furnace wet dust is separated from the portion mainly composed of Fe. As a result, it is possible to reduce the amount of blast furnace wet dust used due to the total carbon limit when charging the main part of Fe into the reduction furnace for dezincing, and the amount of blast furnace wet dust that can be reused as an iron source Can be increased. In other words, it has the effect of reducing the amount of blast furnace wet dust that cannot be used and is discarded.

本発明のプロセスを示すフロー図である。FIG. 3 is a flow diagram illustrating the process of the present invention. 従来法のプロセスの一例を示すフロー図である。It is a flowchart which shows an example of the process of a conventional method. 超音波処理有無および処理条件と磁着側スラリーのC含有量(%)/Fe含有量(%)の関係を示す。The relationship between the presence / absence of ultrasonic treatment and the treatment conditions and the C content (%) / Fe content (%) of the magnetized side slurry is shown. 超音波処理有無および処理条件と磁着側スラリーへのC分配比率(%)の関係を示す。The relationship between the presence / absence of ultrasonic treatment and the treatment conditions and the C distribution ratio (%) to the magnetized side slurry is shown.

図1を参照して、本発明の各プロセスにおける条件は以下のとおりである。   Referring to FIG. 1, the conditions in each process of the present invention are as follows.

スラリー化の条件
高炉において発生したダストは、湿式のベンチュリーで集塵され直後は希薄なスラリー状のものであるので、通常はハンドリングしやすいように、シックナーで沈降濃縮の後に脱水機で脱水する。
Slurry conditions Since the dust generated in the blast furnace is collected in a wet venturi and is in the form of a thin slurry immediately after being collected, it is usually dehydrated by a dehydrator after sedimentation and concentration with a thickener so that it can be easily handled.

本発明を適用するために湿ダストは、スラリー状態とする必要があるが、その方法としては、湿式ベンチュリーで集塵されたスラリーそのままでも良いし、またシックナーで沈降濃縮したスラリーで良い。またこれらのスラリーを元に何らかの方法で濃縮ないし希釈したスラリーでも良い。   In order to apply the present invention, the wet dust needs to be in a slurry state, and as a method therefor, the slurry collected by a wet venturi may be used as it is, or a slurry that is precipitated and concentrated by a thickener may be used. A slurry concentrated or diluted by any method based on these slurries may be used.

さらには輸送や保管の便宜上から脱水機で脱水を行いスラッジ状となった高炉湿ダストへ、再度水分を加えてスラリー化したものでも良い。   Furthermore, for convenience of transportation and storage, water may be added to the blast furnace wet dust that has been dewatered by a dehydrator and turned into sludge to form a slurry.

また、本発明においては、必須ではないが、スラリーのpHを8.5〜10程度に保持することが、より好適である。その理由は他pH値に比し、このpH範囲ではFe、Znなど金属元素の液中への溶出が少なく、最終的な固液分離後の排液処理が容易なためである。   In the present invention, although not essential, it is more preferable to maintain the pH of the slurry at about 8.5 to 10. This is because, compared with other pH values, in this pH range, there is less elution of metal elements such as Fe and Zn into the liquid, and the drainage treatment after the final solid-liquid separation is easy.

超音波処理の条件
それらのスラリーに対して超音波を照射して処理を行なう。超音波照射の目的・機能は、物理的に相互に付着しているFe主体やC主体など、様々な種類の粒子を、ミクロ的に分離することである。ここでいうミクロとは、スラリーに懸濁する粒子相互の分離との意味である。すなわち、Fe分の多いスラリーないしスラッジとC分の多いスラリーないしスラッジに分けるための何らかのマクロな湿式分離を次工程で行う前に、個別の粒子を極力分離するものである。
Conditions for ultrasonic treatment The slurry is treated by irradiating ultrasonic waves. The purpose and function of the ultrasonic irradiation is to microscopically separate various types of particles such as Fe-based bodies and C-based bodies that are physically attached to each other. Here, micro means the separation of particles suspended in a slurry. That is, the individual particles are separated as much as possible before carrying out any macro wet separation for separating the slurry or sludge containing a large amount of Fe into the slurry or sludge containing a large amount of C in the next step.

