JPH11253889A - Method and device for recovering metal from solid waste - Google Patents

Method and device for recovering metal from solid waste

Info

Publication number
JPH11253889A
JPH11253889A JP7488798A JP7488798A JPH11253889A JP H11253889 A JPH11253889 A JP H11253889A JP 7488798 A JP7488798 A JP 7488798A JP 7488798 A JP7488798 A JP 7488798A JP H11253889 A JPH11253889 A JP H11253889A
Authority
JP
Japan
Prior art keywords
particles
collecting
metal
residue
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7488798A
Other languages
Japanese (ja)
Other versions
JP3617767B2 (en
Inventor
Chiaki Izumikawa
千秋 泉川
Koji Matsuda
孝治 松田
Yoshikatsu Matsuda
義勝 松田
Hisashi Sasaki
寿 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP7488798A priority Critical patent/JP3617767B2/en
Publication of JPH11253889A publication Critical patent/JPH11253889A/en
Application granted granted Critical
Publication of JP3617767B2 publication Critical patent/JP3617767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover ferrous metal and aluminum material, and also to enable recovering nonferrous metal such as copper, and lead-zinc in such a shape that it can be introduced into a smelting process by subjecting solid waste to physical sorting from coarse particle groups to fine particle groups while restraining nonmetal such as ceramics from being incorporated. SOLUTION: It this device, solid waste is preferably sorted into 30 mm oversize and 30 mm undersize by a preliminary screen, and the 30 mm undersize is pulverized, and further the pulverized 30 mm undersize is sorted into 2 mm oversize and 2 mm undersize by a vibrating screen, and sorting means are changed according to particle size, shape, and the like. That is, for example, by utilizing magnetic property, ferrous metal is recovered, by utilizing a difference in shape, copper-base metal is recovered, by electrical property, aluminum- base material is recovered, and by utilizing a difference in specific density, lead-copper-base nonferrous metal and nonmetal such as ceramics are separated. In this way, physical sorting is performed in such a shape that the objects each are concentrated, and further, sorting of fine powdery material is performed in a water medium system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固形廃棄物からの金
属回収方法に関し、特に、シュレッダーダストのような
細かい粒群の固形廃棄物に含まれる金属の回収方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering metal from solid waste, and more particularly to a method for recovering metal contained in solid waste of fine particles such as shredder dust.

【0002】[0002]

【従来の技術】自動車、家庭電気製品および建設廃材等
の固形廃棄物を、材料別でみると、鉄系金属、非鉄系金
属、プラスチック、セラミックス等によるいろいろな部
材が使われている。これらのいろいろな材料はまたいろ
いろな形で接合化され、複合化されている。このような
部材からなる固形廃棄物をシュレッダー処理にかけて得
られるシュレッダーダストおよび選別残渣について、物
理選別により比較的再資源化が容易な金属類を回収する
試みはなされている。
2. Description of the Related Art Solid wastes such as automobiles, household electric appliances, and construction waste materials are classified into various materials, such as ferrous metals, non-ferrous metals, plastics, and ceramics. These various materials are also joined and composited in various forms. Attempts have been made to recover metals that are relatively easy to recycle by physical sorting of shredder dust and sorting residues obtained by subjecting solid waste made of such members to shredder treatment.

【0003】例えば、シュレッダーダストおよび選別残
渣は磁力選別機にかけられ、鉄系金属が鉄系金属以外の
ダストとに分けられた後、鉄系金属以外のダストについ
てはさらに比重差を利用して非鉄系金属と非金属類とに
分別されている。また、シュレッダーダストを焼却し、
その焼却灰を処理する方法としては、この焼却灰を押圧
破砕機で破砕すると共に、含まれる金属を偏平にした
後、風力選別、磁力選別あるいは非鉄金属選別機により
金属分を回収する方法が特開平9−75853号公報に
開示されている。
[0003] For example, shredder dust and sorting residue are subjected to a magnetic separator to separate iron-based metal into dust other than iron-based metal. It is classified into base metals and non-metals. In addition, we incinerate shredder dust,
As a method of treating the incinerated ash, a method of crushing the incinerated ash with a press crusher, flattening the contained metal, and collecting a metal component by a wind separation, a magnetic separation, or a non-ferrous metal separator is a special feature. It is disclosed in Japanese Unexamined Patent Publication No. 9-75853.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
分別方法では、固形廃棄物のうちでもシュレッダーダス
トなどの粒子が非常に細かいものについては、金属と非
金属類、特に、非鉄金属と非金属類との分別が十分でな
く、しかも容積の大半をプラスチック類が占めるため処
理の能率が非常に低く、コストの点からもその金属回収
は実現に至っていない。従って、再資源としての金属の
回収は殆ど粗い粒群に限られ、シュレッダーダストのよ
うな細かい粒群においては、鉄や非鉄金属が含まれてい
るにもかかわらず管理型最終処分場に直接埋め立てら
れ、全く再資源化されていないという状況にある。
However, according to the conventional separation method, solid waste having very fine particles such as shredder dust is classified into metals and nonmetals, especially nonferrous metals and nonmetals. The efficiency of the treatment is very low because plastics occupy most of the volume, and the metal recovery has not been realized from the viewpoint of cost. Therefore, the recovery of metal as a resource is almost limited to coarse particles, and fine particles such as shredder dust are directly buried in a managed landfill site despite containing iron and non-ferrous metals. Has not been recycled at all.

【0005】以上の状況に鑑み、本発明は、廃自動車、
廃家電製品、建築廃材あるいはそれらの焼却灰等の固形
廃棄物を破砕後、物理選別で、粗い粒群からシュレッダ
ーダストのような細かい粒群まで、銅および鉛−亜鉛系
の非鉄系金属材と鉄系金属材やその他の非金属材料との
分別を進め、鉄系金属材料を回収すると共に、特に、銅
および鉛−亜鉛等非鉄金属系材料をそのまま製錬工程に
導入可能な状態で回収して効率的にその再資源化を図る
ことを目的とするものである。
[0005] In view of the above situation, the present invention provides a
After crushing solid waste such as waste home appliances, construction waste or their incineration ash, physical sorting is used to remove copper and lead-zinc-based non-ferrous metal materials from coarse particles to fine particles such as shredder dust. Separate ferrous metal materials and other non-metallic materials to recover ferrous metal materials, and in particular, recover non-ferrous metal materials such as copper and lead-zinc in a state where they can be directly introduced into the smelting process. The aim is to achieve efficient resource recycling.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、(1) 固形廃棄物を解砕または粉砕して篩
で篩分する工程と、(2) 前記篩の篩上粒体から鉄系金属
からなる磁着物粒体を回収する工程と、(3) 前記(2) の
磁着物粒体を回収した後の残物からステンレス鋼等の弱
磁性物粒体を回収する工程と、(4) 前記(3) の弱磁性物
粒体を回収したの後の残物から銅およびアルミニウム産
物粒体を回収する工程と、(5) 前記(4)の銅およびアル
ミニウム産物粒体を回収した後の残物から偏平状の非鉄
金属粒体を回収する工程と、(6) 前記(5) の非鉄金属粒
体を回収した後の残物を金属粒体と非金属粒体に分別し
て回収する工程と、(7) 前記(1) の篩の篩下粉粒体から
鉄系金属からなる磁着物粉粒体を回収する工程と、(8)
前記(7) の磁着物粉粒体を回収した後の残物を非鉄金属
粉粒体と非金属粉粒体に分別して回収する工程とからな
ることを特徴とする固形廃棄物からの金属回収方法を提
供する。
Means for Solving the Problems To achieve the above object, the present invention provides (1) a step of crushing or pulverizing solid waste and sieving it with a sieve; And (3) recovering weak magnetic particles such as stainless steel from the residue after collecting the magnetic particles of (2) above. And (4) recovering copper and aluminum product granules from the residue after recovering the weak magnetic material granules of (3), and (5) copper and aluminum product granules of (4). Recovering the flat non-ferrous metal particles from the residue after collecting the body; and (6) removing the residue after recovering the non-ferrous metal particles of the above (5) into metal particles and non-metal particles. (7) a step of collecting magnetically attached particles of an iron-based metal from the undersize particles of the sieve of (1), and (8)
(7) a step of separating and collecting the residue after collecting the magnetically attached powder particles into non-ferrous metal powder particles and non-metal powder particles, and recovering the metal from the solid waste. Provide a way.

【0007】また、本発明は、(1) 固形廃棄物を解砕ま
たは粉砕して篩で篩分する工程と、(2) 前記篩の篩上粒
体から鉄系金属からなる磁着物粒体を回収する工程と、
(3)前記(2) の磁着物粒体を回収した後の残物からステ
ンレス鋼等の弱磁性物粒体を回収する工程と、(4) 前記
(3) の弱磁性物粒体を回収した後の残物から偏平状の非
鉄金属粒体を回収する工程と、(5) 前記(4) の非鉄金属
粒体を回収した後の残物から銅およびアルミニウム産物
粒体を回収する工程と、(6) 前記(5) の銅およびアルミ
ニウム産物粒体を回収した後の残物を金属粒体と非金属
類粒体に分別して回収する工程と、(7) 前記(1) の篩の
篩下粉粒体から鉄系金属からなる磁着物粉粒体を回収す
る工程と、(8) 前記(7) の磁着物粉粒体を回収した後の
残物を非鉄金属粉粒体と非金属粉粒体に分別して回収す
る工程とからなることを特徴とする固形廃棄物からの金
属回収方法を提供する。
Further, the present invention provides (1) a step of crushing or pulverizing solid waste and sieving it with a sieve, and (2) a magnetically attached granular material comprising an iron-based metal from the sieve on the sieve. Collecting the
(3) a step of collecting weak magnetic particles such as stainless steel from the residue after collecting the magnetic particles of (2); (4)
(3) recovering the flat non-ferrous metal particles from the residue after collecting the weak magnetic material particles, and (5) from the residue after collecting the non-ferrous metal particles of the above (4). A step of collecting copper and aluminum product granules, and (6) a step of separating and collecting the residue after collecting the copper and aluminum product granules of the above (5) into metal granules and non-metal granules. (7) a step of recovering the magnetically-attached powder of iron-based metal from the under-sieved powder of the sieve of (1); and (8) a step of recovering the magnetically-coated powder of (7). Separating and collecting non-ferrous metal particles and non-metallic particles from the solid waste.

【0008】本発明は、また、前記篩は篩目1〜5mm
の篩であることを特徴とする固形廃棄物からの金属回収
方法を、さらに、前記篩は篩目2mmの篩であることを
特徴とする固形廃棄物からの金属回収方法を提供する。
According to the present invention, the sieve has a sieve of 1 to 5 mm.
And a method for recovering metal from solid waste, characterized in that the sieve is a sieve having a mesh size of 2 mm.

【0009】そしてまた、本発明は、(1) 固形廃棄物を
解砕または粉砕する粉砕機と、(2)該粉砕機によって得
られた粉粒体を篩分する振動篩と、(3) 該振動篩の篩上
粒体から磁着物粒体を分離して回収する常磁力磁選機
と、(4) 前記(3) の磁着物粒体を回収した後の残物から
ステンレス鋼等の弱磁性物粒体を分離して回収する高磁
力磁選機と、(5) 前記(4) の弱磁性物粒体を回収した後
の残物から銅およびアルミニウム産物粒体を分離して回
収する渦電流選別機と、(6) 前記(5) の銅およびアルミ
ニウム産物粒体を回収した後の残物から偏平状の非鉄金
属粒体を分離して回収する形状分離機と、(7) 前記(6)
の非鉄金属粒体を回収した後の残物を金属粒体と非金属
粒体との分別して回収するジグ選別機と、(8) 前記(2)
の振動篩の篩下粉粒体を分離して回収する湿式磁選機
と、(9) 前記(8) の磁着物粉粒体を回収した後の残物を
重量物としての非鉄金属粉粒体と軽量物としての非金属
粉粒体とに分別して回収する揺動テーブルとを備えてな
ることを特徴とする固形破棄物からの金属回収装置を提
供する。
Further, the present invention provides (1) a pulverizer for crushing or pulverizing solid waste, (2) a vibrating sieve for sieving the powder obtained by the pulverizer, (3) A paramagnetic force magnetic separator for separating and collecting the magnetically attached particles from the on-screen particles of the vibrating sieve; and (4) a stainless steel or the like from the residue obtained after collecting the magnetically attached particles of (3). (5) a vortex for separating and recovering copper and aluminum product particles from the residue obtained after recovering the weak magnetic material particles of (4) above; A current separator, (6) a shape separator that separates and collects flat non-ferrous metal particles from the residue after collecting the copper and aluminum product particles of (5), and (7) the ( 6)
A jig sorter that separates and collects the residue after recovering the non-ferrous metal particles of metal particles and non-metal particles, (8) the (2)
A wet-type magnetic separator for separating and recovering the undersize particles of the vibrating sieve according to (9), And a swinging table that separates and collects the non-metallic powder and granular material as a lightweight material.

【0010】また、本発明は、(1) 固形廃棄物を解砕ま
たは粉砕する粉砕機と、(2) 該粉砕機によって得られた
粉粒体を篩分する振動篩と、(3) 該振動篩の篩上粒体か
ら磁着物粒体を分離して回収する常磁力磁選機と、(4)
前記(3) の磁着物粒体を回収した後の残物からステンレ
ス鋼などの弱磁性物粒体を分離して回収する高磁力磁選
機と、(5) 前記(4) の弱磁性物粒体を回収した後の残物
から偏平状の非鉄金属粒体を分離して回収する形状分離
機と、(6) 前記(5) の非鉄金属粒体を回収した後の残物
から銅およびアルミニウム産物粒体を分離して回収する
渦電流選別機と、(7) 前記(6) の銅およびアルミニウム
産物粒体を回収した後の残物を金属粒体と非金属粒体と
に分別して回収するジグ選別機と、(8) 前記(2) の振動
篩の篩下粉粒体から磁着物粉粒体を分離して回収する湿
式磁選機と、(9) 前記(8) の磁着物粉粒体を回収した後
の残物を重量物としての非鉄金属粉粒体と軽量物として
の非金属粉粒体とに分別して回収する揺動テーブルとを
備えてなることを特徴とする固形廃棄物からの金属回収
装置を提供する。
The present invention also provides (1) a pulverizer for crushing or pulverizing solid waste, (2) a vibrating sieve for sieving the powder obtained by the pulverizer, and (3) a vibrating sieve. A paramagnetic separator which separates and collects the magnetically attached particles from the on-screen particles of the vibrating screen, and (4)
(5) a high magnetic force magnetic separator for separating and collecting a weak magnetic material such as stainless steel from the residue after collecting the magnetically attached particles of (3); and (5) a weak magnetic material of (4). A shape separator for separating and collecting flat non-ferrous metal particles from the residue after collecting the body, and (6) copper and aluminum from the residue after collecting the non-ferrous metal particles of (5) above. An eddy current sorter for separating and recovering product granules, and (7) separating and recovering the residue obtained after recovering the copper and aluminum product granules in (6) above into metal particles and non-metal particles. (8) a wet-type magnetic separator that separates and collects the magnetically-coated particles from the undersize particles of the vibrating sieve of (2), and (9) the magnetically-coated powder of (8). A solid table comprising: a rocking table that separates and collects non-ferrous metal particles as a heavy material and non-metal particles as a lightweight material after collecting the granules. To provide a metal recovery apparatus from wastes.

【0011】本発明は、また、前記振動篩が篩目1〜5
mmの振動篩であることを特徴とする固形廃棄物からの
金属回収装置を、さらに、前記振動篩は篩目2mmの振
動篩であることを特徴とする固形廃棄物からの金属回収
装置を提供する。
[0011] The present invention also provides that the vibrating sieve has a mesh size of 1 to 5;
The present invention provides a metal recovery device from solid waste, characterized by being a vibrating sieve having a diameter of 2 mm, and a device for recovering metal from solid waste, wherein the vibrating sieve is a vibrating sieve having a mesh size of 2 mm. I do.

【0012】[0012]

【発明の実施の形態】廃自動車、廃家電製品、建設廃材
あるいはそれらの焼却灰等の固形廃棄物は、鉄系金属、
非鉄系金属および非金属を、塊状のものから集塵ダスト
のような非常に細かい粒群のものまで非常に広い粒度の
分布で含んでいる。
BEST MODE FOR CARRYING OUT THE INVENTION Solid waste such as waste automobiles, waste home appliances, construction waste, and incinerated ash thereof are made of ferrous metals,
It contains non-ferrous metals and non-metals in a very wide particle size distribution, from lumps to very fine particles such as dust dust.

【0013】本発明においては、前記の非常に広い粒群
の固形廃棄物を、好ましくはそれら固形廃棄物を予備篩
で篩分して得られた篩下残渣を対象とし、この篩下残渣
を粉砕し、さらに、篩で篩上粒体と篩下粉粒体に分別
し、粒度により選別手段を選択して物理的分別濃縮化を
進めることにより、金属特に非鉄系金属の抽出率を高め
ることができる。
In the present invention, the above-mentioned solid waste of a very wide particle group, preferably, a sieve residue obtained by sieving the solid waste with a preliminary sieve, is targeted. Pulverizing, further separating by a sieve into upper sieve granules and lower sieve granules, selecting a sorting means according to particle size, and proceeding with physical separation and concentration, thereby increasing the extraction rate of metals, especially non-ferrous metals. Can be.

【0014】即ち、前記篩の篩上粒体においては、磁気
的性質を利用して鉄系金属を、電気的性質を利用してア
ルミニウム系および/または銅系金属を、形状の違いを
利用して銅系金属および/またはステンレス鋼を回収
し、また、比重差を利用して鉛・亜鉛等非鉄系金属とガ
ラス・セラミックス等非金属類とに分別し、さらに、前
記篩の篩下粉粒子においては、磁気的性質を利用して鉄
系金属を、また、比重差を利用して銅等の非鉄系金属と
ガラス等非金属類とに分別する。
That is, in the on-screen particles of the sieve, iron-based metal is utilized by utilizing magnetic properties, aluminum-based and / or copper-based metal is utilized by utilizing electrical properties, and the difference in shape is utilized. To collect copper-based metal and / or stainless steel, and to separate non-ferrous metal such as lead / zinc and non-metals such as glass / ceramics using difference in specific gravity. In the above, iron-based metals are separated into non-ferrous metals such as copper and non-metals such as glass using a difference in specific gravity using magnetic properties.

【0015】前記予備篩は次工程以降のトラブルを防ぐ
ためのものであるが、その篩目は、一般的に採用される
機器類を想定すれば、20〜50mmが好ましく、さら
に好ましくは30mmである。
The preliminary sieve is for preventing troubles in the subsequent steps. The sieve mesh is preferably 20 to 50 mm, more preferably 30 mm, assuming generally used equipment. is there.

【0016】以下、図1の固形廃棄物からの金属回収工
程を示すフローシートを参照し、固形廃棄物としてのシ
ュレッダーダストをロータリーキルンで焼却して得られ
た焼却残渣を対象に、本発明の実施の形態について説明
する。
Hereinafter, referring to a flow sheet showing a process of recovering metal from solid waste shown in FIG. 1, the present invention is applied to incineration residue obtained by incinerating shredder dust as solid waste by a rotary kiln. The embodiment will be described.

【0017】シュレッダーダストの焼却残渣は比較的多
量の鉄分を含むものもあるが、ホッパーを介して篩目3
0mmの予備振動篩に供給することにより、全量の10
%以下をなす30mm以上の篩上残渣と90%以上を占
める30mm以下の篩下残渣を得ることができる。
Although the incineration residue of shredder dust may contain a relatively large amount of iron, it is sieved through a hopper.
By feeding the pre-vibration sieve of 0 mm, the total amount of 10
% Or less, and a 30 mm or less undersize residue, which accounts for 90% or more, can be obtained.

【0018】30mm篩上残渣には鉄系金属単味又は単
味に近いものが多いため、通常の磁力の吊下げ磁選機に
供給し、鉄を主体とする鉄系金属による磁着物残渣と銅
その他を含む非鉄系金属による非磁着性残渣とに分別す
る。磁着物残渣は鉄スクラップとして回収されて市場に
供され、非磁着物残渣からは容易に手選別により製錬工
程用の銅系材を回収することができる。
Since there are many 30 mm sieve residues on the iron-based metal plain or almost plain, the residue is supplied to a suspended magnetic separator with a normal magnetic force, and the iron-based metal residue mainly composed of iron and copper It is separated from non-magnetic adhesion residue by non-ferrous metals including others. The magnetically attached residue is recovered as iron scrap and supplied to the market, and the copper-based material for the smelting process can be easily recovered from the non-magnetically attached residue by manual selection.

【0019】30mm篩下残渣は、鉄、銅、アルミニウ
ム等が複合的に混在するが、長手の鉄片が30mm振動
篩を通って次工程以降のトラブルを引き起こす場合があ
り、その防止のため好ましくは吊下げ磁選機(図1に図
示せず)にかけた後、ボールミル等粉砕機に供給して粉
砕し、篩目2mmの振動篩等篩に供給して分別する。2
mm篩上の粒体は鉄および銅を多く含み、常磁力磁選機
によって鉄系金属が大部分を占める磁着物粒体を分離回
収する。
Iron, copper, aluminum, etc., are mixed in the 30 mm sieve residue in a complex manner. However, a long iron piece may pass through the 30 mm vibrating sieve and cause troubles in the next and subsequent steps. After passing through a hanging magnetic separator (not shown in FIG. 1), the mixture is supplied to a pulverizer such as a ball mill and pulverized, and supplied to a vibrating sieve such as a vibrating sieve having a sieve of 2 mm to be separated. 2
The particles on the mm sieve contain a large amount of iron and copper, and the magnetized particles, which are mostly iron-based metals, are separated and recovered by a paramagnetic force magnetic separator.

【0020】次いで、この磁着物粒体を回収した後の残
物即ち非磁着物粒子は6000〜7000ガウスの磁力
を備える高磁力磁選機に供給し、ステンレス鋼等の弱磁
性物粒体を分離回収する。
Next, the residue after the magnetic particles are recovered, that is, non-magnetic particles, are supplied to a high magnetic force magnetic separator having a magnetic force of 6000 to 7000 gauss to separate weak magnetic particles such as stainless steel. to recover.

【0021】弱磁性物粒体を回収した後の残物即ち非弱
磁性物粒子は、渦電流選別機に供給することにより、渦
電流による磁気反発力によって比重の小さいアルミニウ
ム分の他銅系金属をも含む導電性の銅・アルミ産物粒体
を分離し回収することができる。
The residue after the recovery of the particles of the weak magnetic material, that is, the non-weak magnetic particles, is supplied to an eddy current sorter, and the magnetic repulsion by the eddy current causes the aluminum-based material having a small specific gravity to contain other copper-based metals. The conductive copper / aluminum product granules also containing and can be separated and recovered.

【0022】さらに、銅・アルミ産物粒体を回収した後
の残物即ち非銅・アルミ産物粒体は、形状分離機にかけ
られ、銅系金属の他前記高磁力磁選機に磁着しなかった
ステンレス鋼をも含む偏平状の非鉄金属粒体が分離回収
され、銅製錬工程に混用原料として供給できる。形状分
離機は0〜40°に傾けて粒体を搬送するベルトコンベ
アで粒子をその搬送中に粒子の比重差や形状差及び形状
に基づく摩擦の差によって分別するものである。
Further, the residue obtained after collecting the copper / aluminum product granules, ie, the non-copper / aluminum product granules, was subjected to a shape separator, and did not magnetically adhere to the copper-based metal and the high magnetic force magnetic separator. Flat non-ferrous metal particles including stainless steel are separated and recovered, and can be supplied as a mixed raw material to the copper smelting process. The shape separator separates particles by a difference in specific gravity, a difference in shape, and a difference in friction based on the shape of the particles during the conveyance by a belt conveyor that conveys the particles at an angle of 0 to 40 °.

【0023】次いで、残物即ち非偏平金属粒体を垂直筒
内に上昇水流を流したメタルジグ選別機に導入すること
により、比重差を利用してガラス・セラミックス類を主
体とする非金属類から、これまで分離しきれなかった金
属粒体を分別し回収することができる。この金属粒体に
は、銅、鉛、亜鉛が含まれており、製錬工程に送られ
る。
Next, the residue, that is, the non-flat metal particles are introduced into a metal jig sorter in which a rising water flow is flown in a vertical cylinder, so that the non-metals mainly composed of glass / ceramics are utilized by utilizing the specific gravity difference. In addition, metal particles that have not been separated can be separated and collected. The metal particles contain copper, lead and zinc and are sent to the smelting process.

【0024】上記の渦電流選別工程から形状分離工程の
順は磁着しない偏平なステンレス鋼が多く含まれる場合
に有効で、銅・アルミ産物粒体からステンレス鋼をなる
べく除きたい場合に用いる。また、銅とアルミニウムの
分離は必要あれば、後工程で比重差を利用した方法によ
って行う。
The order from the eddy current selection step to the shape separation step is effective when a large amount of flat stainless steel not magnetized is contained, and is used when it is desired to remove stainless steel from copper / aluminum product granules as much as possible. If necessary, copper and aluminum are separated by a method utilizing a difference in specific gravity in a later step.

【0025】逆に、ステンレス鋼が無視できる程度に少
量含まれる場合は、上記の両工程の渦電流選別機と形状
分離機の順を入れ替えて、弱磁性物粒体を回収した後の
非弱磁性物粒体から形状分離機により銅粒体を主に回収
し、引き続き渦電流選別機に供給してアルミニウム粒体
を回収する工程とする。従って、この場合、後工程で銅
とアルミニウムの分離は必要なくなる。
Conversely, if the stainless steel is contained in a negligibly small amount, the order of the eddy current sorter and the shape separator in the above two steps is changed so that the non-weak state after the recovery of the weak magnetic material particles is obtained. This is a process in which copper particles are mainly recovered from the magnetic particles by a shape separator, and subsequently supplied to an eddy current sorter to recover aluminum particles. Therefore, in this case, there is no need to separate copper and aluminum in a later step.

【0026】一方、前記の篩目2mmの振動篩等篩にお
ける2mm篩下粉粒体は焼却残渣の大部分を占めるもの
であるが、成分としても、銅、鉛、亜鉛およびアルミニ
ウム等を含んでいる。この2mm篩下粉粒体は微粉状態
のものを多く含み、且つ、前工程の粉砕機や振動篩等で
水分を含むようになるため水媒体方式の処理を利用す
る。また、この水媒体方式は処理量が多い場合の処理に
おいても有利である。即ち、2mm篩下粉粒体はまず湿
式磁選機に供給して磁選する。この湿式磁選機による鉄
系金属を含む磁着物粉粒体は少量であるが、残物即ち非
磁着物粉粒体はさらにスパイラル分級機(エーキンス)
に導入し、比較的重い粗粉粒体と比較的軽い微粉粒体と
に分級する。スパイラル分級機でスクリューにより掻き
上げられた粗粉粒体の方は、引き続き揺動テーブルに供
給される。
On the other hand, the 2 mm sub-sieve powder in the above-mentioned 2 mm vibrating sieve or the like occupies most of the incineration residue, but contains copper, lead, zinc, aluminum and the like as components. I have. The 2 mm undersize sieve powder contains a large amount of fine powder, and contains water in a pulverizer, vibrating sieve, or the like in the previous process, so that an aqueous medium process is used. In addition, this aqueous medium method is also advantageous in processing when the processing amount is large. That is, the 2 mm sieve powder is first supplied to a wet magnetic separator to perform magnetic separation. Although the amount of the magnetically-attached powder containing iron-based metal by this wet magnetic separator is small, the residue, that is, the non-magnetically-attached powder is further separated by a spiral classifier (Ekins).
And classified into relatively heavy coarse particles and relatively light fine particles. The coarse powder granulated by the screw in the spiral classifier is continuously supplied to the swinging table.

【0027】揺動テーブルは、導入された粗粉粒体に水
を供給してテーブルの揺動により、比重差選別を行うも
ので、この揺動テーブルにより重量物として銅を主体と
する非鉄金属粉粒体が回収できる。なお、前記スパイラ
ル分級機から供給水によって導出される微粉粒体の方は
液体サイクロンに供給し、この液体サイクロンの底部か
ら抽出した重量物粉粒体は前記スパイラル分級機からの
粗粉粒体と共に揺動テーブルに供給する。
The oscillating table performs a specific gravity difference sorting by oscillating the table by supplying water to the introduced coarse particles, and the oscillating table uses a non-ferrous metal mainly composed of copper as a heavy material. Granules can be collected. In addition, the fine powder and granular material derived from the spiral classifier by the supply water is supplied to a liquid cyclone, and the heavy powder and granular material extracted from the bottom of the liquid cyclone together with the coarse powder and granular material from the spiral classifier. Supply to swing table.

【0028】揺動テーブルから軽量物として分離された
非金属粉粒体はさらに沈降槽に供給された後、沈殿物と
して回収される。この沈殿物はガラス・セラミックス等
非金属物を主体とし金属回収には不適当であって、管理
型最終処分場に蓄積する。沈降槽からの溢流水は前記液
体サイクロンからの浮遊粉粒体流と共にコーンタンクに
導入し、その沈殿物はフィルタープレスにより濾過回収
されるが、濾滓は非金属粉粒体であり管理型最終処分場
に蓄積する。コーンタンクおよびフィルタープレスから
の分離水は循環使用する。なお、コーンタンクのみでの
固液分離では、コーンタンクが固形分で閉塞され易いの
で、前段に沈降槽を設けて予め大きな固形分を除去して
おくのが望ましい。
The non-metallic powder separated from the rocking table as a lightweight material is further supplied to a sedimentation tank and then recovered as a sediment. This precipitate is mainly composed of non-metallic materials such as glass and ceramics, and is unsuitable for metal recovery, and accumulates in a controlled final disposal site. The overflow water from the sedimentation tank is introduced into the cone tank together with the suspended particulate stream from the hydrocyclone, and the precipitate is collected by filtration using a filter press. Accumulate at the disposal site. The separated water from the cone tank and the filter press is recycled. In the solid-liquid separation using only the cone tank, the cone tank is likely to be clogged with solids. Therefore, it is desirable to provide a sedimentation tank in the previous stage to remove large solids in advance.

【0029】即ち、本発明の固形廃棄物からの金属回収
方法によれば、シュレッダーダストのような細かい粒群
においても、鉄系金属即ち磁性物粉粒体が焼却残渣から
回収され、また、アルミニウムを高い比率で含むアルミ
ニウム滓が回収されると共に、非鉄製錬工程に導入可能
な程度に銅、鉛、亜鉛が濃縮された非鉄系金属粉粒体が
ガラスやセラミックス等非金属類から高い比率量で分離
できる。
That is, according to the method for recovering metal from solid waste of the present invention, even in a fine particle group such as shredder dust, an iron-based metal, that is, a magnetic substance powder is recovered from an incineration residue, and aluminum is removed. Aluminum slag containing a high proportion of non-ferrous metal powder, which is enriched with copper, lead and zinc so that it can be introduced into the non-ferrous smelting process Can be separated.

【0030】[0030]

【実施例】以下、シュレッダーダストをロータリーキル
ンで焼却した焼却残渣について図1のフローシートの方
法及び装置に従って処理し、金属分の分布及び回収状況
を調査した。
EXAMPLES The incineration residue obtained by incinerating shredder dust in a rotary kiln was treated according to the method and apparatus of the flow sheet shown in FIG. 1, and the distribution of metals and the state of recovery were investigated.

【0031】即ち、表2に示す成分のカーシュレッダー
ダストの焼却残渣を篩目30mmの予備振動篩に供給し
て篩分した。次いで、30mm篩上残渣について170
0ガウスの磁力をもつ吊下げ磁選機により磁着物と非磁
着物に分別した。30mm篩下残渣は、図示しない17
00ガウスの吊下げ磁選機に供給した後、粉砕機即ちボ
ールミルでさらに粉砕し、その粉粒体を篩目2mmの振
動篩で篩分した。2mm篩上粒体即ち2〜30mmの粒
体を2700ガウスの常磁力磁選機にかけて磁着物粒体
を回収した。
That is, the incineration residue of the car shredder dust having the components shown in Table 2 was supplied to a preliminary vibrating sieve having a sieve of 30 mm and sieved. Next, 170 mm for the 30 mm sieve residue
The suspended magnetic separator having a magnetic force of 0 gauss was used to separate magnetically adhered and non-magnetically attached materials. The 30 mm sieve residue is not shown in FIG.
After supplying the suspension to a 00-gauss hanging magnetic separator, it was further pulverized by a pulverizer, that is, a ball mill, and the powder was sieved with a vibrating sieve having a sieve of 2 mm. The 2 mm sieved granules, that is, 2 to 30 mm granules, were subjected to a 2700 gauss paramagnetic force magnetic separator to collect magnetized particles.

【0032】またさらに、この残物即ち非磁着物粒体を
6500ガウスの高磁力磁選機に供給し、弱磁性物粒体
を回収した後、その残物即ち非弱磁性物粒体を3500
ガウスの渦電流選別機に投入し、導電性の銅・アルミ産
物粒体を回収した。さらに、残物即ち非銅・アルミ産物
粒体を形状分離機に掛け、形状の相違から銅分の高い偏
平金属粒体を回収した。残物即ち非偏平金属粒体はさら
に、メタルジグ選別機に供給することにより、金属粒体
とガラスやセラミッスクス等非金属粒体とを分別回収し
た。
Further, the residue, that is, the non-magnetically attached particles are supplied to a 6500 gauss high magnetic force magnetic separator, and the weak magnetic particles are collected.
It was put into a Gaussian eddy current separator, and the conductive copper and aluminum product particles were collected. Further, the residue, that is, non-copper / aluminum product granules were applied to a shape separator, and flat metal granules having a high copper content were recovered from the difference in shape. The residue, that is, the non-flat metal particles were further supplied to a metal jig sorter to separate and collect the metal particles and non-metal particles such as glass and ceramics socks.

【0033】2mm篩下粉粒体は、1500ガウスの湿
式磁選機に供給し、磁着物粉粒体を回収した。分別され
た残物即ち非磁着物粉粒体はスパイラル分級機に供給
し、このスパイラル分級機からの粗粉粒体は揺動テーブ
ルに供給した。また、このスパイラル分級機から液体サ
イクロンを経由して得られた粗粉粒体もまた揺動テーブ
ルに供給した。揺動テーブルから重量物として非鉄金属
粉粒体を回収すると共に、揺動テーブルから軽量物とし
て回収した非金属粉粒体は沈降槽に導入して沈殿物とし
てガラス等非金属沈殿物を得、沈降槽からの溢流物と前
記液体サイクロンからの浮遊粉粒体については合流的に
コーンタンクを経由させてフィルタープレスに供給する
沈降・濾過処理により濾滓としてガラス等非金属粉粒体
を得た。
The 2 mm sieved powder was supplied to a 1500-gauss wet-type magnetic separator to collect the magnetically-coated powder. The separated residue, that is, the non-magnetically attached particles were supplied to a spiral classifier, and the coarse particles from the spiral classifier were supplied to a rocking table. The coarse powder obtained from the spiral classifier via the liquid cyclone was also supplied to the rocking table. While recovering the non-ferrous metal powder as a heavy material from the rocking table, the non-metal powder collected as a lightweight from the rocking table is introduced into a sedimentation tank to obtain a non-metallic precipitate such as glass as a precipitate, Non-metallic powders such as glass are obtained as a filter cake by settling / filtration of the overflow from the sedimentation tank and the suspended particulates from the liquid cyclone through a cone tank to a filter press. Was.

【0034】上記の回収物についての、銅、鉛、亜鉛、
鉄及びアルミニウムの分析値を表1に示した。
Copper, lead, zinc,
The analytical values of iron and aluminum are shown in Table 1.

【0035】[0035]

【表1】 また、焼却残渣の処理量を100%とした場合の各回収
物における量分布割合と、焼却残渣の成分量を100%
とした場合の各回収物における成分分布割合を表2に示
した。
[Table 1] Further, when the treatment amount of the incineration residue is assumed to be 100%, the amount distribution ratio in each collected material and the component amount of the incineration residue are 100%.
Table 2 shows the component distribution ratios in each of the collected materials in the case of the above.

