JP6015335B2 - Magnetic sorting method and magnetic sorting equipment - Google Patents

Magnetic sorting method and magnetic sorting equipment Download PDF

Info

Publication number
JP6015335B2
JP6015335B2 JP2012229208A JP2012229208A JP6015335B2 JP 6015335 B2 JP6015335 B2 JP 6015335B2 JP 2012229208 A JP2012229208 A JP 2012229208A JP 2012229208 A JP2012229208 A JP 2012229208A JP 6015335 B2 JP6015335 B2 JP 6015335B2
Authority
JP
Japan
Prior art keywords
magnetic separator
magnetic
particle size
sieve
maximum particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012229208A
Other languages
Japanese (ja)
Other versions
JP2014079698A (en
Inventor
石田 匡平
匡平 石田
西名 慶晃
慶晃 西名
榎枝 成治
成治 榎枝
大輔 今西
大輔 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012229208A priority Critical patent/JP6015335B2/en
Publication of JP2014079698A publication Critical patent/JP2014079698A/en
Application granted granted Critical
Publication of JP6015335B2 publication Critical patent/JP6015335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Description

本発明は、強磁性体粒子を含む粉粒体から強磁性体粒子を磁力選別(分離)するための技術に関し、例えば、製鉄プロセスの副生成物であるスラグから鉄分を分離するのに好適な磁力選別方法及び磁力選別設備に関する。   The present invention relates to a technique for magnetically separating (separating) ferromagnetic particles from a granular material containing ferromagnetic particles, and is suitable, for example, for separating iron from slag, which is a byproduct of an iron making process. The present invention relates to a magnetic sorting method and magnetic sorting equipment.

溶銑予備処理や転炉脱炭工程では、処理による副生成物としてスラグ(製鋼スラグ)が発生する。このスラグは、溶銑や溶鋼中の不純物や不要元素を除去するために加えられるカルシウム系添加剤が反応・生成したものであるが、スラグ中には除去された元素化合物以外に、鉄分も多く含まれる。スラグの形態の多くは塊状であるが、その大きさ(凝集する前の大きさ)は大きいものでも数百μm程度である。   In the hot metal preliminary treatment and converter decarburization process, slag (steel slag) is generated as a by-product of the treatment. This slag is a reaction and product of calcium additives added to remove impurities and unnecessary elements in hot metal and molten steel. In addition to the removed elemental compounds, slag contains a lot of iron. It is. Most of the forms of slag are massive, but the size (size before aggregation) is about several hundred μm even if it is large.

スラグには鉄分が多く含まれているため、再資源化のために鉄分を分離・回収することが行われている。通常、スラグから回収される鉄分を転炉工程でスクラップと混ぜて冷鉄源化するため、次のような工程で鉄分の分離・回収が行われる。まず、スラグをグリスリと呼ばれる篩いにかけ、スラグに含まれる大型(数百mm)の鉄塊を取り除く(形状選別)。グリスリ型篩いを通過した小型の塊は鉄分とスラグ分が固着しているため、ハンマークラッシャやロッドミルで粗破砕を行って数百μm〜数10mmの大きさとし、単体分離(スラグ分と鉄分の分離)を促進させる。その後、磁力選別によって鉄分を分離する。この磁力選別装置としては、一般に、吊下げ型、ドラム型、プーリ型などの装置が用いられる。   Since slag contains a lot of iron, it is separated and recovered for recycling. Usually, iron recovered from slag is mixed with scrap in a converter process to produce a cold iron source, and thus iron is separated and recovered in the following steps. First, the slag is passed through a sieve called grits, and a large (several hundred mm) iron block contained in the slag is removed (shape selection). The small lump that has passed through the grease-type sieve has the iron and slag components fixed, so it is roughly crushed with a Hanmark lasher or rod mill to a size of several hundreds of μm to several tens of mm and separated into single pieces (separation of slag and iron) ). Thereafter, iron is separated by magnetic separation. As the magnetic force sorting device, devices such as a hanging type, a drum type, and a pulley type are generally used.

また、鉄分を単体分離させるために加熱し、その後の冷却時間をコントロールした後、破砕する場合もある。冷却時間によっては、鉄塊は破砕せずに固着したスラグ分のみを破砕分離させることができたり、数10μm程度に微粉化させることが可能である。
いずれの方法でも微粉化が進めば、単体分離化が進むことは言うまでもない。
一般に、鉄分の分離濃度を向上させるには単体分離化を進める必要があるので、機械的破砕を繰り返して粒径を小さくすることになる。或いは、熱処理によって小径化させる場合もある。
Moreover, it heats in order to isolate | separate iron, and after crushing after controlling the cooling time, it may crush. Depending on the cooling time, the iron ingot can be crushed and separated without being crushed, or can be pulverized to about several tens of μm.
Needless to say, if the pulverization progresses by any of the methods, the separation of the simple substance progresses.
Generally, in order to improve the separation concentration of iron, it is necessary to proceed to the single body separation, so that the particle size is reduced by repeating mechanical crushing. Alternatively, the diameter may be reduced by heat treatment.

一方、粉体の粒径が小さくなると、静電力や分子間力の影響により、粒子どうしの凝集現象が発生する。一般には乾式条件で30〜50μm以下の粒子ではこの凝集現象がみられ、粒子は単体分離していても見かけ上大きな塊として振る舞う。
粉体から強磁性体を分離するために、通常はドラム式磁力選別機やプーリー式磁力選別機などが用いられるが、強磁性体を高濃度に分離するために装置への粉体供給量を調整し、供給層厚としては層厚方向に粒子が1つ若しくはせいぜい2つ程度が重なるだけの単層供給とすることが望ましい。しかしながら、凝集現象が起きると非磁性体粒子が強磁性体粒子に吸着してしまい、磁着回収物側に非磁性体粒子が大量に混入してしまう。
凝集を避けるため、特許文献1に示されるような湿式プロセスも一般に適用されるが、廃液処理費用が莫大となる問題がある。
On the other hand, when the particle size of the powder is reduced, an aggregation phenomenon of particles occurs due to the influence of electrostatic force and intermolecular force. In general, this agglomeration phenomenon is observed in particles having a size of 30 to 50 μm or less under dry conditions, and the particles behave as a large lump even if they are separated.
Usually, a drum type magnetic separator or a pulley type magnetic separator is used to separate the ferromagnetic material from the powder. However, in order to separate the ferromagnetic material at a high concentration, the amount of powder supplied to the device is reduced. It is desirable to adjust the supply layer thickness to a single layer supply in which only one particle or at most about two particles overlap in the layer thickness direction. However, when the agglomeration phenomenon occurs, the non-magnetic particles are adsorbed on the ferromagnetic particles, and a large amount of non-magnetic particles are mixed on the magnetized recovered material side.
In order to avoid agglomeration, a wet process as shown in Patent Document 1 is generally applied, but there is a problem that the waste liquid treatment cost becomes enormous.

特開平10−130041号公報Japanese Patent Laid-Open No. 10-130041

したがって本発明の目的は、上記のような従来技術の課題を解決し、強磁性体粒子を含む粉粒体から強磁性体粒子を磁力選別する際に、乾式の磁力選別機を用いる場合であっても強磁性体粒子を高濃度に分離することができる磁力選別方法及び磁力選別設備を提供することにある。   Therefore, an object of the present invention is to solve the above-described problems of the prior art, and to use a dry magnetic separator when magnetically selecting ferromagnetic particles from a granular material containing ferromagnetic particles. It is an object of the present invention to provide a magnetic force sorting method and a magnetic force sorting facility that can separate ferromagnetic particles at a high concentration.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]強磁性体粒子を含む粉粒体(a)を磁力選別機(2)に供給し、該磁力選別機(2)において粉粒体(a)から強磁性体粒子を磁力選別する方法であって、
粉粒体(a)を、目開き寸法が粉粒体(a)の目標最大粒径以上、目標最大粒径の2倍未満の篩(3)にかけて、その篩下の粉粒体(a)を供給装置(1)の搬送面で直に受け、これを搬送して磁力選別機(2)に供給することを特徴とする磁力選別方法。
[2]上記[1]の磁力選別方法において、供給装置(1)が振動フィーダー、ベルトコンベア、傾斜シュートのうちのいずれかであることを特徴とする磁力選別方法。
[3]上記[1]又は[2]の磁力選別方法において、磁力選別機(2)がドラム式磁力選別機又はプーリー式磁力選別機であることを特徴とする磁力選別方法。
[4]上記[1]〜[3]のいずれかの磁力選別方法において、篩(3)の目開き寸法が50μm以下であることを特徴とする磁力選別方法。
The gist of the present invention for solving the above problems is as follows.
[1] A method of supplying a magnetic particle (a) containing ferromagnetic particles to a magnetic separator (2) and magnetically selecting ferromagnetic particles from the granular material (a) in the magnetic separator (2) Because
The granular material (a) is passed through a sieve (3) having an opening size equal to or larger than the target maximum particle size of the granular material (a) and less than twice the target maximum particle size. Is directly received by the conveying surface of the supply device (1), conveyed and supplied to the magnetic separator (2).
[2] The magnetic force selection method according to [1], wherein the supply device (1) is one of a vibration feeder, a belt conveyor, and an inclined chute.
[3] The magnetic force selection method according to [1] or [2], wherein the magnetic force separator (2) is a drum magnetic separator or a pulley magnetic separator.
[4] The magnetic force selection method according to any one of [1] to [3], wherein the sieve (3) has an opening size of 50 μm or less.

[5]強磁性体粒子を含む粉粒体(a)を磁力選別機(2)に供給し、該磁力選別機(2)において粉粒体(a)から強磁性体粒子を磁力選別する設備であって、
目開き寸法が粉粒体(a)の目標最大粒径以上、目標最大粒径の2倍未満の篩(3)と、該篩(3)の篩下の粉粒体(a)を搬送面で直に受け、これを搬送して磁力選別機(2)に供給する供給装置(1)を有することを特徴とする磁力選別設備。
[6]上記[5]の磁力選別設備において、供給装置(1)が振動フィーダー、ベルトコンベア、傾斜シュートのうちのいずれかであることを特徴とする磁力選別設備。
[7]上記[5]又は[6]の磁力選別設備において、磁力選別機(2)がドラム式磁力選別機又はプーリー式磁力選別機であることを特徴とする磁力選別設備。
[8]上記[5]〜[7]のいずれかの磁力選別設備において、篩(3)の目開き寸法が50μm以下であることを特徴とする磁力選別設備。
[5] Equipment for supplying powder particles (a) containing ferromagnetic particles to the magnetic separator (2) and magnetically selecting ferromagnetic particles from the powder (a) in the magnetic separator (2) Because
A sieve (3) having a mesh size of not less than the target maximum particle size of the granular material (a) and less than twice the target maximum particle size, and the granular material (a) under the sieve (3) are transported. A magnetic separator having a supply device (1) that directly receives and conveys it to the magnetic separator (2).
[6] The magnetic field separation facility according to [5], wherein the supply device (1) is any one of a vibration feeder, a belt conveyor, and an inclined chute.
[7] The magnetic field separation facility according to [5] or [6], wherein the magnetic field separator (2) is a drum magnetic field separator or a pulley magnetic field separator.
[8] The magnetic force sorting facility according to any one of [5] to [7], wherein the sieve (3) has an opening size of 50 μm or less.

本発明によれば、粉粒体を篩にかけることで凝集を物理的に解除し、その篩下の粉粒体を直に供給装置で受けてそのまま磁力選別機に供給するようにしたので、粒径が小さい(例えば50μm以下)粉粒体であっても、乾式の磁力選別機を用いて強磁性体粒子を高濃度に分離することができる。   According to the present invention, the agglomeration is physically released by sieving the granular material, and the granular material under the sieving is directly received by the supply device and directly supplied to the magnetic separator. Even if the particle size is small (for example, 50 μm or less), the ferromagnetic particles can be separated at a high concentration using a dry magnetic separator.

本発明の磁力選別方法のフローを示す図面Drawing which shows the flow of the magnetic sorting method of the present invention 本発明の一実施形態を示すもので、製鋼スラグから鉄を分離する場合のフローを前処理の段階から示す図面Drawing which shows one embodiment of the present invention, and shows the flow in the case of separating iron from steelmaking slag from the stage of pretreatment 図2において、鎖線で囲んだ部分の設備構成と磁力選別の実施状況を示す説明図In FIG. 2, the explanatory diagram showing the equipment configuration of the part surrounded by the chain line and the implementation status of magnetic separation 本発明の他の実施形態を示すもので、製鋼スラグから鉄を分離する場合のフローを前処理の段階から示す図面Drawing which shows other embodiments of the present invention, and shows the flow in the case of separating iron from steelmaking slag from the stage of pretreatment. 図4において、鎖線で囲んだ部分の設備構成と磁力選別の実施状況を示す説明図In FIG. 4, the explanatory diagram showing the equipment configuration of the part surrounded by the chain line and the implementation status of magnetic separation 本発明の他の実施形態における設備構成と磁力選別の実施状況を示す説明図Explanatory drawing which shows the installation condition in other embodiment of this invention, and the implementation condition of magnetic selection 従来の磁力選別装置と磁力選別の実施状況を示す説明図Explanatory drawing showing the state of implementation of conventional magnetic separator and magnetic separator

磁力選別の対象が製鉄スラグである場合を例にとると、スラグからの鉄分回収においては、まず、スラグを微粒化し、鉄分を単体分離する。微粒化が不十分であると、後工程での鉄分の分離濃度が向上しない。製鉄スラグが発生する製銑・製鋼プロセスにはさまざまな工程があるため、発生するスラグも多様である。微粒化粒径はスラグに応じて決定されるが、含有している鉄の形態に応じて、数十μm〜1mm程度まで微粒化する必要があることが多い。微粒化の方法としては、粉砕が一般的である。粗粉砕としてジョークラッシャやハンマークラッシャで破砕した後、さらに微粉化のためにボールミル、ロッドミル、ジェットミル、ピンミル、インパクトミルなどを用いて粉砕する。他の方法として、1000〜1300℃程度に加熱後、徐冷する方法もある。   Taking the case where the object of magnetic separation is iron-manufactured slag as an example, in the recovery of iron from the slag, first, the slag is atomized and the iron is separated as a single substance. If the atomization is insufficient, the separation concentration of iron in the subsequent process is not improved. There are various types of steelmaking and steelmaking processes that generate steelmaking slag, and the generated slag is also diverse. Although the atomization particle size is determined according to slag, it is often necessary to atomize to about several tens of μm to 1 mm depending on the form of iron contained. As a method of atomization, pulverization is common. After coarsely pulverizing with a jaw crusher or a Hanmark crusher, further pulverization is performed using a ball mill, a rod mill, a jet mill, a pin mill, an impact mill or the like for further pulverization. As another method, there is also a method of gradually cooling after heating to about 1000 to 1300 ° C.

次に、鉄分とスラグ成分の分離を実施するが、粒径が30〜50μmを下回ると凝集現象が起きる。一般に、鉄分分離には磁力を利用した磁力選別機(乾式)が用いられるが、このような小さな粒径の場合、図7に示すように凝集現象によって鉄分の分離効率が極端に悪化する。図7は、ホッパーに保存された粉体(スラグ)を振動フィーダーでドラム式磁力選別機に供給する従来法を示しているが、粉体に凝集が生じているため、ドラム式磁力選別機の磁着物回収部側に非磁性体粒子(スラグ成分)が、非磁着物回収部側に強磁性体粒子(鉄分)が混入している。
この凝集現象を改善するため、一般に湿式の磁力選別機が用いられる。水を分散媒体にできるため、乾式に較べて分離性能は飛躍的に向上するものの、廃液処理コストが莫大となるため、製鉄スラグのように大量に処理する必要がある場合は大きな問題となる。
Next, separation of iron and slag components is carried out, and agglomeration occurs when the particle size is less than 30-50 μm. In general, a magnetic separator (dry type) using magnetic force is used for iron separation, but in the case of such a small particle size, the separation efficiency of iron is extremely deteriorated due to the aggregation phenomenon as shown in FIG. FIG. 7 shows a conventional method for supplying powder (slag) stored in a hopper to a drum type magnetic separator using a vibration feeder. Nonmagnetic particles (slag component) are mixed in the magnetized matter collecting part side, and ferromagnetic particles (iron) are mixed in the nonmagnetized matter collecting part side.
In order to improve this aggregation phenomenon, a wet magnetic separator is generally used. Since water can be used as a dispersion medium, the separation performance is dramatically improved as compared with the dry type, but the waste liquid treatment cost becomes enormous, and this is a big problem when it is necessary to treat in large quantities like iron slag.

そこで本発明では、粉粒体を篩にかけることで凝集を物理的に解除し、その篩下の粉粒体を直に供給装置の搬送面で受けてそのまま磁力選別機に搬送供給するようにする。これにより粒径が小さい(例えば50μm以下)粉粒体であっても、乾式の磁力選別機で十分効果的な分離性能を発揮させることができる。
すなわち、図1のフローに示すように、強磁性体粒子を含む粉粒体aを磁力選別機2に供給し、この磁力選別機2において粉粒体aから強磁性体粒子を磁力選別するに際し、粉粒体aを、目開き寸法が粉粒体aの目標最大粒径以上、目標最大粒径の2倍未満の篩3にかけて、その篩下の粉粒体aを供給装置1の搬送面で直に受け、これを搬送して磁力選別機2に供給するものである。
Therefore, in the present invention, the agglomeration is physically released by sieving the granular material, and the granular material under the sieving is directly received by the conveying surface of the supply device and directly conveyed to the magnetic separator. To do. Thereby, even if it is a granular material with a small particle diameter (for example, 50 micrometers or less), a sufficiently effective separation performance can be exhibited with a dry magnetic separator.
That is, as shown in the flow of FIG. 1, the powder a including ferromagnetic particles is supplied to the magnetic separator 2, and when the magnetic particles are magnetically selected from the granular a in the magnetic separator 2. The granular material a is passed through a sieve 3 having an opening size that is equal to or larger than the target maximum particle size of the granular material a and less than twice the target maximum particle size. Is received directly, conveyed and supplied to the magnetic separator 2.

供給装置1としては、通常、振動フィーダー、ベルトコンベア、傾斜シュートなどが用いられるが、これに限定されない。また、供給装置1の搬送面とは、粉粒体aを載せて搬送する部位のことであり、振動フィーダーでは振動面、ベルトコンベアではベルト搬送面、傾斜シュートではシュート面である。また、磁力選別機2としては、通常、乾式磁力選別機であるドラム式磁力選別機やプーリー式磁力選別機などが用いられるが、これに限定されない。また、篩3としては、通常、振動篩などが用いられるが、これに限定されない。
ここで、粉粒体aの目標最大粒径とは、粉砕機で設定された粉砕粒径である。
As the supply device 1, a vibration feeder, a belt conveyor, an inclined chute or the like is usually used, but is not limited thereto. Moreover, the conveyance surface of the supply apparatus 1 is a site | part which mounts and conveys the granular material a, and is a vibration surface in a vibration feeder, a belt conveyance surface in a belt conveyor, and a chute surface in an inclination chute. In addition, as the magnetic separator 2, a drum magnetic separator, a pulley magnetic separator, or the like, which is a dry magnetic separator, is usually used, but is not limited thereto. Moreover, as the sieve 3, although a vibration sieve etc. are normally used, it is not limited to this.
Here, the target maximum particle size of the granular material a is a pulverized particle size set by a pulverizer.

粉粒体aを、目開き寸法が粉粒体aの目標最大粒径以上、目標最大粒径の2倍未満の篩3を通過させれば、粒子どうしの大部分の凝集を解除することができる。
凝集解除のための篩3を通過した粉粒体aは、凝集が解かれた状態のまま供給装置1の搬送面、例えば、振動フィーダーの振動面、ベルトコンベアのベルト搬送面、傾斜シュートのシュート面などにそのまま直に落下する。そして、供給装置1(振動フィーダー、ベルトコンベア、傾斜シュートなど)は凝集が解かれたままの粉粒体aを搬送して磁力選別機2に供給するため、凝集がほとんどない粉粒体aを磁力選別することができる。
If the granular material a is passed through the sieve 3 having an opening size of not less than the target maximum particle size of the granular material a and less than twice the target maximum particle size, the aggregation of most of the particles can be released. it can.
The granular material a that has passed through the sieve 3 for releasing the aggregation is in a state where the aggregation is released, for example, the conveying surface of the feeding device 1, for example, the vibrating surface of the vibration feeder, the belt conveying surface of the belt conveyor, and the chute chute It falls directly on the surface. And since the supply apparatus 1 (vibration feeder, belt conveyor, inclined chute, etc.) transports the granular material a that has been unagglomerated and supplies it to the magnetic separator 2, the granular material a having almost no aggregation is obtained. Magnetic sorting is possible.

篩3の目開き寸法は、粉粒体aの目標最大粒径以上、目標最大粒径の2倍未満とする。また、特に粉粒体aの目標最大粒径とすることが好ましく、これにより粉粒物aの凝集をより効果的に解除することができる。また、50μm以下の粒径の粉粒体aが特に凝集を生じやすいことから、篩3の目開き寸法は50μm以下であることが好ましい。   The opening size of the sieve 3 is set to be equal to or larger than the target maximum particle size of the granular material a and less than twice the target maximum particle size. Moreover, it is preferable to set it as the target maximum particle size of the granular material a especially, and aggregation of the granular material a can be cancelled | released more effectively by this. Moreover, since the granular material a with a particle size of 50 micrometers or less is easy to produce aggregation especially, it is preferable that the opening dimension of the sieve 3 is 50 micrometers or less.

本発明の磁力選別設備は、強磁性体粒子を含む粉粒体aを磁力選別機2に供給し、この磁力選別機2において粉粒体aから強磁性体粒子を磁力選別する設備であり、目開き寸法が粉粒体aの目標最大粒径以上、目標最大粒径の2倍未満の篩3と、この篩3の篩下の粉粒体aを搬送面で直に受け、これを搬送して磁力選別機2に供給する供給装置1を有する。この設備を構成する供給装置1、磁力選別機2、篩3の詳細は、上述したとおりである。   The magnetic separation equipment of the present invention is an equipment for supplying magnetic particles a containing ferromagnetic particles to the magnetic separation device 2, and magnetic separation of the ferromagnetic particles from the granular material a in the magnetic separation device 2, The sieve 3 whose mesh size is equal to or larger than the target maximum particle size of the granular material a and less than twice the target maximum particle size and the granular material a under the sieve of the sieve 3 are directly received by the conveying surface, and are conveyed Thus, a supply device 1 for supplying the magnetic sorter 2 is provided. The details of the supply device 1, the magnetic separator 2 and the sieve 3 constituting this facility are as described above.

図2は、本発明の一実施形態を示すもので、製鋼スラグから鉄を分離する場合のフローを前処理の段階から示したものである。図2において、鎖線で囲んだ部分が本発明に相当するフロー部分であり、この部分の設備構成と磁力選別の実施状況を図3に示す。破砕と篩分けを繰り返しながら粒径に応じて磁力選別が行われる。製鋼スラグは発生する工程に応じて様々な種類があり、含有している鉄の粒度も様々であるが、粒径10〜50μmの鉄がスラグ中に分散して存在している場合も多い。このような鉄を分離するためにはロッドミルやボールミルを用いて粒径50μm以下に粉砕することが必要となる。本発明に従い、粒径50μmまで粉砕された粉体(目標最大粒径50μm)を目開き寸法が50μmの篩(篩3)に装入する。この時、粒径50μm超の篩上は再びボールミル・ロッドミルに戻す。篩下を振動フィーダ(供給装置1)の振動面(搬送面)へ直接落下させる。各粒子は50μmの篩を抜けているので、少なくとも50μmの径で凝集が解除されており、この状態のまま振動フィーダーの振動面に降り積もり、振動フィーダーの搬送作用で水平方向に搬送されていく。そして、ドラム式磁力選別機(磁力選別機2)に装入され、磁力選別される。   FIG. 2 shows one embodiment of the present invention, and shows the flow in the case of separating iron from steelmaking slag from the stage of pretreatment. In FIG. 2, a part surrounded by a chain line is a flow part corresponding to the present invention, and FIG. 3 shows an equipment configuration of this part and an implementation state of magnetic selection. Magnetic separation is performed according to the particle size while repeating crushing and sieving. There are various types of steelmaking slag depending on the process to be generated, and the particle size of the iron contained is also various, but in many cases, iron having a particle size of 10 to 50 μm is dispersed in the slag. In order to separate such iron, it is necessary to grind it to a particle size of 50 μm or less using a rod mill or a ball mill. In accordance with the present invention, the powder (target maximum particle size 50 μm) pulverized to a particle size of 50 μm is charged into a sieve (sieve 3) having an opening size of 50 μm. At this time, the sieve having a particle diameter of more than 50 μm is returned to the ball mill / rod mill. The sieve is dropped directly onto the vibration surface (conveyance surface) of the vibration feeder (supply device 1). Since each particle passes through the 50 μm sieve, the aggregation is released with a diameter of at least 50 μm, and the particles fall on the vibration surface of the vibration feeder in this state and are conveyed in the horizontal direction by the conveying action of the vibration feeder. Then, the drum type magnetic separator (magnetic separator 2) is charged and magnetically selected.

図4は、本発明の他の実施形態を示すもので、製鋼スラグから鉄を分離する場合のフローを前処理の段階から示したものである。図4において、鎖線で囲んだ部分が本発明に相当するフロー部分であり、この部分の設備構成と磁力選別の実施状況を図5に示す。この実施形態は、供給装置1としてベルトコンベア、磁力選別機2としてプーリー式磁力選別機を用いている。また、篩3として目開き寸法が30μmの篩を用いている。本発明に従い、粒径30μmまで粉砕された粉体(目標最大粒径30μm)を目開き寸法が30μmの篩(篩3)に装入する。この時、粒径30μm超の篩上は再びボールミル・ロッドミルに戻す。篩下をベルトコンベア(供給装置1)のベルト搬送面へ直接落下させる。各粒子は30μmの篩を抜けているので、少なくとも30μmの径で凝集が解除されており、この状態のままベルトコンベアで水平方向に搬送され、プーリー式磁力選別機(磁力選別機2)に装入され、磁力選別される。 FIG. 4 shows another embodiment of the present invention, and shows the flow in the case of separating iron from steelmaking slag from the stage of pretreatment. In FIG. 4, the part enclosed by the chain line is a flow part corresponding to the present invention, and the equipment configuration of this part and the state of implementation of magnetic separation are shown in FIG. In this embodiment, a belt conveyor is used as the supply device 1, and a pulley type magnetic separator is used as the magnetic separator 2. Further, a sieve having an opening size of 30 μm is used as the sieve 3. In accordance with the present invention, the powder (target maximum particle size 30 μm) pulverized to a particle size of 30 μm is charged into a sieve (sieving 3) having an opening size of 30 μm. At this time, the sieve having a particle diameter of more than 30 μm is returned to the ball mill / rod mill. The sieve is dropped directly onto the belt conveyor surface of the belt conveyor (supply device 1). Since each particle passes through a 30 μm sieve, the agglomeration is released with a diameter of at least 30 μm. In this state, the particles are transported in the horizontal direction by a belt conveyor and loaded in a pulley type magnetic separator (magnetic separator 2). And magnetically sorted.

ボールミル、ロッドミルにより粉砕した後のスラグは、一旦ホッパーなどで一時保存するケースが一般的には考えられる。そして、このような場合に、特に凝集の影響が大きい。図6に、そのような場合に好適な実施形態(設備構成と磁力選別の実施状況)を示す。
この実施形態では、50μmまで粉砕された粉体(目標最大粒径50μm)がホッパーに一次保存される。このホッパーから粉体を振動フィーダーを介して目開き寸法が50μmの篩(篩3)に装入し、篩下を振動フィーダ(供給装置1)の振動面(搬送面)へ直接落下させる。粉体は振動フィーダの搬送作用で水平方向に搬送されてドラム式磁力選別機(磁力選別機2)に装入され、磁力選別される。
In general, the slag after being pulverized by a ball mill or a rod mill is temporarily stored in a hopper or the like. In such a case, the influence of aggregation is particularly great. FIG. 6 shows a preferred embodiment (equipment configuration and magnetic sorting state) suitable for such a case.
In this embodiment, powder (target maximum particle size 50 μm) pulverized to 50 μm is primarily stored in the hopper. From this hopper, the powder is charged into a sieve (sieve 3) having an opening size of 50 μm through a vibration feeder, and the sieve is dropped directly onto the vibration surface (conveying surface) of the vibration feeder (supply device 1). The powder is transported in the horizontal direction by the transporting action of the vibration feeder, loaded into the drum type magnetic separator (magnetic separator 2), and magnetically sorted.

前処理によって粒径50μm以下に粉砕された製鋼スラグ(目標最大粒径:50μm、鉄濃度:54mass%)を本発明法(図6の方法)と従来法(図7の方法)で磁力選別した。本発明法では、篩3の目開き寸法を目標最大粒径である50μmとした。
各実施例の磁着回収物の鉄濃度とスラグからの鉄回収率を調べた結果を表1に示す。
従来法では凝集によってほとんど全ての装入粉体が磁着回収物側へと運ばれた。このため、磁着回収物側の鉄濃度は元の粉体とほとんど変化がない。これに対して本発明法では、磁着回収物の鉄濃度、スラグの鉄回収率ともに高い値が得られている。
Steelmaking slag (target maximum particle size: 50 μm, iron concentration: 54 mass%) pulverized to a particle size of 50 μm or less by pretreatment was magnetically selected by the method of the present invention (method of FIG. 6) and the conventional method (method of FIG. 7). . In the method of the present invention, the opening size of the sieve 3 is set to 50 μm which is the target maximum particle size.
Table 1 shows the results of examining the iron concentration and the iron recovery rate from the slag of the magnetically collected material of each example.
In the conventional method, almost all of the charged powder was carried to the magnetized recovered material side by aggregation. For this reason, the iron concentration on the magnetized recovered material side is almost unchanged from the original powder. On the other hand, in the method of the present invention, high values are obtained for both the iron concentration of the magnetically collected material and the iron recovery rate of the slag.

Figure 0006015335
Figure 0006015335

1 供給装置
2 磁力選別
3 篩
a 粉粒体
1 supply device 2 magnetic separator 3 sieve a granular material

Claims (6)

磁力選別の対象物を粉砕機で粉砕することにより得られた、強磁性体粒子を含む粉粒体(a)を磁力選別機(2)に供給し、該磁力選別機(2)において粉粒体(a)から強磁性体粒子を磁力選別する方法であって、
粉粒体(a)を、目開き寸法が50μm以下であって、且つ粉粒体(a)の目標最大粒径(但し、目標最大粒径とは前記粉砕機で設定された粉砕粒径である。以下同様)以上、目標最大粒径の2倍未満の篩(3)にかけて、その篩下の粉粒体(a)を供給装置(1)の搬送面で直に受け、これを搬送して磁力選別機(2)に供給することを特徴とする磁力選別方法。
A powder (a) containing ferromagnetic particles obtained by pulverizing an object of magnetic selection with a pulverizer is supplied to the magnetic separator (2), and the granular particles are supplied to the magnetic separator (2). A method for magnetically selecting ferromagnetic particles from the body (a),
The granular material (a) has an opening size of 50 μm or less and the target maximum particle size of the granular material (a) (where the target maximum particle size is a pulverized particle size set by the pulverizer) The same applies to the above, and the powder (a) under the sieve is directly received by the conveying surface of the feeding device (1) through the sieve (3) less than twice the target maximum particle diameter, and this is conveyed. And supplying to a magnetic separator (2).
供給装置(1)が振動フィーダー、ベルトコンベア、傾斜シュートのうちのいずれかであることを特徴とする請求項1に記載の磁力選別方法。   The magnetic separation method according to claim 1, wherein the supply device (1) is one of a vibration feeder, a belt conveyor, and an inclined chute. 磁力選別機(2)がドラム式磁力選別機又はプーリー式磁力選別機であることを特徴とする請求項1又は2に記載の磁力選別方法。   3. The magnetic separation method according to claim 1, wherein the magnetic separator (2) is a drum type magnetic separator or a pulley type magnetic separator. 磁力選別の対象物を粉砕機で粉砕することにより得られた、強磁性体粒子を含む粉粒体(a)を磁力選別機(2)に供給し、該磁力選別機(2)において粉粒体(a)から強磁性体粒子を磁力選別する設備であって、
目開き寸法が50μm以下であって、且つ粉粒体(a)の目標最大粒径(但し、目標最大粒径とは前記粉砕機で設定された粉砕粒径である。以下同様)以上、目標最大粒径の2倍未満の篩(3)と、該篩(3)の篩下の粉粒体(a)を搬送面で直に受け、これを搬送して磁力選別機(2)に供給する供給装置(1)を有することを特徴とする磁力選別設備。
A powder (a) containing ferromagnetic particles obtained by pulverizing an object of magnetic selection with a pulverizer is supplied to the magnetic separator (2), and the granular particles are supplied to the magnetic separator (2). A facility for magnetically selecting ferromagnetic particles from the body (a),
The opening size is 50 μm or less, and the target maximum particle size of the powder (a) (provided that the target maximum particle size is a pulverized particle size set by the pulverizer; the same applies hereinafter). The screen (3) less than twice the maximum particle size and the granular material (a) under the screen (3) are directly received by the transport surface, transported and supplied to the magnetic separator (2). Magnetic separation equipment characterized by having a supply device (1) to perform.
供給装置(1)が振動フィーダー、ベルトコンベア、傾斜シュートのうちのいずれかであることを特徴とする請求項に記載の磁力選別設備。 The magnetic separator according to claim 4 , wherein the supply device (1) is one of a vibration feeder, a belt conveyor, and an inclined chute. 磁力選別機(2)がドラム式磁力選別機又はプーリー式磁力選別機であることを特徴とする請求項4又は5に記載の磁力選別設備。 The magnetic separator according to claim 4 or 5 , wherein the magnetic separator (2) is a drum type magnetic separator or a pulley type magnetic separator.
JP2012229208A 2012-10-16 2012-10-16 Magnetic sorting method and magnetic sorting equipment Active JP6015335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229208A JP6015335B2 (en) 2012-10-16 2012-10-16 Magnetic sorting method and magnetic sorting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229208A JP6015335B2 (en) 2012-10-16 2012-10-16 Magnetic sorting method and magnetic sorting equipment

Publications (2)

Publication Number Publication Date
JP2014079698A JP2014079698A (en) 2014-05-08
JP6015335B2 true JP6015335B2 (en) 2016-10-26

Family

ID=50784425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229208A Active JP6015335B2 (en) 2012-10-16 2012-10-16 Magnetic sorting method and magnetic sorting equipment

Country Status (1)

Country Link
JP (1) JP6015335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202460A (en) * 2016-05-12 2017-11-16 トヨタ自動車株式会社 Magnetic selector
CN106925421B (en) * 2017-02-28 2018-08-24 安徽省华禾种业有限公司 A kind of material transfer equipment with ferromagnetic particle separation function in cereal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049305A (en) * 1960-02-16 1962-08-14 Spang & Company Process for recovering substantially clean magnetic metal pieces and magnetic oxides from steel plant debris
JPS5853053B2 (en) * 1980-01-28 1983-11-26 日本磁力選鉱株式会社 Method for treating slag generated from steelworks
JPS59154148A (en) * 1983-02-22 1984-09-03 Nec Corp Separation of magnetic particles and nonmagnetic particles
JPH0351020Y2 (en) * 1987-10-02 1991-10-31
JP3374709B2 (en) * 1997-07-15 2003-02-10 日本鋼管株式会社 Separation method and apparatus for granulated slag in waste melting furnace
JP3325502B2 (en) * 1997-09-30 2002-09-17 株式会社栗本鐵工所 Waste sorting equipment
JP2000037666A (en) * 1998-07-22 2000-02-08 Toshiba Corp Classification/separation treatment apparatus
JP4004252B2 (en) * 2000-09-08 2007-11-07 株式会社クボタ Waste melting treatment method
JP2005030640A (en) * 2003-07-09 2005-02-03 Furukawa Co Ltd Melting treatment facility
JP4403021B2 (en) * 2004-06-11 2010-01-20 新日本製鐵株式会社 Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same
JP4515214B2 (en) * 2004-10-06 2010-07-28 川崎重工業株式会社 Method for processing molten slag.

Also Published As

Publication number Publication date
JP2014079698A (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP6125608B2 (en) Method and system for processing slag material
WO2014061256A1 (en) Magnetic sorting apparatus, magnetic sorting method, and method for manufacturing iron source
JP6228519B2 (en) Manufacturing method of metallic iron
JP6421765B2 (en) Method for sorting steel slag, method for reusing steel slag, and method for producing raw materials for iron making
JP2009006273A (en) Wet type magnetic separation method for separating mixture of microparticles
JP2018090477A (en) Method for processing steel slag
JP6056617B2 (en) Method and apparatus for separating ferromagnetic material
JP6015335B2 (en) Magnetic sorting method and magnetic sorting equipment
JP6604346B2 (en) Method for sorting steel slag, method for reusing steel slag, and method for producing raw materials for iron making
JP2011088063A (en) Method of separating iron-making slag
JP2019099838A (en) Treatment method of steel slag
KR20160137016A (en) How to screening device and selection of iron steel slag recycling
CN105593386A (en) Treatment of minerals
JP2018161615A (en) Method for processing component scrap of electronic and electrical equipment
JP5842853B2 (en) Method and apparatus for separating ferromagnetic material
TW202039102A (en) Method for processing electronic/electrical device component scraps
JP6601482B2 (en) Steel slag treatment method and equipment
JP5862735B2 (en) Separation method of steel slag
CN102766704B (en) Steelmaking desulfurization slag treatment system and steelmaking desulfurization slag treatment method
JP2016522078A (en) Process and equipment for producing pure iron scrap free of contaminants from shredded metal scrap mixture
JP6610230B2 (en) Coal adjustment method in pulverized coal fired boiler furnace
JP2003247786A (en) Method of disposing of steel making slag
JP2004305960A (en) Method and apparatus for treating dry distillation residue of combustible waste
JP2011074432A (en) Method for charging ore raw material and solvent to refining furnace
JP2005319438A (en) Resource reclaiming/sorting recovery method for industrial waste using shot blasting and resource claiming/sorting recovery apparatus using for the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250