超音波処理は、実質的にスラリーに超音波が照射できれば良い。例えば、スラリー1m当たりの1kWの超音波強度で2〜3分の超音波照射にて、超音波照射なしの場合に比してFeとCの分離が良好となる。 The ultrasonic treatment is sufficient if the slurry can be substantially irradiated with ultrasonic waves. For example, the ultrasonic intensity of 1kW per slurry 1 m 3 at 2-3 minutes of ultrasonic irradiation, the separation of Fe and C becomes good as compared with the case without ultrasonic irradiation.

照射する超音波の周波数は特に限定されないが、100kHz程度以下の比較的低い周波数の方がより好適である。   The frequency of the ultrasonic wave to be irradiated is not particularly limited, but a relatively low frequency of about 100 kHz or less is more preferable.

超音波照射を、バッチ式容器で行っても連続的な流路で行っても、何れでも構わない。
バッチ式処理、連続処理何れの場合にも、何らかの方法によって、十分なスラリー撹拌が必要である。超音波の加振力のみではスラリーの均一化、ひいては均一な超音波照射ができないためである。
The ultrasonic irradiation may be performed in either a batch type container or a continuous flow path.
In both batch processing and continuous processing, sufficient slurry agitation is required by some method. This is because it is impossible to make the slurry uniform and, consequently, uniform ultrasonic irradiation only by the ultrasonic excitation force.

超音波照射を行う際のスラリー濃度、すなわち、固体物質量/全質量の比もとくには限定されない。低濃度ほど処理効率が低下し同一湿ダスト処理量に対する設備規模が大きくなり、経済的に不利である。また高濃度になれば、処理効率は向上するが撹拌や移送など処理が難しくなる。何れのスラリー濃度でも効果は得られるが、これらの観点から実質的には3〜25質量%程度が好適な範囲といえる。   The slurry concentration at the time of ultrasonic irradiation, that is, the ratio of solid substance amount / total mass is not particularly limited. The lower the concentration, the lower the treatment efficiency and the larger the equipment scale for the same wet dust treatment amount, which is economically disadvantageous. Moreover, if it becomes high concentration, processing efficiency will improve, but processing, such as stirring and transfer, will become difficult. Although the effect can be obtained at any slurry concentration, it can be said that the range of about 3 to 25% by mass is a preferable range from these viewpoints.

とくに、超音波処理条件は、スラリー1m当たりのkWで表示した超音波強度と、分で表示した超音波照射時間の積で表される超音波処理パラメーターが、20kW・min/m未満では、この超音波処理パラメーターの値が増加するにつれて、Fe回収側のC/Fe比率が大きく低下しているが、20〜30kW・min/m以上となると、C/Fe比率の低下の程度は減少する。 In particular, ultrasonic treatment conditions, the ultrasonic intensity displayed in kW per slurry 1 m 3, sonication parameter represented by the product of the ultrasonic irradiation time is displayed in minutes is less than 20kW · min / m 3 As the value of this ultrasonic treatment parameter increases, the C / Fe ratio on the Fe recovery side is greatly reduced. However, when the value is 20-30 kW · min / m 3 or more, the degree of decrease in the C / Fe ratio is Decrease.

これは超音波処理パラメーターの値が20kW・min/m未満である領域では、超音波処理によるFe主体の粒子とC主体の粒子のミクロな分離がまだ不足であり、超音波処理の増加とともに分離が急速に進んでいることを示している。一方20〜30kW・min/m以上となると超音波処理の増加とともに分離は進むが、その程度は僅かとなる。 This is because, in the region where the value of the sonication parameter is less than 20 kW · min / m 3 , micro separation of Fe-based particles and C-based particles by sonication is still insufficient, and as sonication increases. It shows that the separation is progressing rapidly. On the other hand, when it is 20 to 30 kW · min / m 3 or more, the separation proceeds with an increase in the ultrasonic treatment, but the degree thereof is small.

このため、設備費と効果の効率バランスを考慮すると、工業的には超音波処理パラメーターの値が20kW・min/m以上との条件を満たすことが、とくに、好適な条件と言える。 For this reason, considering the efficiency balance between the equipment cost and the effect, it can be said that it is particularly preferable to satisfy the condition that the value of the ultrasonic treatment parameter is 20 kW · min / m 3 or more industrially.

また、超音波強度と照射時間の組合せは特に限定されない。実施例に示すように、20kW・min/m以上との条件を満たす限り、4kW/mのような低強度で長時間の照射を行う場合と、35kW/mのような高強度で長時間の照射を行う場合とで明瞭な差はなく、任意の組合せが選べる。 Moreover, the combination of ultrasonic intensity and irradiation time is not particularly limited. As shown in the Examples, as long as satisfying the 20kW · min / m 3 or more, the case of performing long-time irradiation of low intensity, such as 4 kW / m 3, a high strength, such as 35 kW / m 3 There is no clear difference between long-time irradiation and any combination can be selected.

湿式分離の条件
図1に示す超音波処理後の湿式分離の方法もとくに、限定されない。湿式磁選法・浮遊選鉱法・遠心分離法・化学的な抽出処理など、実質的にFe分の多いスラリーないしスラッジとC分の多いスラリーないしスラッジにマクロ的に分離できる方法であれば、どんな方法でも適用できる。また工業的に分離できる限りは如何なる条件でも良い。
Wet separation conditions The method of wet separation after ultrasonic treatment shown in FIG. 1 is not particularly limited. Any method that can be macroscopically separated into slurry or sludge with a high Fe content and slurry or sludge with a high C content, such as wet magnetic separation, flotation, centrifugation, chemical extraction, etc. But it can be applied. Any conditions may be used as long as they can be separated industrially.

湿式分離の方法の中でも、湿式磁選法が特に好適である。その理由は、デカンターなど遠心分離法に比し、使用する設備の構造が簡易であり、設置費用および整備・維持費用が安価である。また、浮遊選鉱法や化学的な抽出処理では処理施設の設置に加えて、操業の際に然るべき薬剤の使用が必要であり、コスト負荷および環境管理負荷が生じるが、湿式磁選法は一切の薬剤の使用はない。したがって、湿式分離方法の中でも、とくに、湿式磁選法がとくに優れていると言える。   Among the wet separation methods, the wet magnetic separation method is particularly suitable. The reason for this is that the structure of the equipment used is simpler and the installation costs and maintenance / maintenance costs are lower than those of a centrifugal method such as a decanter. In addition to the establishment of treatment facilities, the flotation method and chemical extraction process require the use of appropriate chemicals during operation, resulting in cost and environmental management burdens. There is no use. Therefore, it can be said that the wet magnetic separation method is particularly excellent among the wet separation methods.

また、湿式磁選法の中でも、ドラム式湿式磁選・フィルター式湿式磁選などが適用でき、湿式磁選の具体的な方法や磁束密度などの条件は特定されない。   Also, among the wet magnetic separation methods, drum-type wet magnetic separation, filter-type wet magnetic separation, and the like can be applied, and specific methods of wet magnetic separation and conditions such as magnetic flux density are not specified.

分離物の再活用
以上の超音波照射および湿式分離法により、分離されたFe分の多いスラリーないしスラッジは、処理前の高炉湿ダストに比してFe分が濃縮されているので製鉄プロセスでのFe源として利用できる。焼結工程・高炉工程・製鋼工程など具体的な利用先は必ずしも限定されない。
Reuse of the separated material Ultrasonic irradiation and wet separation methods more than the separation of the slurry or sludge rich in Fe is more concentrated in Fe compared to blast furnace wet dust before treatment. It can be used as an Fe source. Specific usage destinations such as a sintering process, a blast furnace process, and a steel making process are not necessarily limited.

しかしながら、スラリーないしスラッジにはまだZnがかなり含まれるので、スラリーないしスラッジを大量に使用するためには、還元炉による脱Zn処理を行なった後とすることが、とくに好ましい。 However, since the slurry or sludge still contains a large amount of Zn, in order to use a large amount of the slurry or sludge, it is particularly preferable to perform after the removal of Zn in the reduction furnace.

また、高炉湿ダストを還元炉にて脱Zn処理を行なった後に製鉄プロセスでのFe源として利用する際には、必ずしもダスト全量を本発明法による超音波照射および湿式分離法を適用する必要はなく、還元炉のカーボンの装入総量との見合いでダストの一部を処理すれば良い。   Moreover, when the blast furnace wet dust is used as the Fe source in the iron making process after the Zn removal treatment in the reduction furnace, it is not always necessary to apply the ultrasonic irradiation and wet separation method according to the present invention to the total amount of dust. Instead, a part of the dust may be treated in accordance with the total amount of carbon charged in the reduction furnace.

すなわち、回収したままの湿ダストのC/Fe比は0.7〜0.8程度であるが、本発明法を適用して分離されたFe分の多いスラリーないしスラッジのC/Fe比は0.15〜0.2程度であり、処理前の1/4〜1/5程度のC含有比率となる。   In other words, the C / Fe ratio of wet dust as recovered is about 0.7 to 0.8, but the C / Fe ratio of slurry or sludge containing a large amount of Fe separated by applying the method of the present invention is 0. .15 to 0.2, and the C content ratio is about 1/4 to 1/5 before the treatment.

すなわち、ダストからの装入C量を半分にしたい場合は、ダスト全体量の6割程度を処理すれば良いこととなる。 これに対して全量に本発明の処理法を適用してC/Fe比が0.3〜0.4の操業を行うこともできるが、装入量の一部のみ本発明を適用してC/Fe比0.15〜0.2程度とする処理法の方が、設備の原価償却費、処理費などのコストが安価となるため好適である。   That is, when it is desired to halve the amount of charged C from dust, it is sufficient to process about 60% of the total amount of dust. On the other hand, the treatment method of the present invention can be applied to the entire amount to perform an operation with a C / Fe ratio of 0.3 to 0.4. However, the present invention is applied to only a part of the charged amount. The treatment method with a / Fe ratio of about 0.15 to 0.2 is preferable because the cost of depreciation of the equipment, the cost of processing, etc. becomes low.

実施例1
図1に示す過程によって、表2に示す組成の高炉湿ダストを超音波処理および湿式磁選を行なった。
Example 1
The blast furnace wet dust having the composition shown in Table 2 was subjected to ultrasonic treatment and wet magnetic separation by the process shown in FIG.

Figure 2011230074
Figure 2011230074

表2に示す組成の高炉湿ダストを含むスラリーは、シックナーから引抜いた濃縮スラリーであり、その質量濃度は12%であった。pHは9.5程度に調整した。   The slurry containing blast furnace wet dust having the composition shown in Table 2 was a concentrated slurry extracted from the thickener, and its mass concentration was 12%. The pH was adjusted to about 9.5.

これを表3に示す超音波強度と照射時間の水準下で処理をした。比較として、超音波処理を行なわずに湿式磁選のみを行った水準も設けた。   This was processed under the level of ultrasonic intensity and irradiation time shown in Table 3. As a comparison, a level in which only wet magnetic separation was performed without performing ultrasonic treatment was also provided.

超音波処理は、貯槽にスラリーをため、インペラー撹拌をしながら所定時間・所定強度の超音波照射を行った。湿式磁選は、表面磁束密度0.24テスラのドラム式磁選機で行った。磁着側スラリー、非磁着側スラリーはそれぞれ磁選機出側でサンプリングをして、分析を行なった。   In the ultrasonic treatment, slurry was stored in a storage tank, and ultrasonic irradiation was performed for a predetermined time and with a predetermined intensity while impeller stirring. Wet magnetic separation was performed with a drum type magnetic separator having a surface magnetic flux density of 0.24 Tesla. The magnetized-side slurry and the non-magnetized-side slurry were each sampled and analyzed on the magnetic separator output side.

Figure 2011230074
Figure 2011230074

表3には磁着側スラリーのFe分析値およびC分析値、インプットC総量に対する磁着側スラリーへのC分配の比率も示す。それらを図示したものが図3および図4である。   Table 3 also shows the Fe analysis value and C analysis value of the magnetized side slurry, and the ratio of C distribution to the magnetized side slurry with respect to the total amount of input C. These are shown in FIG. 3 and FIG.

これらの図から、以下のことが言え、本発明法の効果が明瞭に理解できる。   From these figures, the following can be said and the effect of the method of the present invention can be clearly understood.

イ、比較法である超音波処理無し(表3のNo.1)に比し、超音波処理後に湿式磁選を行なうことによって、FeとCの分離が改善されている。
ロ、超音波処理条件が20kW・min/m以上となると、改善効果の向上代は少なくなる。したがって、それ未満の条件に比し、20kW・min/m以上の条件範囲が特に好適な範囲である。
B) Separation of Fe and C is improved by performing wet magnetic separation after ultrasonic treatment as compared with the comparative method without ultrasonic treatment (No. 1 in Table 3).
(B) When the ultrasonic treatment condition is 20 kW · min / m 3 or more, the cost for improving the effect is reduced. Therefore, a condition range of 20 kW · min / m 3 or more is a particularly preferable range as compared with conditions less than that.

実施例2
還元炉の装入総C量の制約によって、高炉湿ダスト発生量24トンの半分12トン程度しか処理できていないので、全量処理を目標として本発明法の適用を行なった。発生量の6割を本発明法で処理し、残り4割をそのままで、還元炉へ装入した。
Example 2
Due to the restriction of the total amount of C charged in the reduction furnace, only about 12 tons, which is half of the blast furnace wet dust generation amount of 24 tons, can be processed. 60% of the generated amount was treated by the method of the present invention, and the remaining 40% was charged as it was into the reduction furnace.

表4にそのマスバランス測定結果を示す。ほぼ比較法(無処理で発生量の半分を使用)と同様の還元炉装入カーボンにて湿ダストの全量が使用でき、その結果Feリサイクル量が増加できる効果が得られた。   Table 4 shows the mass balance measurement results. Almost all of the wet dust can be used with the carbon charged in the reduction furnace in the same manner as in the comparative method (uses half of the generated amount without treatment), and as a result, the effect of increasing the amount of recycled Fe was obtained.

Figure 2011230074
Figure 2011230074

Claims (5)

製鉄用の高炉から発生する排ガスを湿式集塵した際に捕集される湿ダストをスラリー状とし、
そのスラリー状の湿ダストに超音波処理を施した後に、鉄を主とする粒子と炭素を主とする粒子の物性値の差を利用して湿式分離を行うことによって、
鉄を主とする物質と炭素分を主とする物質に分離する高炉発生物中の湿ダストの処理方法。
The wet dust collected when the exhaust gas generated from the blast furnace for steelmaking is wet collected is made into a slurry,
After performing ultrasonic treatment on the slurry-like wet dust, by performing wet separation using the difference in physical properties of particles mainly composed of iron and particles mainly composed of carbon,
A method for treating wet dust in blast furnace products that separates into iron-based materials and carbon-based materials.
前記超音波処理が、
スラリー1m当たりのkWで表示した超音波強度と分で表示した超音波照射時間の積で表される超音波処理パラメーターが、20kW・min/m以上である請求項1に記載の高炉発生物中の湿ダストの処理方法。
The sonication is
2. The blast furnace generation according to claim 1, wherein an ultrasonic treatment parameter represented by a product of ultrasonic intensity expressed in kW per 1 m 3 of slurry and ultrasonic irradiation time expressed in minutes is 20 kW · min / m 3 or more. A method for treating wet dust in objects.
前記鉄を主とする粒子と炭素を主とする粒子の物性値の差を利用した湿式分離が、湿式磁選法である請求項1に記載の高炉発生物中の湿ダストの処理方法。   The method for treating wet dust in a blast furnace product according to claim 1, wherein the wet separation utilizing a difference in physical properties between the iron-based particles and the carbon-based particles is a wet magnetic separation method. 前記の鉄を主とする粒子と炭素を主とする粒子の物性値の差を利用した湿式分離による分離後の鉄を主とする物質を脱亜鉛のための還元炉の原料として使用する請求項1から3の何れかに記載の高炉発生物中の湿ダストの処理方法。   A material mainly comprising iron after separation by wet separation utilizing a difference in physical properties between the particles mainly composed of iron and the particles mainly composed of carbon is used as a raw material of a reduction furnace for dezincing. The processing method of the wet dust in the blast furnace product in any one of 1-3. 製鉄用の高炉から発生する排ガスを湿式集塵した際に捕集される湿ダストを還元炉の原料として使用するに際して、
前記湿ダストの一部を請求項1から3の何れかに記載の処理を行ってから使用し、前記湿ダストの残りは処理を行なわないまま使用する高炉発生物中の湿ダストの処理方法。
When using wet dust collected when the exhaust gas generated from the blast furnace for iron making is collected as a raw material for the reduction furnace,
A method for treating wet dust in a blast furnace product, wherein a part of the wet dust is used after the treatment according to any one of claims 1 to 3 is used, and the remainder of the wet dust is used without being treated.
JP2010103813A 2010-04-28 2010-04-28 Method of treating wet dust generated in blast furnace Pending JP2011230074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103813A JP2011230074A (en) 2010-04-28 2010-04-28 Method of treating wet dust generated in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103813A JP2011230074A (en) 2010-04-28 2010-04-28 Method of treating wet dust generated in blast furnace

Publications (1)

Publication Number Publication Date
JP2011230074A true JP2011230074A (en) 2011-11-17

Family

ID=45319974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103813A Pending JP2011230074A (en) 2010-04-28 2010-04-28 Method of treating wet dust generated in blast furnace

Country Status (1)

Country Link
JP (1) JP2011230074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779771A (en) * 2016-03-24 2016-07-20 云南博曦环保设备有限公司 Method for recycling valuable metal in zinc smelting sludge
CN108704762A (en) * 2018-05-07 2018-10-26 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of blast furnace dust magnetic kind magnetization dry separation iron-extracting process
CN108816501A (en) * 2018-05-07 2018-11-16 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of sintering dust separation ash magnetic kind magnetization dry separation iron-extracting process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852694A (en) * 1971-11-05 1973-07-24
JPS522807A (en) * 1975-06-25 1977-01-10 Nippon Steel Corp Process for treatment of blast furnace gas ashes
JPS53133502A (en) * 1977-04-27 1978-11-21 Nikko Eng Method of treating dust containing powder containing metal and coke powder
JPS5735950A (en) * 1980-08-12 1982-02-26 Mitsui Eng & Shipbuild Co Ltd Continuous cleaning of pulverized coal
JPH05258994A (en) * 1992-03-12 1993-10-08 Murata Mfg Co Ltd Electric double-layer capacitor
JP2004105801A (en) * 2002-09-13 2004-04-08 Kobe Steel Ltd Method for treating metal-containing dust generated from blast furnace
WO2006129262A1 (en) * 2005-05-30 2006-12-07 Sishen Iron Ore Company (Proprietary) Limited Recovery of particulate material from slurries
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles
JP2009189964A (en) * 2008-02-15 2009-08-27 Jfe Steel Corp Wet type magnetic separation method of fine particle mixture

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852694A (en) * 1971-11-05 1973-07-24
JPS522807A (en) * 1975-06-25 1977-01-10 Nippon Steel Corp Process for treatment of blast furnace gas ashes
JPS53133502A (en) * 1977-04-27 1978-11-21 Nikko Eng Method of treating dust containing powder containing metal and coke powder
JPS5735950A (en) * 1980-08-12 1982-02-26 Mitsui Eng & Shipbuild Co Ltd Continuous cleaning of pulverized coal
JPH05258994A (en) * 1992-03-12 1993-10-08 Murata Mfg Co Ltd Electric double-layer capacitor
JP2004105801A (en) * 2002-09-13 2004-04-08 Kobe Steel Ltd Method for treating metal-containing dust generated from blast furnace
WO2006129262A1 (en) * 2005-05-30 2006-12-07 Sishen Iron Ore Company (Proprietary) Limited Recovery of particulate material from slurries
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles
JP2009189964A (en) * 2008-02-15 2009-08-27 Jfe Steel Corp Wet type magnetic separation method of fine particle mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779771A (en) * 2016-03-24 2016-07-20 云南博曦环保设备有限公司 Method for recycling valuable metal in zinc smelting sludge
CN108704762A (en) * 2018-05-07 2018-10-26 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of blast furnace dust magnetic kind magnetization dry separation iron-extracting process
CN108816501A (en) * 2018-05-07 2018-11-16 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of sintering dust separation ash magnetic kind magnetization dry separation iron-extracting process

Similar Documents

Publication Publication Date Title
AU2013234818B2 (en) A process and system for dry recovery of iron-ore fines and superfines and a magnetic separation unit
EP2839045B1 (en) Method for processing slags of non-ferrous metallurgy
Widijatmoko et al. Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing
JPWO2012008032A1 (en) Soil purification method
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
Das et al. Effective utilization of blast furnace flue dust of integrated steel plants
He et al. Study on the pre-treatment of oxidized zinc ore prior to flotation
JP2011230074A (en) Method of treating wet dust generated in blast furnace
JP2009189964A (en) Wet type magnetic separation method of fine particle mixture
JP5832184B2 (en) Reusing wet dust in blast furnace products
JP5832183B2 (en) Reusing wet dust in blast furnace products
CN110586318B (en) Method for comprehensive utilization of blast furnace ash
CN110947514B (en) Iron removing method for non-metallic ore system
WO2015105472A1 (en) Method for comprehensive treatment of slurries from metallurgical and mining-enrichment enterprises
JP4681623B2 (en) Effective utilization of iron and zinc in secondary dust generated from a reduction furnace
Zhao et al. A novel self-magnetizing roasting process for recovering fe from low-grade pyrite cinder and blast furnace sludge
JP2016159210A (en) Treatment method and treatment device of incineration ash
JP3178252B2 (en) Metal recovery from fly ash
RU2393923C1 (en) Method of processing greased roll scale and greased metallurgical slurry
WO2005017216A2 (en) Recycling process for sludges and dusts from blast furnace and steel works
JP5303786B2 (en) Reuse of generated materials in steelmaking process
RU2566706C2 (en) Complex processing of metallurgical and mining slimes
Gajda et al. Substitution of magnetite in dense medium separation by Zinc-Lead waste
CN114918038B (en) Waste-free treatment method for blast furnace cloth bag dedusting ash
JP7264130B2 (en) Method for collecting chromium-containing dust, method for producing raw materials for ironmaking, and equipment for collecting chromium-containing dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324