【0036】[0036]

【表2】 即ち、焼却残渣に混在して有用金属の抽出を妨げていた
ガラスやセラミックス等非金属類を、濃縮した形で処理
残渣の76%程度の割合で分離し、ニッケルやクロムあ
るいはコバルトを随伴する鉄が73〜83%含まれる鉄
系金属を6%程度に回収し、また、アルミニウムを26
%程度含むアルミニウム滓を処理残渣の1%程度回収し
てスクラップとして市場に供給できるようにすると共
に、銅が23〜55%、鉛が0.2〜2%、亜鉛が2〜
6%程度に含み非鉄製錬工程への導入が可能な非鉄系金
属材を処理残渣の15%程度の量で回収することができ
た。
[Table 2] That is, non-metals such as glass and ceramics, which were mixed in the incineration residue and hindered extraction of useful metals, were separated in a concentrated form at a ratio of about 76% of the treatment residue, and the iron with nickel, chromium or cobalt was separated. To about 6% of the iron-based metal containing 73 to 83% of
% Of aluminum slag containing about 1% of the processing residue is recovered and supplied to the market as scrap, while copper is 23 to 55%, lead is 0.2 to 2%, and zinc is 2 to 2%.
The nonferrous metal material contained in about 6% and capable of being introduced into the nonferrous smelting process could be recovered in about 15% of the processing residue.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
によれば、固形廃棄物から、物理選別で非金属類の濃縮
分別を進めることにより、鉄系金属材およびアルミウム
系金属材を回収すると共に銅系および鉛−亜鉛系の非鉄
金属材を製錬工程に導入可能な程度に濃縮した形で回収
してその再資源化が図れる効率的な処理方法およびその
ための装置を提供できる。
As is apparent from the above description, according to the present invention, iron-based metal materials and aluminum-based metal materials are recovered from solid wastes by performing non-metals concentration and separation by physical separation. In addition, it is possible to provide an efficient treatment method capable of recovering and recycling copper-based and lead-zinc-based non-ferrous metal materials in such a form that they can be introduced into a smelting process, and an apparatus therefor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固形廃棄物からの金属回収工程を示す
フローシートである。
FIG. 1 is a flow sheet showing a process for recovering metal from solid waste according to the present invention.

フロントページの続き (72)発明者 佐々木 寿 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内Continuation of front page (72) Inventor Hisashi Sasaki 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】(1) 固形廃棄物を解砕または粉砕して篩で
篩分する工程と、(2) 前記篩の篩上粒体から鉄系金属か
らなる磁着物粒体を回収する工程と、(3) 前記(2) の磁
着物粒体を回収した後の残物からステンレス鋼等の弱磁
性物粒体を回収する工程と、(4) 前記(3) の弱磁性物粒
体を回収した後の残物から銅およびアルミニウム産物粒
体を回収する工程と、(5) 前記(4) の銅およびアルミニ
ウム産物粒体を回収した後の残物から偏平状の非鉄金属
粒体を回収する工程と、(6) 前記(5) の非鉄金属粒子を
回収した後の残物を金属粒体と非金属粒体に分別して回
収する工程と、(7) 前記(1) の篩の篩下粉粒体から鉄系
金属からなる磁着物粉粒体を回収する工程と、(8) 前記
(7) の磁着物粉粒体を回収した後の残物を非鉄金属粉粒
体と非金属粉粒体に分別して回収する工程とからなるこ
とを特徴とする固形廃棄物からの金属回収方法。
(1) a step of crushing or pulverizing solid waste and sieving it with a sieve; and (2) a step of collecting magnetically attached particles made of iron-based metal from the on-screen particles of the sieve. And (3) a step of collecting a weak magnetic material such as stainless steel from the residue after collecting the magnetically attached material of (2); and (4) a weak magnetic material of (3). Recovering copper and aluminum product granules from the residue after recovering, and (5) removing flat non-ferrous metal particles from the residue after collecting the copper and aluminum product granules of (4). (6) a step of separating and collecting the residue after collecting the non-ferrous metal particles of the above (5) into metal particles and non-metal particles, and (7) a sieve of the above (1). Recovering the magnetically attached powder of iron-based metal from the undersize powder, (8)
(7) separating and collecting non-ferrous metal particles and non-metal particles after collecting the magnetically attached particles of (7), and recovering the metal from solid waste. .
【請求項2】(1) 固形廃棄物を解砕または粉砕して篩で
篩分する工程と、(2) 前記篩の篩上粒体から鉄系金属か
らなる磁着物粒体を回収する工程と、(3) 前記(2) の磁
着物粒体を回収した後の残物からステンレス鋼等の弱磁
性物粒体を回収する工程と、(4) 前記(3) の弱磁性物粒
子粒体を回収した後の残物から偏平状の非鉄金属粒体を
回収する工程と、(5) 前記(4) の非鉄金属粒体を回収し
た後の残物から銅およびアルミニウム産物粒体を回収す
る工程と、(6) 前記(5) の銅およびアルミニウム産物粒
体を回収した後の残物を金属粒体と非金属粒体に分別し
て回収する工程と、(7) 前記(1) の篩の篩下粉粒体から
鉄系金属からなる磁着物粉粒体を回収する工程と、(8)
前記(7) の磁着物粉粒体を回収した後の残物を非鉄金属
粉粒体と非金属粉粒体に分別して回収する工程とからな
ることを特徴とする固形廃棄物からの金属回収方法。
And (2) a step of crushing or pulverizing the solid waste and sieving it with a sieve, and (2) a step of collecting magnetically attached particles made of an iron-based metal from the on-screen particles of the sieve. And (3) a step of collecting weak magnetic particles such as stainless steel from the residue after collecting the magnetically attached particles of (2); and (4) a step of collecting the weak magnetic particles of (3). Recovering flat non-ferrous metal particles from the residue after collecting the body, and (5) recovering copper and aluminum product particles from the residue after recovering the non-ferrous metal particles of (4). (6) a step of separating and collecting the residue after collecting the copper and aluminum product granules of the above (5) into metal granules and non-metal granules, and (7) a process of the above (1). A step of recovering the magnetically attached particles of iron-based metal from the undersize particles of the sieve, and (8)
(7) a step of separating and collecting the residue after collecting the magnetically attached powder particles into non-ferrous metal powder particles and non-metal powder particles, and recovering the metal from the solid waste. Method.
【請求項3】前記篩は篩目1〜5mmの篩であることを
特徴とする請求項1または2記載の固形廃棄物からの金
属回収方法。
3. The method for recovering metal from solid waste according to claim 1, wherein said sieve is a sieve having a mesh size of 1 to 5 mm.
【請求項4】前記篩は篩目2mmの篩であることを特徴
とする請求項1または2記載の固形廃棄物からの金属回
収方法。
4. The method for recovering metal from solid waste according to claim 1, wherein the sieve is a sieve having a sieve of 2 mm.
【請求項5】(1) 固形廃棄物を解砕または粉砕する粉砕
機と、(2) 該粉砕機によって得られた粉粒体を篩分する
振動篩と、(3) 該振動篩の篩上粒体から磁着物粒体を分
離して回収する常磁力磁選機と、(4) 前記(3) の磁着物
粒体を回収した後の残物からステンレス鋼等の弱磁性物
粒体を分離して回収する高磁力磁選機と、(5) 前記(4)
の弱磁性物粒体を回収した後の残物から銅およびアルミ
ニウム産物粒体を分離して回収する渦電流選別機と、
(6) 前記(5) の銅およびアルミニウム産物粒体を回収し
た後の残物から偏平状の非鉄金属粒体を分離して回収す
る形状分離機と、(7) 前記(6) の非鉄金属粒体を回収し
た後の残物を金属粒体と非金属粒体とに分別して回収す
るジグ選別機と、(8) 前記(2) の振動篩の篩下粉粒体か
ら磁着物粉粒体を分離して回収する湿式磁選機と、(9)
前記(8) の磁着物粉粒体を回収した後の残物を重量物と
しての非鉄金属粉粒体と軽量物としての非金属粉粒体と
に分別して回収する揺動テーブルとを備えてなることを
特徴とする固形廃棄物からの金属回収装置。
5. A crusher for crushing or crushing solid waste, (2) a vibrating sieve for sifting the powder obtained by the crusher, and (3) a sieve for the vibrating sieve. A paramagnetic force magnetic separator that separates and collects the magnetic particles from the upper particles, and (4) a weak magnetic material such as stainless steel from the residue after collecting the magnetic particles of (3). A high magnetic force magnetic separator for separation and recovery, (5) the above (4)
An eddy current sorter that separates and collects copper and aluminum product granules from the residue after collecting the weak magnetic material granules,
(6) a shape separator for separating and collecting flat non-ferrous metal particles from the residue after collecting the copper and aluminum product particles of (5), (7) the non-ferrous metal of (6) A jig sorter that separates and collects the residue after collecting the granules into metal granules and non-metal granules, and (8) the magnetic sediment granules from the granules under the vibrating sieve of (2). Wet magnetic separator that separates and collects the body, (9)
A swinging table for separating and collecting the residue obtained after collecting the magnetically attached particles of the above (8) into non-ferrous metal particles as a heavy material and non-metallic particles as a lightweight material; An apparatus for recovering metal from solid waste.
【請求項6】(1) 固形廃棄物を解砕または粉砕する粉砕
機と、(2) 該粉砕機によって得られた粉粒体を篩分する
振動篩と、(3) 該振動篩の篩上粒体から磁着物粒体を分
離して回収する常磁力磁選機と、(4) 前記(3) の磁着物
粒体を回収した後の残物からステンレス鋼等の弱磁性物
粒体を分離して回収する高磁力磁選機と、(5) 前記(4)
の弱磁性物粒体を回収した後の残物から偏平状の非鉄金
属粒体を分離して回収する形状分離機と、(6) 前記(5)
の非鉄金属粒体を回収した後の残物から銅およびアルミ
ニウム産物粒体を分離して回収する渦電流選別機と、
(7) 前記(6) の銅およびアルミニウム産物粒体を回収し
た後の残物を金属粒体と非金属粒体とに分別して回収す
るジグ選別機と、(8) 前記(2) の振動篩の篩下粉粒体か
ら磁着物粉粒体を分離して回収する湿式磁選機と、(9)
前記(8) の磁着物粉粒体を回収した後の残物を重量物と
しての非鉄金属粉粒体と軽量物としての非金属粉粒体と
に分別して回収する揺動テーブルとを備えてなることを
特徴とする固形廃棄物からの金属回収装置。
6. A crusher for crushing or crushing solid waste, (2) a vibrating sieve for sieving the powder obtained by the crusher, and (3) a vibrating sieve for the vibrating sieve. A paramagnetic force magnetic separator that separates and collects the magnetic particles from the upper particles, and (4) a weak magnetic material such as stainless steel from the residue after collecting the magnetic particles of (3). A high magnetic force magnetic separator for separation and recovery, (5) the above (4)
A shape separator for separating and collecting flat non-ferrous metal particles from the residue after collecting the weak magnetic material particles, (6) the (5)
An eddy current sorter that separates and collects copper and aluminum product granules from the residue after collecting the non-ferrous metal granules,
(7) a jig sorter that separates and collects the residue after collecting the copper and aluminum product granules of (6) into metal granules and non-metal granules, and (8) the vibration of (2). A wet magnetic separator that separates and collects the magnetically attached particles from the undersize particles of the sieve, (9)
A swinging table for separating and collecting the residue obtained after collecting the magnetically attached particles of the above (8) into non-ferrous metal particles as a heavy material and non-metallic particles as a lightweight material; An apparatus for recovering metal from solid waste.
【請求項7】前記振動篩が篩目1〜5mmの振動篩であ
ることを特徴とする請求項5または6記載の固形物廃棄
物からの金属回収装置。
7. The apparatus for recovering metal from solid waste according to claim 5, wherein said vibrating sieve is a vibrating sieve having a mesh size of 1 to 5 mm.
【請求項8】前記振動篩が篩目2mmの振動篩であるこ
とを特徴とする請求項5または6記載の固形廃棄物から
の金属回収装置。
8. The apparatus for recovering metal from solid waste according to claim 5, wherein said vibrating sieve is a vibrating sieve having a mesh of 2 mm.
JP7488798A 1998-03-09 1998-03-09 Method and apparatus for recovering metal from solid waste Expired - Fee Related JP3617767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7488798A JP3617767B2 (en) 1998-03-09 1998-03-09 Method and apparatus for recovering metal from solid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7488798A JP3617767B2 (en) 1998-03-09 1998-03-09 Method and apparatus for recovering metal from solid waste

Publications (2)

Publication Number Publication Date
JPH11253889A true JPH11253889A (en) 1999-09-21
JP3617767B2 JP3617767B2 (en) 2005-02-09

Family

ID=13560340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7488798A Expired - Fee Related JP3617767B2 (en) 1998-03-09 1998-03-09 Method and apparatus for recovering metal from solid waste

Country Status (1)

Country Link
JP (1) JP3617767B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179221A (en) * 1999-12-22 2001-07-03 Dowa Mining Co Ltd Method and apparatus for segregated recovery of communication device and recovery substrate part
JP2006159047A (en) * 2004-12-06 2006-06-22 Mitsubishi Electric Corp Specific-gravity sorting method of mixed crushed-materials and specific-gravity sorting apparatus of mixed crushed-materials
JP2008080329A (en) * 2006-08-29 2008-04-10 Yamazaki Jari Shoten:Kk Material recovery system and material recovery method
JP2008264667A (en) * 2007-04-19 2008-11-06 Takuma Co Ltd Burned ash particle sorting method
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles
JP2009056362A (en) * 2007-08-30 2009-03-19 Nikko Kinzoku Kk Incinerator ash treatment system
CN102029223A (en) * 2010-11-22 2011-04-27 河南理工大学 Process for magnetically separating and recovering iron and carbon from zinc volatilization kiln slag through dry method
KR101053215B1 (en) 2009-08-28 2011-08-01 한국지질자원연구원 Efficient Screening Method of Iron Oxide in Thermal Power Plant Floor
KR101305130B1 (en) * 2011-07-26 2013-09-12 현대자동차주식회사 Selective Separation Apparatus for polyurethane foam and fiber from ASR
KR101380806B1 (en) * 2012-12-12 2014-04-04 주식회사 포스코 Method for processing sludge
JP2014061482A (en) * 2012-09-21 2014-04-10 Jig Engineering Co Ltd Ragging material inputted in under-net air chamber type wet specific gravity sorter and recovery method of nonmagnetic metal piece using this ragging material
CN104245143A (en) * 2013-03-28 2014-12-24 可隆科技特株式会社 Sorting method and sorting device for recycling filler included in artificial turf
JP2015219948A (en) * 2014-05-14 2015-12-07 松田産業株式会社 Method for recovering valuables from lithium ion secondary battery
JP2017140555A (en) * 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash
JP2018058059A (en) * 2016-09-28 2018-04-12 太平洋セメント株式会社 Processing apparatus of incineration ash and processing method thereof
JP2019055407A (en) * 2019-01-08 2019-04-11 株式会社エコネコル Method and device for recovery of noble metal from burned ash
IT201800004790A1 (en) * 2018-04-23 2019-10-23 MANUFACTURING PROCESS OF PORCELAIN STONEWARE AND PRODUCTS
KR102121874B1 (en) * 2019-06-27 2020-06-12 한국지질자원연구원 System for sorting automobile shredder residue using trommell and sorting method using the same
US20210040580A1 (en) * 2018-05-18 2021-02-11 Francisco Javier JIMÉNEZ GUZMÁN System for physical-mechanical recovery and refining of non-ferrous metals from electronic scrap
CN112620118A (en) * 2020-11-13 2021-04-09 中冶南方都市环保工程技术股份有限公司 Pretreatment method for multistage screening and soil removal of construction waste

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926196B (en) * 2019-04-23 2021-06-25 广西华锡集团股份有限公司车河选矿厂 Cyanide-free separation process for low-grade tin-lead-zinc multi-metal sulfide mineral lead-zinc
KR102133184B1 (en) * 2019-08-16 2020-07-13 임상재 Wood waste treatment apparatus and treatment method using the same
KR102133185B1 (en) * 2020-02-21 2020-07-21 임상재 Wood waste treatment apparatus and treatment method using the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179221A (en) * 1999-12-22 2001-07-03 Dowa Mining Co Ltd Method and apparatus for segregated recovery of communication device and recovery substrate part
JP4723230B2 (en) * 2004-12-06 2011-07-13 三菱電機株式会社 Shredder dust specific gravity sorting method and shredder dust specific gravity sorting device
JP2006159047A (en) * 2004-12-06 2006-06-22 Mitsubishi Electric Corp Specific-gravity sorting method of mixed crushed-materials and specific-gravity sorting apparatus of mixed crushed-materials
JP2008080329A (en) * 2006-08-29 2008-04-10 Yamazaki Jari Shoten:Kk Material recovery system and material recovery method
JP2008264667A (en) * 2007-04-19 2008-11-06 Takuma Co Ltd Burned ash particle sorting method
JP2009006273A (en) * 2007-06-28 2009-01-15 Jfe Steel Kk Wet type magnetic separation method for separating mixture of microparticles
JP2009056362A (en) * 2007-08-30 2009-03-19 Nikko Kinzoku Kk Incinerator ash treatment system
KR101053215B1 (en) 2009-08-28 2011-08-01 한국지질자원연구원 Efficient Screening Method of Iron Oxide in Thermal Power Plant Floor
CN102029223A (en) * 2010-11-22 2011-04-27 河南理工大学 Process for magnetically separating and recovering iron and carbon from zinc volatilization kiln slag through dry method
KR101305130B1 (en) * 2011-07-26 2013-09-12 현대자동차주식회사 Selective Separation Apparatus for polyurethane foam and fiber from ASR
JP2014061482A (en) * 2012-09-21 2014-04-10 Jig Engineering Co Ltd Ragging material inputted in under-net air chamber type wet specific gravity sorter and recovery method of nonmagnetic metal piece using this ragging material
KR101380806B1 (en) * 2012-12-12 2014-04-04 주식회사 포스코 Method for processing sludge
US9789491B2 (en) 2013-03-28 2017-10-17 Kolonglotech. Inc Sorting method and apparatus for recycling filler included in artificial turf
CN104245143A (en) * 2013-03-28 2014-12-24 可隆科技特株式会社 Sorting method and sorting device for recycling filler included in artificial turf
JP2015520668A (en) * 2013-03-28 2015-07-23 コロングロテック.インコーポレーテッドKolonglotech.Inc. Sorting method and sorting apparatus for recycling filler contained in artificial turf
US10052638B2 (en) 2013-03-28 2018-08-21 Kolonglotech, Inc Sorting method and apparatus for recycling filler included in artificial turf
JP2015219948A (en) * 2014-05-14 2015-12-07 松田産業株式会社 Method for recovering valuables from lithium ion secondary battery
JP2017140555A (en) * 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash
JP2018058059A (en) * 2016-09-28 2018-04-12 太平洋セメント株式会社 Processing apparatus of incineration ash and processing method thereof
IT201800004790A1 (en) * 2018-04-23 2019-10-23 MANUFACTURING PROCESS OF PORCELAIN STONEWARE AND PRODUCTS
WO2019207435A1 (en) * 2018-04-23 2019-10-31 Saxa Gres S.P.A. Pre-treatment process of ashes residual from the combustion of urban waste
US20210040580A1 (en) * 2018-05-18 2021-02-11 Francisco Javier JIMÉNEZ GUZMÁN System for physical-mechanical recovery and refining of non-ferrous metals from electronic scrap
US11905574B2 (en) * 2018-05-18 2024-02-20 Francisco Javier JIMÉNEZ GUZMÁN System for physical-mechanical recovery and refining of non-ferrous metals from electronic scrap
JP2019055407A (en) * 2019-01-08 2019-04-11 株式会社エコネコル Method and device for recovery of noble metal from burned ash
KR102121874B1 (en) * 2019-06-27 2020-06-12 한국지질자원연구원 System for sorting automobile shredder residue using trommell and sorting method using the same
WO2020262959A1 (en) * 2019-06-27 2020-12-30 한국지질자원연구원 Complex sorting system and complex sorting method for sorting automobile shredder residue using trommel
CN114007766A (en) * 2019-06-27 2022-02-01 韩国地质资源研究院 Scrap car residue composite sorting system and composite sorting method using rotary screen
CN112620118A (en) * 2020-11-13 2021-04-09 中冶南方都市环保工程技术股份有限公司 Pretreatment method for multistage screening and soil removal of construction waste

Also Published As

Publication number Publication date
JP3617767B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3617767B2 (en) Method and apparatus for recovering metal from solid waste
US9539581B2 (en) Method for recycling ash
US11130141B2 (en) System and method for recovering glass and metal from a mixed waste stream
US10894258B2 (en) System and method for recovering desired materials and producing clean aggregate from incinerator ash
WO2013019618A2 (en) Ore beneficiation
JP3003749B2 (en) Metal recovery method from waste molten slag
JP3664586B2 (en) Method and apparatus for metal recovery from solid waste
EP3325166B1 (en) System and method for recovering desired materials and producing clean aggregate from incinerator ash
JPH06320137A (en) Treatment of burned ash of shredder dust
JP2001046975A (en) Treatment of composite waste and treating device
CA2418020C (en) Steel slag processing jig system
JP6938414B2 (en) How to dispose of parts waste
EP3436200B1 (en) Method and system for producing aggregate
JP2000037664A (en) Method and apparatus for recovering metal from metal- containing mixture
JPH1024282A (en) Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
RU2111795C1 (en) Continuous production line for processing schlich materials
CN114260291A (en) High-value utilization system and utilization method of garbage slag
JP2021138579A (en) Method for producing chromium-reduced cement raw material
Stanczyk et al. Recycling Materials in Urban Refuse: A Progress Report-Incinerator Residues and Raw Refuse
JPS6274005A (en) Manufacture of iron powder from fine converter dust
Vereecken et al. Car scrap recycling towards 2000

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees