JP4012584B2 - Rotating drum type nonmagnetic metal sorting and collecting device - Google Patents

Rotating drum type nonmagnetic metal sorting and collecting device Download PDF

Info

Publication number
JP4012584B2
JP4012584B2 JP04806496A JP4806496A JP4012584B2 JP 4012584 B2 JP4012584 B2 JP 4012584B2 JP 04806496 A JP04806496 A JP 04806496A JP 4806496 A JP4806496 A JP 4806496A JP 4012584 B2 JP4012584 B2 JP 4012584B2
Authority
JP
Japan
Prior art keywords
conveyor belt
permanent magnet
nonmagnetic metal
magnet rotor
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04806496A
Other languages
Japanese (ja)
Other versions
JPH09215943A (en
Inventor
正男 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senqcia Corp
Original Assignee
Senqcia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senqcia Corp filed Critical Senqcia Corp
Priority to JP04806496A priority Critical patent/JP4012584B2/en
Publication of JPH09215943A publication Critical patent/JPH09215943A/en
Application granted granted Critical
Publication of JP4012584B2 publication Critical patent/JP4012584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム、銅等の導電性非磁性金属を処理物中より分離、回収するための回転ドラム型非磁性金属選別回収装置に関し、特に小口径の導電性非磁性金属片を回収するための回転ドラム型非磁性金属選別回収装置に関するものである。
【0002】
【従来の技術】
近年、環境問題が注目される中、資源の再利用化も進んでおり、日常発生する廃棄物の中から、鉄はもとより非鉄金属類、紙、布類、木片、合成樹脂、ゴム、ガラス等広い範囲で資源回収が行われ、それに伴う回収システムにも新しい技術が採用されている。
非鉄金属の中でアルミニウムに代表される非磁性軽金属類を選別回収する装置は、都市ごみの中のアルミ缶、あるいは自動車廃車の裁断スクラップに含まれるアルミニウム等の回収再利用に多用されている。
非鉄金属を他の廃棄物と選別回収する手段として磁力を応用したものは従来より、移動交流磁界を応用したリニアモータ型、ロータリーキルン状回転円筒の外周に永久磁石を配設したインサイドドラム型、平滑斜面の下側に永久磁石を配列したスライディングセパレータ型、あるいはコンベアベルトが巻装されるドラムを二重構造のドラム型とし内部に永久磁石回転子を配設した回転ドラム型等、多数の構造が提案されている。
【0003】
上記の中で回転ドラム型が最も多く使用されており、その従来例を図5に示す。図5に示す回転ドラム型非磁性金属選別回収装置の構成および作用の概要は次の通りである。無端状のコンベアベルト10は一方の端部を駆動ローラ9に、他方の端部をドラム1に巻装されている。駆動ローラ9をモータ7によりVベルト8を介して矢印RRの方向に回転駆動することにより、コンベアベルト10を矢印RBの方向に走行させる。従って従動ローラであるドラム1は矢印RDで示す方向に回転する。また、ドラム1は非磁性材料で形成されており、ドラム1の内部にはドラム1と同心状に永久磁石回転子4が回転自在に配設されている。
【0004】
次に上記永久磁石回転子4の構成を図6に示す。円筒状のヨーク3の外周面上に磁石2と磁石2´が、円周方向に沿って等角度間隔で交互にN極とS極がドラム1側に位置するように、かつそれらの外表面がドラム1の内周面に近接するように固設されている。また、永久磁石回転子4はドラム1と同心で回転方向RDと同一方向RMに回転するが、回転速度(周速)が異なるように別のモータ6によりVベルト5を介して回転駆動する二重構造になっている。なお、永久磁石回転子4の回転速度は、ドラム1の回転速度よりも充分に大きくなるように設定されている。
【0005】
このようにして、磁石2のN極から流出した磁束Cは、ドラム1およびその上に巻装されたコンベアベルト10を通過して磁石2´のS極に流入するので、コンベアベルト10の表面に強力な磁界を発生させることになり、処理物(14あるいは15)に種々の影響を与える。さらにドラム1の前方下側には、コンベアベルト10から落下し選別される処理物を回収する容器18、19が配設され、容器18には紙、布類、木片、合成樹脂等の非金属片14、容器19にはアルミニウム、銅等の導電性非磁性金属片15がそれぞれ回収される。
【0006】
上記の回転ドラム型非磁性金属選別回収装置の作用は次の通りである。
まず、導電性非磁性金属片15、非金属片14が混在した処理物をホッパ13の上端開放部から投入すると、コンベアベルト10の表面に落下し、コンベアベルト10の走行と共にドラム1の中心軸を通る垂線の上部領域、すなわち最頂部へと搬送される。ここで、コンベアベルト10上の処理物はある程度の厚さを持ち層状となるが、理解を容易にするために図5では散在した状態で示す。
【0007】
処理物は、ドラム1の最頂部に達すると、ドラム1に内設された永久磁石回転子4の高速回転により、円筒状ヨーク3の外周面に固設された磁石2および磁石2´によって発生する高周波交番磁界の中を通過する。この時、導電性非磁性金属片15の内部にはファラデーの電磁誘導で説明される渦電流が発生し、この渦電流に起因して発生する磁束の向きと、永久磁石回転子4より発生する磁束の向きは、レンツの法則に従って相反するため、両者の相互作用により遠心方向の斥力(反発力)が生起される。さらにコンベアベルト10の搬送力が合成力として作用して、導電性非磁性金属片15はコンベアベルト10の走行方向から見てその前方でかつ上方に飛翔し、ドラム1のほぼ最頂部より放物線の軌跡aを描いて落下し、容器19へと選別回収される。
【0008】
また、処理物中の非金属片14は、磁石2および磁石2´の磁気作用を何等受けることが無いため、自重により自由落下して、bの軌跡に沿って容器18へ選別回収される。
【0009】
一般に、導電性非磁性金属片が永久磁石回転子より受ける斥力Fは次の式で表される。
F∝Bg2×f×σ×A/ρ…………(1)
ここでBg:磁束密度
f :周波数(=磁石ドラム極数×磁石ドラム回転数)
σ :導電率
A :処理物表面積
ρ :密度
選別回収の対象である導電性非磁性金属片15が小口径の場合、その表面積は小さくなり、斥力Fが小さくなることが式(1)から理解できる。
【0010】
【発明が解決しようとする課題】
従来の回転ドラム型非磁性金属選別回収装置では、導電性非磁性金属片が小口径になると、永久磁石回転子より受ける斥力が小さくなり、確実な選別回収が困難であるという問題点があった。
また、導電性非磁性金属片の形状が一様ではないため、空気抵抗等の理由で自由落下の軌跡も一様にはならず、選別回収の精度が安定しないという問題点も生じていた。
本発明は、上記問題点を解消し、確実な選別回収が可能な回転ドラム型非磁性金属選別回収装置を提供することを目的とする。
【0011】
上記目的を達成するために、本発明は、駆動ローラと受動ローラおよび補助プーリに巻装された無端状のコンベアベルトと、前記コンベアベルトの内周面に接触して設けられ、複数個の磁石を有し回転自在に配置された永久磁石回転子を内蔵した円筒状非磁性ドラムと、前記永久磁石回転子の回転方向を前記コンベアベルトの進行方向と相対的に逆方向とする回転手段と、磁気浮上させた導電性非磁性金属を前記コンベアベルトの進行方向と直交する方向に気体噴射によって分離除去する除去手段とを有するという技術的手段を採用した。
【0012】
【発明の実施の形態】
図1は本発明の一実施例に係る回転ドラム型非磁性金属選別回収装置の概略断面図である。ただし、従来例と同一部分は同一の参照符号を付し、その詳細な説明は省略する。
本実施例の回転ドラム型非磁性金属選別回収装置の基本的構造は、図5に示す従来例の構造と類似するが、永久磁石回転子4の回転方向をコンベアベルト10の進行方向と相対的に逆方向としたこと、すなわち従来例と逆方向の回転させる点で相違する。また、従来例では導電性非磁性金属片15をコンベアベルト10の端部から落下させていたのに対し、本発明ではコンベアベルト10の中間領域において磁気浮上させることにより選別回収させる点も大きな相違点となる。
【0013】
次に本発明の構造について図1を用いて詳述する。無端状のコンベアベルト10は、一方の端部を駆動ローラ9に、他方の端部を受動ローラ11に、さらに両ローラの下方に位置する補助プーリ12の3点を軸として巻装されている。駆動ローラ9をモータ7によりVベルト8を介して矢印RRの方向に回転駆動することによって、コンベアベルト10を矢印RBの方向に走行させる機能を有している。
【0014】
また、複数個の磁石を有し回転自在に配置された永久磁石回転子4を内蔵した円筒状非磁性ドラム1は、コンベアベルト10の処理物搬送領域の裏面に接触するように配置されている。永久磁石回転子4は、モータ6によりVベルト5を介して矢印RM方向、すなわち従来例である図5とは反対となる時計方向に回転させる。この時、ドラム1はコンベアベルト10と接触しているため矢印RD方向に回転する。従って、永久磁石回転子4の回転方向とドラム1の回転方向とは逆方向となる。
【0015】
上記構成により、紙、布類、木片、合成樹脂等の非金属片14および導電性非磁性金属片15が混在した処理物は、ホッパー13よりコンベアベルト10上に供給されると、RB方向に搬送され永久磁石回転子4の上部領域に到達する。
処理物中の非金属片14は磁石による磁気作用を受けないため、永久磁石回転子4の上部領域を通過し受動ローラ11に達した後、自重により自由落下して回収容器18へ回収される。
【0016】
一方、導電性非磁性金属片15は永久磁石回転子4の上部領域に到達すると、永久磁石回転子4から磁気作用を受けてコンベアベルト10の上方に浮上し、例えば図2に示すような手段によって分離除去される。
浮上した導電性非磁性金属片を、噴射気体(例えば空気)を利用して分離除去する例を図2に示す。図2の構造では、コンベアベルト10の一方の側に空気噴射装置20を設置し、コンベアベルト10の走行方向(紙面に垂直方向)と直交する方向から空気を噴射して、導電性非磁性金属片15をコンベアベルト10の他方の側に吹き飛ばして(図中破線で示す。)回収するようにしている。
【0017】
次に、本発明において、永久磁石回転子4の回転方向をコンベアベルト10の進行方向と相対的に逆方向とした理由について、図3および図4を用いて説明する。
【0018】
図3に従来例の状態、すなわち永久磁石回転子4の回転方向RMとコンベアベルト10の進行方向と相対的に同一方向である状態を示す。
図3では、コンベアベルト10の進行方向RBと同方向の搬送力FBと、永久磁石回転子4の電磁誘導から説明される斥力FMとの合力FTが作用するため、導電性非磁性金属片15は永久磁石回転子4の前方方向に飛翔する。従って従来は、導電性非磁性金属片15を永久磁石回転子4の前方に、できるだけ遠方に飛翔させることによって、選別精度の向上を図っている。
【0019】
図4に本発明の状態、すなわち永久磁石回転子4の回転方向RMとコンベアベルト10の進行方向と相対的に逆方向である状態を示す。
図4の場合も図3と同様に、コンベアベルト10の進行方向RBと同方向の搬送力FBと、永久磁石回転子4の電磁誘導から説明される斥力FMとの合力FTが作用するが、斥力FMは搬送力FBとは逆向きになり、上向きの合力FTが発生するため、導電性非磁性金属片15は永久磁石回転子4の鉛直上方方向に浮上する。
【0020】
上記により、導電性非磁性金属片15が永久磁石回転子4の鉛直上方方向に浮上する距離は、永久磁石回転子4の回転方向がコンベアベルト10の進行方向と相対的に逆方向、すなわち図4の状態の方が従来例の図3の状態よりも大きいことが判る。本発明はコンベアベルトの鉛直上方方向に磁気浮上した導電性非磁性金属片を除去する方式を採用しているため、図4の方式がより適していることは容易に理解できる。
【0021】
図1に示す本発明に係る装置と、図5に示す従来の装置をそれぞれ製作し、導電性非磁性金属片の選別回収効率を比較した結果について以下に記述する。
図1に示す本発明に係る装置の、各部の主要寸法、材質および仕様は以下の通りである。

Figure 0004012584
また従来の装置は、受動ローラ11および補助プーリ12を取外した以外は、本発明に係る装置と同様の構成である。
【0022】
比較試験に供した処理物は、概略形状φ5×10mmの樹脂ペレット5000cm3に、φ10×0.5mmのアルミ片100枚を混入したものとし、コンベアベルト10への供給は振動フィーダを用いて、繰返し試験を行なった。比較試験結果を表1に示す。
【0023】
【表1】
Figure 0004012584
【0024】
表1より平均回収率を比較すると、従来の装置が40.8%であるのに対し、本発明に係る装置は68.8%と高い値を示している。従って、小口径の導電性非磁性金属片の選別回収は、従来のものに比べて本発明に係る装置の方が格段に優れていることが明らかである。
【0025】
【発明の効果】
本発明は上記のような構成および作用を有するので、従来公知の回転ドラム型非磁性金属選別回収装置における問題点を解決し、特に処理物中に混在する小口径の導電性非磁性金属片を精度良く確実に選別回収することができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る選別回収装置の概略断面図である。
【図2】本発明の一実施例に係る分離除去手段を示す図である。
【図3】従来の選別回収装置の導電性非磁性金属片に作用する力を説明するための図である。
【図4】本発明の一実施例に係る選別回収装置の導電性非磁性金属片に作用する力を説明するための図である。
【図5】従来の選別回収装置の概略断面図である。
【図6】図5の要部拡大図である。
【符号の説明】
1…ドラム、2、2´…磁石、3…ヨーク、4…永久磁石回転子、
5、8…Vベルト、6、7…モータ、9…駆動ローラ、
10…コンベアベルト、11…受動ローラ、12…補助プーリ、
13…ホッパ、14…非金属片、15…導電性非磁性金属片、
18、19…回収容器、20…空気噴射装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating drum type nonmagnetic metal sorting and collecting apparatus for separating and collecting conductive nonmagnetic metals such as aluminum and copper from a processed material, and particularly for collecting small diameter conductive nonmagnetic metal pieces. The present invention relates to a rotating drum type nonmagnetic metal sorting and collecting apparatus.
[0002]
[Prior art]
In recent years, as environmental problems are attracting attention, the reuse of resources is also progressing, and from daily waste, not only iron but also non-ferrous metals, paper, cloth, wood chips, synthetic resin, rubber, glass, etc. Resource recovery is performed in a wide range, and new technology is also adopted in the recovery system.
An apparatus for sorting and collecting non-magnetic light metals represented by aluminum among non-ferrous metals is frequently used for collecting and reusing aluminum cans in municipal waste or aluminum contained in cut scraps of scrapped automobiles.
As a means of sorting and collecting non-ferrous metals from other wastes, magnetic motors have been applied to the conventional linear motor type using a moving AC magnetic field, the inside drum type having a permanent magnet on the outer periphery of a rotary kiln-like rotating cylinder, and smoothing. There are many structures such as a sliding separator type in which permanent magnets are arranged below the slope, or a rotating drum type in which a drum around which a conveyor belt is wound is a double-structured drum type and a permanent magnet rotor is disposed inside. Proposed.
[0003]
Of these, the rotary drum type is most frequently used, and a conventional example is shown in FIG. An outline of the configuration and operation of the rotating drum type nonmagnetic metal sorting and collecting apparatus shown in FIG. 5 is as follows. The endless conveyor belt 10 has one end wound around the driving roller 9 and the other end wound around the drum 1. The drive roller 9 is driven to rotate in the direction of arrow RR by the motor 7 via the V-belt 8, thereby causing the conveyor belt 10 to travel in the direction of arrow RB. Accordingly, the drum 1 as the driven roller rotates in the direction indicated by the arrow RD. The drum 1 is made of a nonmagnetic material, and a permanent magnet rotor 4 is disposed in the drum 1 so as to be concentric with the drum 1 so as to be rotatable.
[0004]
Next, the configuration of the permanent magnet rotor 4 is shown in FIG. The magnet 2 and the magnet 2 'are arranged on the outer peripheral surface of the cylindrical yoke 3 so that the north pole and the south pole are alternately located on the drum 1 side at equal angular intervals along the circumferential direction, and their outer surfaces. Is fixed so as to be close to the inner peripheral surface of the drum 1. The permanent magnet rotor 4 is concentric with the drum 1 and rotates in the same direction RM as the rotation direction RD. However, the permanent magnet rotor 4 is rotated by another motor 6 via the V-belt 5 so that the rotation speed (peripheral speed) is different. It has a heavy structure. The rotational speed of the permanent magnet rotor 4 is set to be sufficiently higher than the rotational speed of the drum 1.
[0005]
Thus, the magnetic flux C flowing out from the N pole of the magnet 2 passes through the drum 1 and the conveyor belt 10 wound on the drum 1 and flows into the S pole of the magnet 2 ′. Therefore, a strong magnetic field is generated and various influences are given to the processed object (14 or 15). Further, containers 18 and 19 for collecting processed materials that fall from the conveyor belt 10 and are collected are disposed on the lower front side of the drum 1, and the containers 18 are made of non-metal such as paper, cloth, wood pieces, synthetic resin, or the like. In the pieces 14 and 19, conductive nonmagnetic metal pieces 15 such as aluminum and copper are respectively collected.
[0006]
The operation of the rotating drum type nonmagnetic metal sorting and collecting apparatus is as follows.
First, when a processed product in which the conductive nonmagnetic metal piece 15 and the nonmetal piece 14 are mixed is introduced from the upper end open portion of the hopper 13, it falls to the surface of the conveyor belt 10 and the central axis of the drum 1 as the conveyor belt 10 travels. To the upper region of the vertical line passing through, i.e. the top. Here, the processed material on the conveyor belt 10 has a certain thickness and is layered, but in order to facilitate understanding, it is shown in a scattered state in FIG.
[0007]
When the processed product reaches the top of the drum 1, it is generated by the magnet 2 and the magnet 2 ′ fixed on the outer peripheral surface of the cylindrical yoke 3 by the high-speed rotation of the permanent magnet rotor 4 provided in the drum 1. Passes through a high frequency alternating magnetic field. At this time, an eddy current described by Faraday electromagnetic induction is generated inside the conductive nonmagnetic metal piece 15, and the direction of the magnetic flux generated due to the eddy current and the permanent magnet rotor 4 are generated. Since the directions of the magnetic fluxes conflict with each other according to Lenz's law, a repulsive force (repulsive force) in the centrifugal direction is generated by the interaction between the two. Further, the conveying force of the conveyor belt 10 acts as a combined force, and the conductive nonmagnetic metal piece 15 flies forward and upward as viewed from the running direction of the conveyor belt 10, and is parabolic from almost the top of the drum 1. It falls along a trajectory a and is sorted and collected into the container 19.
[0008]
Further, since the non-metal piece 14 in the processed material does not receive any magnetic action of the magnet 2 and the magnet 2 ′, the non-metal piece 14 falls freely by its own weight and is sorted and collected into the container 18 along the locus of b.
[0009]
Generally, the repulsive force F which a conductive nonmagnetic metal piece receives from a permanent magnet rotor is represented by the following formula.
F∝Bg 2 × f × σ × A / ρ (1)
Where Bg: magnetic flux density f: frequency (= number of magnet drum poles × number of magnet drum rotations)
σ: Conductivity A: Surface area of processed material ρ: When the conductive nonmagnetic metal piece 15 that is the target of density sorting and recovery has a small diameter, the surface area becomes smaller and the repulsive force F becomes smaller from the equation (1). it can.
[0010]
[Problems to be solved by the invention]
In the conventional rotating drum type nonmagnetic metal sorting and collecting device, when the conductive nonmagnetic metal piece has a small diameter, the repulsive force received from the permanent magnet rotor is reduced, and it is difficult to reliably sort and collect. .
Further, since the shape of the conductive non-magnetic metal piece is not uniform, the locus of free fall is not uniform due to air resistance or the like, and there is a problem that the accuracy of sorting and collecting is not stable.
An object of the present invention is to provide a rotating drum type non-magnetic metal sorting and collecting apparatus capable of solving the above-mentioned problems and performing reliable sorting and collecting.
[0011]
In order to achieve the above object, the present invention provides an endless conveyor belt wound around a drive roller, a passive roller and an auxiliary pulley, and a plurality of magnets provided in contact with the inner peripheral surface of the conveyor belt. A cylindrical non-magnetic drum having a permanent magnet rotor that is rotatably arranged, and a rotating means that makes the rotation direction of the permanent magnet rotor relatively opposite to the traveling direction of the conveyor belt , The technical means of having a removing means for separating and removing the magnetically levitated conductive nonmagnetic metal by gas injection in a direction perpendicular to the traveling direction of the conveyor belt was adopted.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic sectional view of a rotating drum type nonmagnetic metal sorting and collecting apparatus according to an embodiment of the present invention. However, the same parts as those of the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.
The basic structure of the rotating drum type nonmagnetic metal sorting and collecting apparatus of this embodiment is similar to the structure of the conventional example shown in FIG. 5, but the rotation direction of the permanent magnet rotor 4 is relative to the traveling direction of the conveyor belt 10. Is different from the conventional example in that it is rotated in the opposite direction. Further, in the conventional example, the conductive non-magnetic metal piece 15 is dropped from the end of the conveyor belt 10, but in the present invention, it is also greatly different in that it is selectively collected by magnetic levitation in the intermediate region of the conveyor belt 10. It becomes a point.
[0013]
Next, the structure of the present invention will be described in detail with reference to FIG. The endless conveyor belt 10 is wound around one point of the drive roller 9, the other end of the endless belt 10 as a passive roller 11, and an auxiliary pulley 12 positioned below both rollers as an axis. . The drive roller 9 is driven to rotate in the direction of the arrow RR by the motor 7 via the V-belt 8, thereby causing the conveyor belt 10 to travel in the direction of the arrow RB.
[0014]
A cylindrical non-magnetic drum 1 having a plurality of magnets and having a permanent magnet rotor 4 that is rotatably arranged is arranged so as to be in contact with the rear surface of the workpiece conveyance area of the conveyor belt 10. . The permanent magnet rotor 4 is rotated by the motor 6 via the V-belt 5 in the direction of the arrow RM, that is, in the clockwise direction opposite to that in FIG. At this time, since the drum 1 is in contact with the conveyor belt 10, it rotates in the direction of the arrow RD. Therefore, the rotation direction of the permanent magnet rotor 4 is opposite to the rotation direction of the drum 1.
[0015]
With the above configuration, when a non-metal piece 14 such as paper, cloth, wood pieces, and synthetic resin and a conductive non-magnetic metal piece 15 are mixed and supplied to the conveyor belt 10 from the hopper 13, It is conveyed and reaches the upper region of the permanent magnet rotor 4.
Since the non-metal piece 14 in the processed material is not subjected to the magnetic action by the magnet, it passes through the upper region of the permanent magnet rotor 4 and reaches the passive roller 11, and then falls freely by its own weight and is collected in the collection container 18. .
[0016]
On the other hand, when the conductive non-magnetic metal piece 15 reaches the upper region of the permanent magnet rotor 4, it receives a magnetic action from the permanent magnet rotor 4 and floats above the conveyor belt 10, for example, as shown in FIG. Is separated and removed.
FIG. 2 shows an example of separating and removing the floating conductive nonmagnetic metal piece using a jet gas (for example, air). In the structure of FIG. 2, an air injection device 20 is installed on one side of the conveyor belt 10, and air is injected from a direction perpendicular to the running direction of the conveyor belt 10 (perpendicular to the paper surface) to form a conductive nonmagnetic metal. The piece 15 is blown off to the other side of the conveyor belt 10 (indicated by a broken line in the figure) to be collected.
[0017]
Next, in the present invention, the reason why the rotation direction of the permanent magnet rotor 4 is set in the direction opposite to the traveling direction of the conveyor belt 10 will be described with reference to FIGS.
[0018]
FIG. 3 shows a state of the conventional example, that is, a state in which the rotational direction RM of the permanent magnet rotor 4 and the traveling direction of the conveyor belt 10 are in the same relative direction.
In FIG. 3, since the resultant force FT of the conveying force FB in the same direction as the traveling direction RB of the conveyor belt 10 and the repulsive force FM explained from the electromagnetic induction of the permanent magnet rotor 4 acts, the conductive nonmagnetic metal piece 15 Fly in the forward direction of the permanent magnet rotor 4. Therefore, conventionally, the conductive nonmagnetic metal piece 15 is made to fly as far as possible in front of the permanent magnet rotor 4 to improve the sorting accuracy.
[0019]
FIG. 4 shows a state of the present invention, that is, a state in which the rotation direction RM of the permanent magnet rotor 4 and the traveling direction of the conveyor belt 10 are opposite to each other.
In the case of FIG. 4 as well, as in FIG. 3, a resultant force FT of the conveying force FB in the same direction as the traveling direction RB of the conveyor belt 10 and the repulsive force FM explained from the electromagnetic induction of the permanent magnet rotor 4 acts. The repulsive force FM is opposite to the conveying force FB, and an upward resultant force FT is generated, so that the conductive nonmagnetic metal piece 15 floats vertically upward of the permanent magnet rotor 4.
[0020]
As described above, the distance that the conductive nonmagnetic metal piece 15 floats in the vertical upward direction of the permanent magnet rotor 4 is such that the rotation direction of the permanent magnet rotor 4 is relatively opposite to the traveling direction of the conveyor belt 10, that is, It can be seen that the state of 4 is larger than the state of FIG. 3 of the conventional example. Since the present invention employs a method of removing the conductive non-magnetic metal pieces magnetically levitated vertically above the conveyor belt, it can be easily understood that the method of FIG. 4 is more suitable.
[0021]
The device according to the present invention shown in FIG. 1 and the conventional device shown in FIG. 5 are manufactured, and the results of comparing the sorting and collection efficiency of the conductive nonmagnetic metal pieces are described below.
The main dimensions, materials and specifications of each part of the apparatus according to the present invention shown in FIG. 1 are as follows.
Figure 0004012584
The conventional apparatus has the same configuration as the apparatus according to the present invention except that the passive roller 11 and the auxiliary pulley 12 are removed.
[0022]
The processed material subjected to the comparative test is a mixture of resin pellets 5000 cm 3 having a general shape of φ5 × 10 mm and 100 pieces of aluminum pieces of φ10 × 0.5 mm mixed, and the supply to the conveyor belt 10 is performed using a vibration feeder. Repeated tests were conducted. The comparative test results are shown in Table 1.
[0023]
[Table 1]
Figure 0004012584
[0024]
Comparing the average recovery rate from Table 1, the conventional apparatus is 40.8%, while the apparatus according to the present invention shows a high value of 68.8%. Therefore, it is clear that the apparatus according to the present invention is far superior in sorting and collecting small-diameter conductive nonmagnetic metal pieces compared to the conventional one.
[0025]
【The invention's effect】
Since the present invention has the above-described configuration and operation, it solves the problems in the conventionally known rotary drum type non-magnetic metal sorting and collecting apparatus, and in particular, a small-diameter conductive non-magnetic metal piece mixed in the processed material. Sorting and collecting can be performed accurately and reliably.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a sorting and collecting apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing separation / removal means according to an embodiment of the present invention.
FIG. 3 is a diagram for explaining a force acting on a conductive nonmagnetic metal piece of a conventional sorting and collecting apparatus.
FIG. 4 is a view for explaining a force acting on a conductive nonmagnetic metal piece of a sorting and collecting apparatus according to an embodiment of the present invention.
FIG. 5 is a schematic sectional view of a conventional sorting and collecting apparatus.
6 is an enlarged view of a main part of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Drum 2, 2 '... Magnet, 3 ... Yoke, 4 ... Permanent magnet rotor,
5, 8 ... V belt, 6, 7 ... motor, 9 ... drive roller,
10 ... conveyor belt, 11 ... passive roller, 12 ... auxiliary pulley,
13 ... Hopper, 14 ... Non-metal piece, 15 ... Conductive non-magnetic metal piece,
18, 19 ... Recovery container, 20 ... Air injection device

Claims (1)

駆動ローラと受動ローラおよび補助プーリに巻装された無端状のコンベアベルトと、前記コンベアベルトの内周面に接触して設けられ、複数個の磁石を有し回転自在に配置された永久磁石回転子を内蔵した円筒状非磁性ドラムと、前記永久磁石回転子の回転方向を前記コンベアベルトの進行方向と相対的に逆方向とする回転手段と、磁気浮上させた導電性非磁性金属を前記コンベアベルトの進行方向と直交する方向に気体噴射によって分離除去する除去手段とを有することを特徴とする回転ドラム型非磁性金属選別回収装置。An endless conveyor belt wound around a driving roller, a passive roller and an auxiliary pulley, and a permanent magnet rotation provided in contact with the inner peripheral surface of the conveyor belt and having a plurality of magnets and rotatably arranged A cylindrical non-magnetic drum having a built-in element, rotating means for making the rotation direction of the permanent magnet rotor relatively opposite to the traveling direction of the conveyor belt, and the electrically conductive non-magnetic metal magnetically levitated to the conveyor A rotating drum type non-magnetic metal sorting and collecting apparatus, comprising: a removing unit that separates and removes the gas by jetting gas in a direction perpendicular to the belt traveling direction .
JP04806496A 1996-02-09 1996-02-09 Rotating drum type nonmagnetic metal sorting and collecting device Expired - Fee Related JP4012584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04806496A JP4012584B2 (en) 1996-02-09 1996-02-09 Rotating drum type nonmagnetic metal sorting and collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04806496A JP4012584B2 (en) 1996-02-09 1996-02-09 Rotating drum type nonmagnetic metal sorting and collecting device

Publications (2)

Publication Number Publication Date
JPH09215943A JPH09215943A (en) 1997-08-19
JP4012584B2 true JP4012584B2 (en) 2007-11-21

Family

ID=12792930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04806496A Expired - Fee Related JP4012584B2 (en) 1996-02-09 1996-02-09 Rotating drum type nonmagnetic metal sorting and collecting device

Country Status (1)

Country Link
JP (1) JP4012584B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199143A (en) * 2004-01-14 2005-07-28 Japan Superconductor Technology Inc Classification apparatus
JP4403021B2 (en) * 2004-06-11 2010-01-20 新日本製鐵株式会社 Non-ferrous metal sorting apparatus and non-ferrous metal sorting method using the same

Also Published As

Publication number Publication date
JPH09215943A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
US4869811A (en) Rotor for magnetically sorting different metals
US5057210A (en) Apparatus for separating non-magnetizable metals from a solid mixture
HU231442B1 (en) Automated fine and deep separating method for power batteries, and device
JP4012584B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
JPH06246183A (en) Belt conveyor for separating non-magnetic metal
KR102298216B1 (en) Nonferrous metal screening system using eddy current.
JP4057073B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
JP4057076B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
JP4057077B2 (en) Rotating drum type nonmagnetic metal sorting and collecting device
JPH11347442A (en) Rotary drum type nonmagnetic metal sorting recovery device
JP2966263B2 (en) Rotary drum type non-magnetic metal sorting and recovery equipment
US4070278A (en) Magnetic segregation of mixed non-ferrous solid materials in refuse
JP3230268B2 (en) Non-magnetic metal separation belt conveyor device
CN207025569U (en) Asynchronous magnetic separation vortex sorting machine
JPH03224643A (en) Apparatus for recovering non-magnetic metal
JP3227728B2 (en) Non-magnetic metal separator
JP3252269B2 (en) Rotary drum type non-magnetic metal sorting and recovery equipment
JP2827441B2 (en) Non-magnetic metal separation belt conveyor
CN211947177U (en) Non-ferrous metal separating device for papermaking waste
JP3226948B2 (en) Aluminum / copper separation equipment
JP3005555U (en) Non-ferrous metal sorter
JP3230253B2 (en) Non-magnetic metal separation belt conveyor
KR100208862B1 (en) Nonmagnetic metal separating belt conveyor machine
JP2926627B2 (en) Empty can sorter
JP2587204Y2 (en) Non-magnetic metal sorting equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees