JP4403021B2 - Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same - Google Patents

Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same Download PDF

Info

Publication number
JP4403021B2
JP4403021B2 JP2004173626A JP2004173626A JP4403021B2 JP 4403021 B2 JP4403021 B2 JP 4403021B2 JP 2004173626 A JP2004173626 A JP 2004173626A JP 2004173626 A JP2004173626 A JP 2004173626A JP 4403021 B2 JP4403021 B2 JP 4403021B2
Authority
JP
Japan
Prior art keywords
ferrous metal
rotating drum
belt
same
metal sorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173626A
Other languages
Japanese (ja)
Other versions
JP2005349321A (en
Inventor
康弘 真弓
雅敏 構
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004173626A priority Critical patent/JP4403021B2/en
Publication of JP2005349321A publication Critical patent/JP2005349321A/en
Application granted granted Critical
Publication of JP4403021B2 publication Critical patent/JP4403021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

本発明は、永久磁石の同極を円周方向に対向させて配置した回転ドラムによってシュレッダーダストなどの廃棄物から非鉄金属片を選別する非鉄金属選別装置およびそれを用いた非鉄金属選別方法に関する。
具体的には、廃車リサイクルにおける廃車破砕時に発生するASR(シュレッダーダスト)からアルミ、真鍮等の非鉄金属を選別する非鉄金属選別装置およびそれを用いた非鉄金属選別方法に関する。
The present invention relates to a non-ferrous metal sorting apparatus that sorts non-ferrous metal pieces from waste such as shredder dust by a rotating drum arranged with the same poles of permanent magnets facing in the circumferential direction, and a non-ferrous metal sorting method using the same.
Specifically, the present invention relates to a non-ferrous metal sorting apparatus that sorts non-ferrous metals such as aluminum and brass from ASR (shredder dust) generated when scrapping a scrap car in scrap car recycling, and a non-ferrous metal sorting method using the same.

近年、地球環境問題の対策の一環として、廃車を破砕して資源としてリサイクルする検討が進められており、廃車破砕時に発生するASR(シュレッダーダスト)からアルミ、真鍮等の非鉄金属を選別する非鉄金属選別装置について、従来から種々の提案がなされている。
例えば、特開平9−215943号公報には、円周方向に異なる磁極を対向させる従来の磁石配置(異極配置)によって回転ドラムを構成する回転ドラム型非磁性金属選別回収装置が提案されている。
しかし、特開平9−215943号公報に開示された装置は、ドラム逆回転で発生する電磁誘導力FMとベルトの搬送力FBのベクトル合成力FTでサンプルをベルト上で垂直方向に飛ばし、エアーでサンプルを捕集するものであり、磁石の配置は、従来の円周方向に異なる極を対向させる異極配置にしているため、永久磁石の間隔Lに対しての磁束密度の傾きをあまり大きくとることができず、10mm以下のサンプルについては除去が困難であった。
In recent years, as part of countermeasures for global environmental problems, studies are underway to crush scrap cars and recycle them as resources. Non-ferrous metals that sort non-ferrous metals such as aluminum and brass from ASR (shredder dust) generated when crushing scrap cars. Various proposals have been made for sorting devices.
For example, Japanese Patent Application Laid-Open No. 9-215943 proposes a rotating drum type nonmagnetic metal sorting and collecting apparatus that constitutes a rotating drum by a conventional magnet arrangement (different pole arrangement) in which different magnetic poles are opposed in the circumferential direction. .
However, the apparatus disclosed in Japanese Patent Application Laid-Open No. 9-215943 uses a vector composite force FT of an electromagnetic induction force FM generated by reverse rotation of the drum and a belt conveyance force FB to fly the sample vertically on the belt. The sample is collected, and the magnet is arranged in a different polarity so that different poles face each other in the conventional circumferential direction, so the gradient of the magnetic flux density with respect to the interval L of the permanent magnet is made too large. However, it was difficult to remove samples of 10 mm or less.

また、ベルト搬送力FBとドラム逆回転で発生する電磁誘導力FMの調整、更には、エアー量の調整も必要であるために調整が困難になることや、除去を行なうのにエアーも必要となり装置構成が複雑になるので装置費用が高いという問題点があった。
また、永久磁石の同極を円周方向に対向させて配置した回転ドラムに関しては、例えば、実開平6−77835号公報に、永久磁石とヨーク材を円周方向に交互に配置し、ヨーク材の幅を永久磁石の幅より小さくする非鉄金属回収装置が提案されている。
しかし、実開平6−77835号公報に開示された装置は、ヨーク厚Tyが磁石厚TMより小さいと明記してあり、また、どの程度の比率かをP6の0016項内容から計算しますと、Ty:TM=1:3程度になる。
磁石厚が広いということは磁束密度の傾斜が緩やかになり逆転使用では小口径の除去は困難であった。
Also, adjustment of the belt conveyance force FB and the electromagnetic induction force FM generated by the reverse rotation of the drum, as well as adjustment of the air volume, makes adjustment difficult, and air is also required for removal. Since the device configuration is complicated, there is a problem that the device cost is high.
Further, regarding a rotating drum in which the same poles of permanent magnets are arranged facing each other in the circumferential direction, for example, in Japanese Utility Model Publication No. 6-77835, permanent magnets and yoke materials are alternately arranged in the circumferential direction. A nonferrous metal recovery device has been proposed in which the width of the steel is smaller than the width of the permanent magnet.
However, in the device disclosed in Japanese Utility Model Publication No. 6-77835, it is specified that the yoke thickness Ty is smaller than the magnet thickness TM, and the ratio is calculated from the contents of the paragraph 0016 of P6. Ty: TM is about 1: 3.
The wide magnet thickness means that the gradient of the magnetic flux density becomes gradual, and it is difficult to remove the small diameter when using reverse rotation.

そこで、発明者等は、廃車リサイクルにおけるASRから銅濃化分離技術開発(濃化目標は販売可能な50%以上)を行うためにASR中に多く含まれるアルミ等の非鉄金属を効率よく除去する方法に関する研究開発行ってきた。
その濃化技術については、ASR中に多く含まれる(40〜50%含まれる)アルミや真鍮など、特に小口径(3〜10mm程度)の非鉄金属の除去を如何に行うかが問題であった。
特開平9−215943号公報 実開平6−77835号公報
Therefore, the inventors efficiently remove non-ferrous metals such as aluminum contained in ASR in order to develop copper concentration separation technology from ASR in recycling used cars (concentration target is 50% or more that can be sold). I have been doing research and development on methods.
Regarding the concentration technology, it was a problem how to remove non-ferrous metals such as aluminum and brass that are abundant in ASR (40-50%), especially small diameter (about 3-10mm). .
JP-A-9-215943 Japanese Utility Model Publication No. 6-77835

本発明は、前述のような従来技術の問題点を解決し、大口径を含め、従来では困難であった小口径までの非鉄金属の除去が可能となり、ASRからの銅濃化技術目標(銅濃度50%以上)を達成することができ、販売が可能となり、また、銅を濃化すことのみならず、小口径を含め非鉄金属を大量に回収できる非鉄金属選別装置およびそれを用いた非鉄金属選別方法を提供することを課題とする。   The present invention solves the problems of the prior art as described above, and enables removal of non-ferrous metals up to small diameters, which has been difficult in the past, including large diameters. Non-ferrous metal sorting device that can not only concentrate copper but also collect a large amount of non-ferrous metals including small caliber and non-ferrous metal using the same It is an object to provide a sorting method.

本発明は、前述の課題を解決するために、鋭意検討の結果なされたものであり、ASRを大小の口径に分級し、大口径ASRはドラム正回転で処理を行ない、小口径ASRはドラム逆回転で処理を行うことで、大口径を含め、従来では困難であった小口径までの非鉄金属の除去が可能となり、ASRからの銅濃化技術目標(銅濃度50%以上)を達成することができ、販売が可能となり、また、銅を濃化することのみならず、小口径を含め非鉄金属を大量に回収できる非鉄金属選別装置およびそれを用いた非鉄金属選別方法を提供するものであり、その要旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1)永久磁石の同極を円周方向に対向させ配置した回転ドラムによって廃棄物から非鉄金属片を選別する非鉄金属選別装置であって、
前記廃棄物を振動させて口径10mm以上の大口径と口径10mm未満の小口径に分級する開き目10mmの振動篩と、
前記分級した大口径の廃棄物を搬送するベルトの内周に配置され、該ベルトの進行方向と同方向に回転させて非鉄金属の選別を行なう第1の回転ドラムと、
前記分級した小口径の廃棄物を搬送するベルトの内周に配置され、該ベルトの進行方向と逆方向に回転させて非鉄金属の選別処理を行なう第2の回転ドラムとを有し、前記振動篩の開き目と前記永久磁石の厚さHとを略同一にすることを特徴とする非鉄金属選別装置。
(2)前記永久磁石の間隔の1/2の長さΔLを該永久磁石の厚さHと略同一にすることを特徴とする(1)に記載の非鉄金属選別装置。
(3)(1)または(2)に記載の非鉄金属選別装置を用いることを特徴とする非鉄金属選別方法。
The present invention has been made as a result of diligent studies in order to solve the above-mentioned problems, and classifies the ASR into large and small diameters, the large diameter ASR is processed in the normal rotation of the drum, and the small diameter ASR is the reverse of the drum. By processing by rotation, it is possible to remove non-ferrous metals up to small diameters, including large ones, which were difficult in the past, and achieve the copper concentration technology target (copper concentration 50% or more) from ASR The present invention provides a non-ferrous metal sorting device that can not only concentrate copper but also collect a large amount of non-ferrous metals including a small diameter and a non-ferrous metal sorting method using the same. The gist of the invention is as follows, as described in the claims.
(1) A non-ferrous metal sorting device that sorts non-ferrous metal pieces from waste by a rotating drum arranged with the same pole of a permanent magnet facing in the circumferential direction,
Vibrating sieve with an opening of 10 mm that vibrates the waste and classifies it into a large diameter of 10 mm or more and a small diameter of less than 10 mm ;
A first rotating drum that is disposed on an inner periphery of a belt that conveys the classified large-diameter waste , and that rotates in the same direction as the traveling direction of the belt to perform selection of non-ferrous metal;
Is disposed on the inner periphery of the belt for conveying the waste small diameter that the classification, is rotated in the direction opposite to the traveling direction of the belt have a second rotary drum for performing sorting processing of non-ferrous metals, the vibration A non-ferrous metal sorting device characterized in that the opening of the sieve and the thickness H of the permanent magnet are substantially the same .
(2) The nonferrous metal sorting apparatus according to (1) , wherein a length ΔL which is ½ of the interval between the permanent magnets is made substantially the same as a thickness H of the permanent magnet.
(3) A non-ferrous metal sorting method using the non-ferrous metal sorting apparatus according to (1) or (2) .

本発明によれば、回転ドラムの磁石厚Hを目安に篩選別を行ない、篩上品はドラム正回転で処理を行ない、篩下品はドラム逆回転で処理を行なうことで、大口径を含め、従来では困難であった小口径までの非鉄金属の除去が可能となり、当初の目標であった、ASRからの銅濃化技術目標(銅濃度50%以上)を達成することができ、販売が可能となり、また、銅を濃化することのみならず、小口径を含め非鉄金属を大量に回収できたことから、これに関しても販売対象となるため、廃車リサイクル処理コスト低減に大きく寄与できる非鉄金属選別装置およびそれを用いた非鉄金属選別方法を提供することができるなど産業上有用な著しい効果を奏する。   According to the present invention, sieve selection is performed using the magnet thickness H of the rotating drum as a guideline, the sieved product is processed in the drum normal rotation, and the sieved product is processed in the drum reverse rotation, including the large diameter, It was possible to remove non-ferrous metals up to small diameters, which was difficult to achieve, and achieved the original target of copper concentration technology (copper concentration of 50% or more) from ASR, making it available for sale. In addition, not only to concentrate copper, but also to collect a large amount of non-ferrous metals including small diameters, so this is also a sales target, so non-ferrous metal sorting equipment that can greatly contribute to reducing waste car recycling costs In addition, the present invention provides a remarkable industrially useful effect such as providing a nonferrous metal sorting method using the same.

本発明の実施形態について、図1乃至図9を用いて詳細に説明する。
図1は、本発明の非鉄金属選別装置の実施形態を例示する図である。
図1において、1は振動篩、2は篩上出口、3は篩下出口、4は第1の回転ドラム、4´は第2の回転ドラム、5はベルト、6はベルト駆動ロール、7は回転ドラム駆動モータ、8はベルト駆動モータを示す。
本発明者等は、ASR中に多く含まれる(40〜50%含まれる)アルミや真鍮など、特に小口径(3〜10mm程度)の非鉄金属の除去について、後述のような理論検討を行った結果、ASRを大口径、小口径に分級して選別処理方法を変えることによって、双方の口径の非鉄金属を選別できることを見出して本発明に至ったものである。
すなわち、本発明は、永久磁石の同極を円周方向に対向させて配置した回転ドラムによってASRから非鉄金属片を選別する非鉄金属選別装置であって、前記ASRを振動させて大小の口径に分級する振動篩1と、前記分級した大口径のASRの進行方向と同方向に回転させて非鉄金属の選別処理を行う第1の回転ドラム4と、前記分級した小口径のASRの進行方向と逆方向に回転させて非鉄金属の選別処理を行う第2の回転ドラム4´とを有することを特徴とする。
An embodiment of the present invention will be described in detail with reference to FIGS.
FIG. 1 is a diagram illustrating an embodiment of a non-ferrous metal sorting apparatus according to the present invention.
In FIG. 1, 1 is a vibrating sieve, 2 is an outlet for sieving, 3 is an outlet for sieving, 4 is a first rotating drum, 4 'is a second rotating drum, 5 is a belt, 6 is a belt drive roll, 7 is A rotary drum drive motor, 8 is a belt drive motor.
The present inventors conducted the following theoretical study on the removal of non-ferrous metals with a small diameter (about 3 to 10 mm) such as aluminum and brass that are contained in large amounts (40 to 50%) in ASR. As a result, the present inventors have found that non-ferrous metals having both diameters can be sorted by classifying ASR into large and small diameters and changing the sorting method.
That is, the present invention is a non-ferrous metal sorting device that sorts non-ferrous metal pieces from ASR by a rotating drum arranged with the same pole of a permanent magnet facing in the circumferential direction, and the ASR is vibrated to have a large or small aperture. A vibrating sieve 1 for classification, a first rotating drum 4 for performing a sorting process of non-ferrous metal by rotating in the same direction as the traveling direction of the classified large-diameter ASR, and the traveling direction of the classified small-diameter ASR And a second rotating drum 4 ′ that rotates in the reverse direction and performs a non-ferrous metal sorting process.

図1に示すように、まず、ASRは、振動篩1によって、大小の口径に分級される。本発明においては、振動篩1の方式は問わないが、装置が簡便で取り扱いが容易であることから機械振動によって篩を振動させる方式が好ましい。
ここに、本明細書において、ASRの口径は、ASRの長径の平均値Dをいう。
本発明者等は、永久磁石の同極を円周方向に対向させて配置した回転ドラムにおける永久磁石の間隔の1/2の距離ΔL単位で非鉄金属に反発力または吸引力が発生し、1)ΔLより大きな口径の非鉄金属はドラム正回転で前方に飛散し、2)ΔLより小さな口径の非鉄金属であればドラム正回転ではその場で逆回転してしまい前方へ飛散しないが、ドラム逆回転で前方に飛散することを見出した。
また、これらの力は、後述の理論式によって、ΔLに対しての磁束密度の傾きの2乗に比例することを見出し、磁場解析の結果、具体的なハード構成として実現するには従来の磁石配置(異極配置)より円周方向に永久磁石の同極を対向させて配置する同極配置の方が、ΔLに対しての磁束密度の傾きを大きくすることができることを見出した。
As shown in FIG. 1, first, the ASR is classified into large and small diameters by the vibrating sieve 1. In the present invention, the method of the vibrating sieve 1 is not limited. However, since the apparatus is simple and easy to handle, a method of vibrating the sieve by mechanical vibration is preferable.
Here, in this specification, the aperture of the ASR refers to the average value D of the major axis of the ASR.
The present inventors generate a repulsive force or attractive force in non-ferrous metal in units of a distance ΔL that is ½ of the interval between permanent magnets in a rotating drum arranged with the same poles of the permanent magnets facing each other in the circumferential direction. ) Non-ferrous metal having a diameter larger than ΔL scatters forward by forward rotation of the drum, and 2) If non-ferrous metal having a diameter smaller than ∆L, the forward rotation of the drum causes reverse rotation on the spot and does not scatter forward. I found that it was scattered forward by rotation.
In addition, it is found that these forces are proportional to the square of the gradient of the magnetic flux density with respect to ΔL according to the theoretical formula described later. It has been found that the same-pole arrangement in which the same poles of the permanent magnets are opposed to each other in the circumferential direction than the arrangement (different pole arrangement) can increase the gradient of the magnetic flux density with respect to ΔL.

そこで、ASRを大小の口径に分級し、大口径のASRについてはASRの進行方向と同方向に回転させて非鉄金属の選別処理を行う第1の回転ドラム4により選別処理を行い、小口径のASRについてはASRの進行方向と逆方向に回転させて非鉄金属の選別処理を行う第2の回転ドラム4´により選別処理を行うこととした。
すなわち、振動篩1によって分級された大口径のASRは、篩上出口2から正転する回転ドラム4を有するベルト5の上に装入され、円周方向に永久磁石の同極が対向して配置された回転ドラム4がASRの進行方向と同じ方向に回転することによって、非鉄金属が前方に飛散して鉄などの残渣と選別することができる。
また、振動篩1によって分級された小口径のASRは、篩上出口3から逆転する回転ドラム4´を有するベルト5の上に装入され、円周方向に永久磁石の同極が対向して配置された回転ドラム4´がASRの進行方向と逆方向に回転することによって、非鉄金属が前方に飛散して鉄などの残渣と選別することができる。
また、この振動篩1の開き目は永久磁石の厚さHと略同一とすることが好ましい。後述のように、ASRの口径が永久磁石の厚さH未満では、回転ドラムをASRの進行方向と逆方向に回転させることによって、非鉄金属を前方に飛散させることができるからである。
Therefore, the ASR is classified into large and small calibers, and the large caliber ASR is rotated in the same direction as the ASR traveling direction to perform the sorting process by the first rotating drum 4 that performs the sorting process of the non-ferrous metal. As for ASR, the sorting process is performed by the second rotating drum 4 'that rotates in the direction opposite to the traveling direction of the ASR and sorts the non-ferrous metal.
That is, the large-diameter ASR classified by the vibrating sieve 1 is inserted on a belt 5 having a rotating drum 4 that rotates forward from the sieve outlet 2, and the same pole of the permanent magnet is opposed in the circumferential direction. By rotating the arranged rotating drum 4 in the same direction as the traveling direction of the ASR, the non-ferrous metal can be scattered forward and separated from the residue such as iron.
Further, the small-diameter ASR classified by the vibrating sieve 1 is inserted on a belt 5 having a rotating drum 4 ′ that is reversed from the sieve outlet 3, and the same pole of the permanent magnet is opposed in the circumferential direction. By rotating the arranged rotating drum 4 ′ in the direction opposite to the traveling direction of the ASR, the nonferrous metal can be scattered forward and separated from residues such as iron.
Moreover, it is preferable that the opening of the vibrating sieve 1 is substantially the same as the thickness H of the permanent magnet. As will be described later, when the diameter of the ASR is less than the thickness H of the permanent magnet, the non-ferrous metal can be scattered forward by rotating the rotating drum in the direction opposite to the traveling direction of the ASR.

また、前記永久磁石の間隔の1/2の長さΔLを該永久磁石の厚さHと略同一にすることによって、非鉄金属の選別効率を上昇させることができる。
後述のように、非鉄金属の長径の平均値Dが、H<D<ΔLの関係になっていると、非鉄金属が前方に飛散せず、逆回転しながら前方に移動するため、非鉄金属の選別効率が低下してしまう。
そこで、ΔLをHと略同一にすることによって、H<D<ΔLの関係を成立させないことによって選別効率が悪い条件を排除することによって、非鉄金属の選別効率を上昇させることができる。
なお、本実施形態における、小口径のASRの選別処理を2回以上繰り返すことにより、さらに選別効率を向上させることができる。
なお、本発明では、図1のように振動篩によって分級しない場合でも、一つの回転ドラムを正転、逆転に回転方向を使い分けることにより口径Dの大小に非鉄金属を選別することも可能である。
具体的には、口径Dよりも大口径に分級する場合に廃棄物の進行方向と同方向に回転ドラムを回転させて、口径Dよりも小口径に分級する場合に廃棄物の進行方向と逆方向に回転ドラムを回転させることにより口径Dの大小に非鉄金属の選別処理を行うことができる。
Further, by making the length ΔL which is ½ of the interval between the permanent magnets substantially the same as the thickness H of the permanent magnets, it is possible to increase the sorting efficiency of non-ferrous metals.
As will be described later, when the average value D of the major axis of the non-ferrous metal has a relationship of H <D <ΔL, the non-ferrous metal does not scatter forward and moves forward while rotating in reverse. Sorting efficiency is reduced.
Therefore, by making ΔL substantially the same as H, it is possible to increase the sorting efficiency of non-ferrous metals by eliminating the condition of poor sorting efficiency by not satisfying the relationship of H <D <ΔL.
It should be noted that the sorting efficiency can be further improved by repeating the small-diameter ASR sorting process in the present embodiment twice or more.
In the present invention, even when not classified by a vibrating sieve as shown in FIG. 1, it is also possible to sort non-ferrous metals according to the size of the diameter D by properly using one rotating drum for normal rotation and reverse rotation. .
Specifically, when classifying to a larger diameter than the diameter D, the rotating drum is rotated in the same direction as the waste traveling direction, and when classifying to a smaller diameter than the diameter D, the direction of waste is reversed. By rotating the rotating drum in the direction, it is possible to perform the nonferrous metal sorting process for the diameter D.

図2乃至図4は、本発明に用いる回転ドラムの構造を例示する図であり、図2は断面図、図3は側面図、図4は磁石間に生じる磁束分布を示す図である。
図2乃至図4において、4は回転ドラム、9は樹脂ロール、10はフープバンド、11は永久磁石、12はボールベアリング、13は側板を示す。
本発明に用いる回転ドラムは、図2に示すように円周方向に永久磁石を同極配置した構造とする。
従来のように円周方向に永久磁石を異極配置した場合に比べて、回転ドラムの径方向に働く磁束密度ΔBの傾きを大きくすることができるので、非鉄金属に働く力を大きくすることができる。
また、永久磁石11は、回転ドラムに挿入されており、その周囲をフープバンド10で固定する構造となっている。
回転ドラムの外周には、樹脂ロール9が配置されておりこの樹脂ロールがベルトと接触して回転して、ASRを搬送する。
図4は磁石間に生じる磁束分布を示す図であり、左側が異極配置(従来例)、右側が同極配置(本発明例)を示す。図4に示すように、本発明例では磁石間の磁束分布の変化が従来例に比べて多く、磁束密度の傾きが大きくなるので、ベルト上の非鉄金属片に働く飛散力を向上させることができる。
2 to 4 are diagrams illustrating the structure of the rotating drum used in the present invention, in which FIG. 2 is a cross-sectional view, FIG. 3 is a side view, and FIG. 4 is a diagram showing a magnetic flux distribution generated between magnets.
2 to 4, 4 is a rotating drum, 9 is a resin roll, 10 is a hoop band, 11 is a permanent magnet, 12 is a ball bearing, and 13 is a side plate.
The rotating drum used in the present invention has a structure in which permanent magnets are arranged in the same direction in the circumferential direction as shown in FIG.
Compared with the conventional case where permanent magnets are arranged in different directions in the circumferential direction, the gradient of the magnetic flux density ΔB acting in the radial direction of the rotating drum can be increased, so that the force acting on the nonferrous metal can be increased. it can.
Further, the permanent magnet 11 is inserted into the rotating drum and has a structure in which the periphery thereof is fixed by the hoop band 10.
A resin roll 9 is disposed on the outer periphery of the rotating drum, and the resin roll rotates in contact with the belt to convey the ASR.
FIG. 4 is a diagram showing a magnetic flux distribution generated between magnets, the left side shows a different polarity arrangement (conventional example), and the right side shows the same polarity arrangement (example of the present invention). As shown in FIG. 4, in the example of the present invention, the change in the magnetic flux distribution between the magnets is larger than in the conventional example, and the gradient of the magnetic flux density is increased, so that the scattering force acting on the nonferrous metal piece on the belt can be improved. it can.

図5乃至図8は、非鉄金属に働く吸引力と反発力の理論を説明する図である。
図5において、ドラムの回転によって永久磁石が矢印の方向(磁束φ1が非鉄金属に対して増加しながら鎖交する方向)に高速移動すると、永久磁石の磁束φ1に加えて、非鉄金属に渦電流が発生して磁束φ2が生じるので、φ1とφ2との間に、下記(A)式で示されるクーロン力ΔF(−が反発力)が発生する。また、磁束φ1が非鉄金属に対して減少しながら鎖交する方向では吸引力が発生する。

Figure 0004403021
ここに、K:定数
m:非鉄金属の質量
V:永久磁石の移動速度
ΔB:磁束密度
r:永久磁石と非鉄金属との距離
σ:非鉄金属の密度
ρ:非鉄金属の低効率
L:非鉄金属と磁束φ1の鎖交長
この(A)式からわかるように、
このクーロン力ΔFは、磁束密度の傾きの2乗に比例することから、磁束密度の傾きが大きくなる同極配置の方が大きくなることがわかる。 5 to 8 are diagrams for explaining the theory of attractive force and repulsive force acting on non-ferrous metal.
In FIG. 5, when the permanent magnet moves at high speed in the direction of the arrow (the direction in which the magnetic flux φ1 increases with respect to the nonferrous metal) due to the rotation of the drum, in addition to the magnetic flux φ1 of the permanent magnet, Is generated and a magnetic flux φ2 is generated, so that a Coulomb force ΔF (− is a repulsive force) expressed by the following equation (A) is generated between φ1 and φ2. In addition, an attractive force is generated in the direction in which the magnetic flux φ1 is linked to the non-ferrous metal while decreasing.
Figure 0004403021
Where K: constant
m: mass of non-ferrous metal
V: Movement speed of the permanent magnet
ΔB: Magnetic flux density
r: Distance between permanent magnet and non-ferrous metal
σ: Density of non-ferrous metal
ρ: Low efficiency of non-ferrous metals
L: Linkage length of non-ferrous metal and magnetic flux φ1 As can be seen from this equation (A),
Since the Coulomb force ΔF is proportional to the square of the gradient of the magnetic flux density, it can be understood that the same-pole arrangement in which the gradient of the magnetic flux density is large becomes larger.

図6は、H≒ΔL<Dの場合に非鉄金属に働く力を説明する図である。
非鉄金属の長径の平均値DがΔL以上の場合には、ドラム正回転で前方に飛ぶ理由は、図6に示すように、非鉄金属の長径の平均値DがΔL以上の場合には非鉄金属に反発力が2個、吸引力が1個発生し、この反発力が吸引力を上回るため反発力発生方向に飛散するものと考えられる。
図7は、H<D<ΔLの場合に非鉄金属に働く力を説明する図である。
非鉄金属の長径の平均値DがΔL以下、永久磁石厚H以上の場合にドラム正回転で逆回転しながら前方に移動する理由は、非鉄金属の長径の平均値DがΔL以下の場合には、図7に示すように、非鉄金属内に反発力が1個、吸引力が1個発生し、ドラム回転方向と逆回転方向の回転モーメント力が発生するため、非鉄金属は逆回転を始めるようになる。しかし、磁石厚H以上のサンプルの場合には、ベルト表面からH+α程度しか磁場が飛んでいないため回転モーメント力が不足してベルト表面から飛び出すまでには至らなかったものと考えられる。
図8は、D<H≒ΔLの場合に非鉄金属に働く力を説明する図である。
非鉄金属の長径の平均値Dが磁石厚H以下のサンプルがドラム逆回転で前方に飛ぶ理由は、磁石厚H以下のサンプルの場合には、回転モーメント力が十分であり、その回転力でベルト表面を蹴り、飛び跳ねるような形でベルト表面から飛び出していくものと考えられる。
FIG. 6 is a diagram for explaining the force acting on a non-ferrous metal when H≈ΔL <D.
When the average value D of the major axis of the non-ferrous metal is ΔL or more, the reason for flying forward by forward rotation of the drum is as shown in FIG. It is considered that two repulsive forces and one attractive force are generated, and the repulsive force exceeds the attractive force, so that it is scattered in the repulsive force generation direction.
FIG. 7 is a diagram for explaining the force acting on the nonferrous metal when H <D <ΔL.
When the average value D of the major axis of the non-ferrous metal is equal to or less than ΔL and the permanent magnet thickness is equal to or larger than the permanent magnet thickness H, the reason for moving forward while rotating in reverse with the drum is that As shown in FIG. 7, one repulsive force and one attractive force are generated in the non-ferrous metal, and a rotational moment force in the direction opposite to the drum rotation direction is generated, so that the non-ferrous metal starts to reversely rotate. become. However, in the case of a sample having a magnet thickness of H or more, it is considered that the magnetic field flew only about H + α from the belt surface, so that the rotational moment force was insufficient and did not come out of the belt surface.
FIG. 8 is a diagram for explaining the force acting on a non-ferrous metal when D <H≈ΔL.
The reason why the sample whose average diameter D of the non-ferrous metal has a magnet thickness of H or less flies forward by reverse rotation of the drum is that the rotation moment force is sufficient in the case of the sample of the magnet thickness H or less, It is thought that it jumps out of the belt surface in the form of kicking the surface and jumping.

図9は、本発明の非鉄金属選別装置を用いて選別処理を実施した効果を示す図である。
本実施例に用いた回転ドラムは、直径150mm、幅60mm、回転数MAX3600rpmの小型の実験装置(磁石を同極配置した回転ドラム)とし、振動篩の開き目を10mm、永久磁石の厚さHを10mm、永久磁石の間隔を14.7mmとした。
図9の上段は回転ドラムの中心からの距離に応じたベルト表面の磁束密度の分布を示しており、回転ドラム中心からの距離に反比例して磁束密度が低減している。
FIG. 9 is a diagram showing the effect of performing the sorting process using the non-ferrous metal sorting apparatus of the present invention.
The rotating drum used in this example is a small experimental apparatus (rotating drum with magnets arranged in the same polarity) having a diameter of 150 mm, a width of 60 mm, and a rotation speed of MAX 3600 rpm, a vibrating sieve opening of 10 mm, and a permanent magnet thickness H. Was 10 mm, and the interval between the permanent magnets was 14.7 mm.
The upper part of FIG. 9 shows the distribution of the magnetic flux density on the belt surface according to the distance from the center of the rotating drum, and the magnetic flux density is reduced in inverse proportion to the distance from the center of the rotating drum.

また、図9の下段は、回転ドラムを正転、および逆転させたときに、非鉄金属の長径の平均値に応じた選別状況を示しており、1)ΔL(=14.7mm)より大きなサイズの非鉄金属であればドラム正回転で前方に飛散し、2)ΔLより小さく磁石厚H(=10mm)より大きいものはドラム正回転で逆回転しながら前方に移動するので除去は可能であるが除去効率は悪い、そして、ドラム逆回転では前方に飛散しない、3)そして、サイズはH以下で1/3H以上のサンプルであればドラム逆回転で前方に飛散するという結果になり一部理論とは違った結果となったが、ほぼ理論から推定した通りの現象を確認することができた。
その結果、正転する第1の回転ドラムにて選別処理する前のアルミの含有率40%が選別後に84%に上昇し、アルミ原料として外販することができる濃度を達成することができた。
また、逆転する第2の回転ドラムにて選別処理する前のアルミの含有率27%が選別後に43%に上昇し、真鍮等と合わせてミックスメタルとして外販できる濃度に到達した。
さらに、処理前の残渣に含まれる銅の含有率20%が、本発明の非鉄金属分離装置を用いて非鉄金属を選別した後の残渣に含まれる銅の含有率は59%に達し、50%以上をはるかに超える含有率となることが確認された。
The lower part of FIG. 9 shows the state of selection according to the average value of the major axis of the non-ferrous metal when the rotating drum is rotated forward and backward. 1) A size larger than ΔL (= 14.7 mm) If it is non-ferrous metal, it will scatter forward in the forward rotation of the drum. 2) If it is smaller than ΔL and larger than the magnet thickness H (= 10mm), it can be removed because it moves forward while rotating in the reverse direction of the drum. The efficiency is bad, and the drum does not scatter forward in the reverse rotation of the drum. 3) And if the sample is less than H and 1 / 3H or more, the result is that the drum scatters forward in the reverse rotation of the drum. Although the results were different, we were able to confirm the phenomenon almost as estimated from the theory.
As a result, the aluminum content 40% before sorting by the first rotating drum rotating in the forward direction increased to 84% after sorting, and a concentration that could be sold as an aluminum raw material could be achieved.
In addition, the aluminum content of 27% before sorting by the second rotating drum that reverses increased to 43% after sorting, and reached a concentration that can be sold as a mixed metal together with brass.
Furthermore, the copper content of 20% in the residue before the treatment reaches 59%, and the copper content in the residue after sorting the nonferrous metal using the nonferrous metal separator of the present invention reaches 50%. It was confirmed that the content ratio far exceeds the above.

本発明の非鉄金属選別装置の実施形態を例示する図である。It is a figure which illustrates embodiment of the nonferrous metal sorting device of this invention. 本発明に用いる回転ドラムの構造を例示する断面図である。It is sectional drawing which illustrates the structure of the rotating drum used for this invention. 本発明に用いる回転ドラムの構造を例示する側面図である。It is a side view which illustrates the structure of the rotating drum used for this invention. 磁石間に生じる磁束分布を示す図である。It is a figure which shows magnetic flux distribution which arises between magnets. 非鉄金属に働く吸引力と反発力の理論を説明する図である。It is a figure explaining the theory of the attractive force and repulsive force which act on a nonferrous metal. H≒ΔL<Dの場合に非鉄金属に働く力を説明する図である。It is a figure explaining the force which acts on a nonferrous metal in the case of H ≒ ΔL <D. H<D<ΔLの場合に非鉄金属に働く力を説明する図である。It is a figure explaining the force which acts on a nonferrous metal in case of H <D <(DELTA) L. D<H≒ΔLの場合に非鉄金属に働く力を説明する図である。It is a figure explaining the force which acts on a nonferrous metal in case of D <H ≒ ΔL. 本発明の非鉄金属選別装置を用いて選別処理を実施した効果を示す図である。It is a figure which shows the effect which implemented the sorting process using the nonferrous metal sorting apparatus of this invention.

符号の説明Explanation of symbols

1 振動篩
2 篩上出口
3 篩下出口
4 第1の回転ドラム
4´ 第2の回転ドラム
5 ベルト
6 ベルト駆動ロール
7 回転ドラム駆動モータ
8 ベルト駆動モータ
9 樹脂ロール
10 フープバンド
11 永久磁石
12 ボールベアリング
13 側板
DESCRIPTION OF SYMBOLS 1 Vibrating sieve 2 Sieve top exit 3 Sieve bottom exit 4 1st rotation drum 4 '2nd rotation drum 5 Belt 6 Belt drive roll 7 Rotation drum drive motor 8 Belt drive motor 9 Resin roll 10 Hoop band 11 Permanent magnet 12 Ball Bearing 13 Side plate

Claims (3)

永久磁石の同極を円周方向に対向させ配置した回転ドラムによって廃棄物から非鉄金属片を選別する非鉄金属選別装置であって、
前記廃棄物を振動させて口径10mm以上の大口径と口径10mm未満の小口径に分級する開き目10mmの振動篩と、
前記分級した大口径の廃棄物を搬送するベルトの内周に配置され、該ベルトの進行方向と同方向に回転させて非鉄金属の選別を行なう第1の回転ドラムと、
前記分級した小口径の廃棄物を搬送するベルトの内周に配置され、該ベルトの進行方向と逆方向に回転させて非鉄金属の選別処理を行なう第2の回転ドラムとを有し、前記振動篩の開き目と前記永久磁石の厚さHとを略同一にすることを特徴とする非鉄金属選別装置。
A non-ferrous metal sorting device that sorts non-ferrous metal pieces from waste by a rotating drum arranged with the same pole of a permanent magnet facing in the circumferential direction,
Vibrating sieve with an opening of 10 mm that vibrates the waste and classifies it into a large diameter of 10 mm or more and a small diameter of less than 10 mm ;
A first rotating drum that is disposed on an inner periphery of a belt that conveys the classified large-diameter waste , and that rotates in the same direction as the traveling direction of the belt to perform selection of non-ferrous metal;
Is disposed on the inner periphery of the belt for conveying the waste small diameter that the classification, is rotated in the direction opposite to the traveling direction of the belt have a second rotary drum for performing sorting processing of non-ferrous metals, the vibration A non-ferrous metal sorting device characterized in that the opening of the sieve and the thickness H of the permanent magnet are substantially the same .
前記永久磁石の間隔の1/2の長さΔLを該永久磁石の厚さHと略同一にすることを特徴とする請求項1に記載の非鉄金属選別装置。   2. The nonferrous metal sorting apparatus according to claim 1, wherein a length ΔL which is a half of the interval between the permanent magnets is made substantially equal to a thickness H of the permanent magnet. 請求項1または請求項2に記載の非鉄金属選別装置を用いることを特徴とする非鉄金属選別方法。 A nonferrous metal sorting method using the nonferrous metal sorting apparatus according to claim 1 or 2 .
JP2004173626A 2004-06-11 2004-06-11 Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same Expired - Fee Related JP4403021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173626A JP4403021B2 (en) 2004-06-11 2004-06-11 Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173626A JP4403021B2 (en) 2004-06-11 2004-06-11 Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same

Publications (2)

Publication Number Publication Date
JP2005349321A JP2005349321A (en) 2005-12-22
JP4403021B2 true JP4403021B2 (en) 2010-01-20

Family

ID=35584217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173626A Expired - Fee Related JP4403021B2 (en) 2004-06-11 2004-06-11 Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same

Country Status (1)

Country Link
JP (1) JP4403021B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012002528B4 (en) * 2012-02-09 2017-04-20 Akai Gmbh & Co. Kg Process and apparatus for separating all non-magnetic constituents from a mixture of metal scrap to obtain pure scrap iron
JP6015335B2 (en) * 2012-10-16 2016-10-26 Jfeスチール株式会社 Magnetic sorting method and magnetic sorting equipment
JP6010793B2 (en) * 2013-01-10 2016-10-19 建三 山本 Apparatus and method for selectively fractionating granular material containing base metal and compound thereof
JP7253362B2 (en) * 2018-12-04 2023-04-06 Jfeスチール株式会社 Method and equipment for processing shredder dust
JP2021079342A (en) * 2019-11-20 2021-05-27 住友重機械ファインテック株式会社 Magnet separator, magnet separator controlling device and magnetic sludge removal method
CN111068915B (en) * 2019-11-26 2022-09-06 首钢环境产业有限公司 Method for purifying metal in slag
JP7095708B2 (en) * 2020-01-09 2022-07-05 Jfeスチール株式会社 Shredder dust treatment method and treatment equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119856A (en) * 1981-01-20 1982-07-26 Hitachi Metals Ltd Separator of non-magnetic metal
JPH0677835U (en) * 1993-04-06 1994-11-01 住特エンジニアリング株式会社 Non-ferrous metal recovery equipment
JPH0975773A (en) * 1995-09-14 1997-03-25 Hitachi Ltd Eddy current sorting method and its device
JP4012584B2 (en) * 1996-02-09 2007-11-21 日立機材株式会社 Rotating drum type nonmagnetic metal sorting and collecting device
JPH1085714A (en) * 1996-09-12 1998-04-07 Fuji Car Mfg Co Ltd Glass particle separating and collecting system and its collecting method
JP2934834B2 (en) * 1996-10-28 1999-08-16 日本磁力選鉱株式会社 Magnetic sorting machine
JP3579883B2 (en) * 2000-02-17 2004-10-20 株式会社栗本鐵工所 Waste home appliances processing equipment

Also Published As

Publication number Publication date
JP2005349321A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP5773089B2 (en) Magnetic sorting apparatus, magnetic sorting method, and iron source manufacturing method
JP5573546B2 (en) Ferromagnetic separator
KR101354982B1 (en) Ferromagnetic material separation apparatus
JP6465825B2 (en) Method and apparatus for recovering precious metals from incinerated ash
JP6638719B2 (en) How to treat steel slag
JP4403021B2 (en) Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same
Settimo et al. Eddy current separation of fine non-ferrous particles from bulk streams
JP2000135450A (en) Crusher, classifier, crushing and classification
Zhang et al. The investigation of separability of particles smaller than 5 mm by eddy current separation technology. Part I: rotating type eddy current separators
JP2006150361A (en) Eddy current sorter
Lungu Separation of small nonferrous particles using an angular rotary drum eddy-current separator with permanent magnets
JP2987703B1 (en) Recycling method and equipment for used blast material
KR102298216B1 (en) Nonferrous metal screening system using eddy current.
AU2013234409A1 (en) Apparatus and Method for the Separation of Particulates
JP4355072B2 (en) Separation and collection method and apparatus for communication equipment
JP2019177361A (en) Component scrap processing method
JPS5946671B2 (en) Solid waste recycling equipment
WO2018025585A1 (en) Reduced iron production method and production apparatus
CA3135345C (en) Method for processing electronic and electric device component scraps
Rem et al. The Investigation of Separability of Particles Smaller Than 5mm by Eddy-Current Separation Technology–Part II: Novel Design Concepts
JP3276801B2 (en) Metal crushing separation method and system
JP6938414B2 (en) How to dispose of parts waste
Kercher et al. Scrap processing by eddy current separation techniques
JP3209464U (en) Eddy current sorter
JP2000126642A (en) Disposal device for shredder dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees