JP2006159047A - Specific-gravity sorting method of mixed crushed-materials and specific-gravity sorting apparatus of mixed crushed-materials - Google Patents

Specific-gravity sorting method of mixed crushed-materials and specific-gravity sorting apparatus of mixed crushed-materials Download PDF

Info

Publication number
JP2006159047A
JP2006159047A JP2004352131A JP2004352131A JP2006159047A JP 2006159047 A JP2006159047 A JP 2006159047A JP 2004352131 A JP2004352131 A JP 2004352131A JP 2004352131 A JP2004352131 A JP 2004352131A JP 2006159047 A JP2006159047 A JP 2006159047A
Authority
JP
Japan
Prior art keywords
specific gravity
sorting
liquid medium
sorter
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004352131A
Other languages
Japanese (ja)
Other versions
JP4723230B2 (en
Inventor
Shinobu Ogasawara
忍 小笠原
Yasuto Izeki
康人 井関
Takeharu Shinagawa
丈晴 品川
Katsumi Fujisaki
克己 藤崎
Yoshio Nishimoto
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004352131A priority Critical patent/JP4723230B2/en
Publication of JP2006159047A publication Critical patent/JP2006159047A/en
Application granted granted Critical
Publication of JP4723230B2 publication Critical patent/JP4723230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a specific-gravity sorting process capable of sort recovering plastics highly precisely and efficiently from mixed crushed-materials such as shredder dust. <P>SOLUTION: A specific-gravity sorting method of mixed crushed-materials consists of a step wherein a material to be sorted are specific-gravity sorted by a liquid cyclone sorting apparatus to be sorted to an upper-side recovered material having a lower specific gravity than a liquid medium and a lower-side recovered material having a higher specific gravity than the liquid medium, and a step wherein the upper-side recovered material is sorted by a sink and float sorting apparatus to give a floating material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、一般廃棄物及び産業廃棄物、家電リサイクル処理などに使用される比重選別方法に係り、特にシュレッダーダストなどの多種混在物を分別回収して再利用を図る廃プラスチックなどの混合破砕物の比重選別装置に関する。   TECHNICAL FIELD The present invention relates to a specific gravity sorting method used for general waste and industrial waste, home appliance recycling processing, etc., and in particular, mixed crushed materials such as waste plastic which are separated and collected for various kinds of mixed materials such as shredder dust and reused. The present invention relates to a specific gravity sorting apparatus.

多量に排出される廃棄物の中でもプラスチック系の廃棄物は増加の一途をたどっており、その処理対策に苦慮する現状にある。特に廃棄されるOA機器や家庭電化製品には、廃棄製品の一体破砕前の解体処理では十分に分離できない様々な種類のプラスチックが使用されており、これらのプラスチックは一体破砕後に金属類を回収した残り、所謂シュレッダーダストとなり、再利用する手立てが少ないために、焼却あるいは埋立られるなど、循環型社会形成のための大きな障害となっている。   Among the waste discharged in large quantities, plastic waste continues to increase, and it is difficult to deal with the disposal measures. In particular, various types of plastics that cannot be sufficiently separated by disassembly before the integrated crushing of waste products are used for OA equipment and home appliances that are discarded. These plastics recovered metals after the integrated crushing. The rest is so-called shredder dust, which is a major obstacle to the formation of a recycling-oriented society, such as being incinerated or landfilled because there are few ways to reuse it.

OA機器や家庭電化製品で使用されるプラスチックは、3大汎用プラスチックであるポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル−ブタジエン−スチレン(ABS)が中心であり、電線被覆材などの塩化ビニル(PVC)や絶縁機能材料であるフェノール(PF)やポリブチレンテレフタレート(PBT)、難燃機能を付与した難燃PSや難燃ABSなどを含むため、上記シュレッダーダストはこれらプラスチックの混合品であるとともに微少な金属片など前工程で十分に回収されなかった異物類を含む。   The plastics used in office automation equipment and home appliances are mainly the three general-purpose plastics, polypropylene (PP), polystyrene (PS), and acrylonitrile-butadiene-styrene (ABS). PVC), phenol (PF), which is a functional insulating material, polybutylene terephthalate (PBT), flame retardant PS with flame retardant function, flame retardant ABS, and the like, and the shredder dust is a mixture of these plastics Contains foreign substances such as minute metal pieces that have not been sufficiently recovered in the previous process.

上記シュレッダーダストから量的な確保が可能で、再使用が容易なPP及びPS、ABSを選別するためには、夫々の比重がPP(約0.9)、PS(約1.05)、ABS(約1.05)であり、これ以外の樹脂や金属の比重が1.1を上回ることが多く、比重による選別が好適に使用できる。   In order to sort out PP, PS and ABS which can be quantitatively secured from the shredder dust and can be easily reused, their specific gravity is PP (about 0.9), PS (about 1.05), ABS. (About 1.05), and the specific gravity of other resins and metals often exceeds 1.1, and sorting by specific gravity can be suitably used.

しかし選別されたプラスチック類が、夫々PP、ABS、PSに分けられた後に、再成形しリサイクルされる場合には、いずれのプラスチックも他のプラスチックが混入すると著しい物性(強度や伸びなど)の低下が生じる場合が多く、これら廃プラスチックの選別は非常に高精度な品位が求められる。   However, when the selected plastics are separated into PP, ABS, and PS, and then re-molded and recycled, any physical properties (strength, elongation, etc.) are significantly reduced when any plastic is mixed with other plastics. In many cases, such waste plastics must be sorted with a very high quality.

そこで、このような廃プラスチックを選別する方法として、浮沈選別方法や液体サイクロンによる方法などが提案され、一部で実用化されている。   Therefore, as a method for sorting out such waste plastic, a float / sink sorting method, a method using a hydrocyclone, and the like have been proposed, and some have been put into practical use.

浮沈選別法は、水などの液体媒体中に破砕されたプラスチックを分散させ、媒体よりも比重の小さなプラスチックと、それよりも比重の大きなプラスチックを簡易に分離できる方法である。液体媒体を水、塩水、塩素化有機溶剤など比重の異なる、所謂重液を使用し、或いは微小なフェロシリコンなどの固形物を分散させた、所謂擬重液を使用することによって、様々な比重を持つ破砕プラスチックを簡易に選別することができる(例えば、特許文献1参照)。   The floatation / sink sorting method is a method in which a crushed plastic is dispersed in a liquid medium such as water, and a plastic having a specific gravity smaller than that of the medium and a plastic having a higher specific gravity can be easily separated. By using so-called heavy liquids with different specific gravity such as water, salt water, chlorinated organic solvents, or so-called pseudo heavy liquids in which solid materials such as fine ferrosilicon are dispersed, various specific gravity It is possible to easily sort the crushed plastic having a thickness (see, for example, Patent Document 1).

液体サイクロンによる方法は、円筒状容器内で液体媒体とともに破砕プラスチックを円周流動させ、遠心力により液体媒体よりも比重の大きな粒子とそれより比重の小さい粒子を、上記浮沈選別よりも効率的に選別することができる。上記と同様に液体媒体の比重を適正に選定することにより、様々な比重での選別が可能である(例えば、特許文献2参照)。
特開昭56−56246号公報 国際公開第WO98/41374号公報
In the liquid cyclone method, the crushed plastic is circumferentially flowed together with the liquid medium in a cylindrical container, and particles having a specific gravity larger than that of the liquid medium and particles having a specific gravity smaller than that of the liquid medium by centrifugal force are more efficient than the above floatation / sediment sorting. Can be sorted. By selecting the specific gravity of the liquid medium appropriately in the same manner as described above, sorting with various specific gravity is possible (for example, see Patent Document 2).
JP-A-56-56246 International Publication No. WO 98/41374

しかし、浮沈選別では水などの液体媒体とともに空気が選別精度に影響するため、シュレッダーダストなどの投入物が、埃などの汚染物で汚れていることも相まって、たとえ脱泡装置や攪拌装置を備えたとしても、その選別精度を高めることが難しい。   However, in floatation / sink sorting, air and liquid media such as water will affect the sorting accuracy, so the input material such as shredder dust is contaminated with contaminants such as dust. Even so, it is difficult to increase the sorting accuracy.

従って例えば、混合破砕物からPPを回収するだけでも、水による浮沈選別では、予め洗浄を施すなどした上に、数段に渡る浮沈選別処理を行わなければ、純度の高いPPは得られない。   Therefore, for example, even if PP is recovered from the mixed crushed material, high-purity PP cannot be obtained unless it is washed in advance and subjected to several steps of flotation / sink sorting.

数段に渡る浮沈選別を実施することは実業上現実的では無く、現在実用化されている浮沈選別装置で回収されたプラスチックは新品と同様に使用することは難しく、所謂カスケード利用されるにとどまっている。   It is impractical to carry out several stages of ups and downs sorting, and the plastics collected by the currently used ups and downs sorters are difficult to use as new products, so they are only used in cascade. ing.

一方、液体サイクロンによる方法では空気に触れさせずに液媒体中でのみ比重選別が進行するため空気による選別精度の劣化は生じにくい。また遠心力により選別するため、省スペースで設置可能であり、使用する液媒体も浮沈選別よりは少量ですみ、非常に効率的な選別作業が実現できる。   On the other hand, in the method using the liquid cyclone, the specific gravity selection proceeds only in the liquid medium without being exposed to the air, so that the accuracy of the selection due to air hardly occurs. In addition, since sorting is performed by centrifugal force, it can be installed in a small space, and the amount of liquid medium to be used is smaller than that of floating / sink sorting, and a very efficient sorting operation can be realized.

しかし、水流中で遠心力を作用させて選別するため、ちょっとした水流の乱れなどの影響を受け易く、高い選別精度の実現は難しく、プラスチック類を再生するために必要な品位確保は困難である。さらに再生しようとするプラスチック類は元々モールド加工により成形されたものであるから、破砕後でも片状形態を示すことが多く、上記水流の乱れを受けやすい。   However, since sorting is performed by applying centrifugal force in the water stream, it is easily affected by slight disturbance of the water stream, and it is difficult to achieve high sorting accuracy, and it is difficult to ensure the quality necessary for recycling plastics. Furthermore, since the plastics to be regenerated are originally molded by molding, they often show a flake form even after crushing, and are susceptible to the disturbance of the water flow.

この選別精度の悪化を回避するためには、破砕物が片状形態を示さなくなるまで微小に再粉砕するとともに、篩などを用いて粒子の大きさをそろえる必要があるが、粉砕する前のプラスチック類の成形品は、1〜4mm程度の厚さであるため、片状形態を示さなくなるにはこれ以下まで粉砕する必要があり、多大な粉砕費用の発生や、歩留の低下が避けられない。   In order to avoid this deterioration in sorting accuracy, it is necessary to finely re-pulverize the crushed material until it does not show a flake form, and to use a sieve to align the size of the particles. Since a molded product of a kind has a thickness of about 1 to 4 mm, it is necessary to pulverize below this in order not to show a flake form, and generation of a great pulverization cost and a decrease in yield are inevitable. .

従って、液体サイクロンによるプラスチックなどの比重選別手段でも、純度の高いプラスチック回収用途には適用できず、実用化されているものは、上記浮沈選別と同様、カスケード利用されるプラスチックに対してのみである。   Therefore, even specific gravity sorting means such as plastic using a liquid cyclone cannot be applied to high-purity plastic recovery applications, and what is put into practical use is only for plastics that are used in cascade, as in the above-described floatation / sink sorting. .

カスケード利用されるプラスチック類は、純度が低くても使用できる擬木や、耐久性の求められないハンガーなどの日用品の材料として利用されるが、用途が限られているため、循環型社会を構築していくためには、よりレベルの高い用途に使用可能な、混合破砕物から高純度にプラスチック類を回収する技術が求められている。   Cascade plastics are used as materials for daily necessities such as artificial trees that can be used at low purity and hangers that do not require durability, but because their applications are limited, a recycling-oriented society is established. In order to achieve this, there is a demand for a technology for recovering plastics with high purity from mixed crushed materials that can be used for higher level applications.

この発明は上記のような問題点を解消するためになされたもので、シュレッダーダストなどの混合破砕物から、高精度かつ効率的にプラスチック類を選別回収可能な比重選別方法及び装置を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a specific gravity sorting method and apparatus capable of sorting and recovering plastics with high accuracy and efficiency from shredder dust and other mixed crushed materials. With the goal.

この発明に係る混合破砕物の比重選別方法は、被選別物を液体サイクロン選別装置により比重選別を行い、液媒体より比重の小さい上側回収物と、液媒体より比重の大きい下側回収物に選別する工程と、上側回収物を浮沈選別装置により選別し、浮上物を回収する工程とを備えたことを特徴とする。   The specific gravity sorting method of the mixed crushed material according to the present invention performs the specific gravity sorting of the object to be sorted by the liquid cyclone sorting apparatus, and sorts the upper collected material having a lower specific gravity than the liquid medium and the lower collected material having a higher specific gravity than the liquid medium. And a step of sorting the upper collected material by a float / sink sorter and collecting the floated material.

この発明に係る比重選別方法は、上記構成により、広い粒度範囲の混合破砕物を、高精度で高効率に比重選別することができる。   The specific gravity sorting method according to the present invention can sort the mixed crushed material in a wide particle size range with high precision and high efficiency by the above configuration.

実施の形態1.
図1〜6は実施の形態1を示す図で、図1は選別工程を示す図、図2は比較例の選別工程を示す図、図3は液体サイクロン選別装置を示す図、図4は浮沈選別装置を示す図、図5は選別装置配置図、図6は選別結果を示す図である。
家電リサイクルやOA機器のリサイクルで生じるシュレッダーダストを被選別材料として用意した。このシュレッダーダストは家電製品やOA機器などの様々な製品をハンマータイプの破砕機で破砕した後、磁力選別装置や渦電流選別装置などを多段に活用し、金属類を回収した残りを、φ50mmのスクリーンを使用した一軸せん断型の破砕機でさらに粉砕したものである。実施の形態1ではこのシュレッダーダストからPPを回収するが、予めシュレッダーダスト中のPP成分を分析すると30%含まれていた。
Embodiment 1 FIG.
1 to 6 are diagrams showing Embodiment 1, FIG. 1 is a diagram showing a sorting process, FIG. 2 is a diagram showing a sorting process of a comparative example, FIG. 3 is a diagram showing a hydrocyclone sorting apparatus, and FIG. FIG. 5 is a diagram showing a sorting device, FIG. 5 is a layout diagram of a sorting device, and FIG. 6 is a diagram showing a sorting result.
Shredder dust generated by recycling home appliances and OA equipment was prepared as a material to be sorted. This shredder dust uses a hammer type crusher to crush various products such as home appliances and OA equipment, and then uses the magnetic sorting device and eddy current sorting device in multiple stages to collect the remainder of the metal of φ50mm. This was further pulverized by a uniaxial shear type crusher using a screen. In the first embodiment, PP is recovered from the shredder dust. When the PP component in the shredder dust is analyzed in advance, 30% is contained.

シュレッダーダストからPPを回収するために、液媒体として水を使用した液体サイクロン選別装置と浮沈選別装置を用意し、選別プロセスを図1に示す様に組み合わせた。即ち第1の工程で液体サイクロン選別装置によりこのシュレッダーダストを選別し、PPが濃縮される上側回収物を第2の工程で浮沈選別装置により選別し、PP濃縮物を浮上物として回収する。   In order to recover PP from shredder dust, a hydrocyclone sorter and a float / sink sorter using water as a liquid medium were prepared, and the sorting process was combined as shown in FIG. That is, the shredder dust is sorted by the hydrocyclone sorter in the first step, and the upper collection product to which PP is concentrated is sorted by the floatation / sink sorter in the second step, and the PP concentrate is collected as a floating product.

一方、比較例として、図2の(a)、(b)、(c)のプロセスでも選別し、PPの回収を行った。
(a)第1の工程で液体サイクロン選別装置によりこのシュレッダーダストを選別し、PPが濃縮される上側回収物を第2の工程でも液体サイクロン選別装置により選別し、PP濃縮物を上側回収物として回収する。
(b)第1の工程で浮沈選別装置によりこのシュレッダーダストを選別し、PPが濃縮される浮上物を第2の工程でも浮沈選別装置により選別し、PP濃縮物を浮上物として回収する。
(C)第1の工程で浮沈選別装置によりこのシュレッダーダストを選別し、PPが濃縮される浮上物を第2の工程で液体サイクロン選別装置により選別し、PP濃縮物を上側回収物として回収する。
On the other hand, as a comparative example, the process of FIGS. 2A, 2B, and 2C was also performed to collect PP.
(A) The shredder dust is sorted by the hydrocyclone sorter in the first step, and the upper recovery product to which PP is concentrated is also sorted by the hydrocyclone sorter in the second step, and the PP concentrate is used as the upper recovery product. to recover.
(B) The shredder dust is sorted by the float / sink sorter in the first step, and the floated material to which PP is concentrated is also sorted by the float / sink sorter in the second step, and the PP concentrate is recovered as a floated product.
(C) The shredder dust is sorted by the float / sink sorter in the first step, and the floated material to which PP is concentrated is sorted by the hydrocyclone sorter in the second step, and the PP concentrate is recovered as the upper collection. .

ここで、使用した液体サイクロン選別装置を図3に示す。液体サイクロン1は胴体部9インチ、長さ27インチのものを使用した。選別装置では下部には貯留水槽攪拌装置4を備える約700Lの貯留水槽2を用意し、水に対して約1重量%のシュレッダーダストを投入した。この混合水を15kwのスラリーポンプ3で液体サイクロン1に供給し、選別されたのちの水は貯留水槽2に戻る循環回路とした。   Here, the used hydrocyclone sorter is shown in FIG. The hydrocyclone 1 used was a body part 9 inches and a length 27 inches. In the sorting device, about 700 L of the storage water tank 2 provided with the storage water tank agitation device 4 was prepared in the lower part, and about 1% by weight of shredder dust was added to the water. This mixed water was supplied to the hydrocyclone 1 by a 15 kw slurry pump 3, and the sorted water was used as a circulation circuit that returned to the reservoir tank 2.

即ち、貯留水槽2に投入された被選別物は貯留水槽攪拌装置4で液媒体の水と均一に混合され、スラリーポンプ3を通って液体サイクロン1に供給される。液体サイクロン1内で、回転運動により、液媒体水よりも比重の大きな粒子は下側回収口6から流出し、液媒体水よりも比重の小さな粒子は上側回収口5から流出し、比重選別される。本実施の形態1では回収するPPは水よりも比重が小さいので、上側回収口5から濃縮されて排出される。   That is, the object to be sorted put into the reservoir tank 2 is uniformly mixed with the liquid medium water by the reservoir tank agitator 4 and supplied to the hydrocyclone 1 through the slurry pump 3. In the hydrocyclone 1, particles having a specific gravity larger than that of the liquid medium water flow out of the lower recovery port 6 and particles having a specific gravity smaller than that of the liquid medium water flow out of the upper recovery port 5 and are sorted by specific gravity. The In the first embodiment, the recovered PP has a specific gravity smaller than that of water, and is therefore concentrated and discharged from the upper recovery port 5.

同様に使用した浮沈選別装置を図4に示す。浮沈選別装置の本体は3000Lの液媒体を貯留できる浮沈水槽10であり、被選別物供給口に供給口攪拌装置11を備えるとともに、浮遊物を攪拌、液媒体上で搬送するためのパドル12を備え、浮遊物を回収する篩13を通して浮上選別物が回収される。篩13を通過した液媒体は2kwのポンプ14で浮沈水槽10に戻される。一方沈降物は、スクリューコンベア15で搬送、回収され選別が完了する。   FIG. 4 shows the float / sink sorter used similarly. The main body of the float / sink sorter is a float / sink tank 10 capable of storing 3000 L of liquid medium, and includes a supply port agitator 11 at the sorting object supply port, and a paddle 12 for stirring and transporting the float on the liquid medium. The floated sort is collected through a sieve 13 that collects the suspended matter. The liquid medium that has passed through the sieve 13 is returned to the floating and sinking tank 10 by a 2 kw pump 14. On the other hand, the sediment is transported and collected by the screw conveyor 15 to complete the sorting.

尚、本実施の形態1のより具体的な設備配置は図5に示す様に、被選別物の流れと液媒体である水の流れを逆になるようにした。即ち、浮沈選別で使用した水の一部を液体サイクロン選別装置22に流し、液体サイクロン選別装置22で使用した水の一部を水処理装置21に流し、浄化後の水を浮沈選別装置23に使用した。このように液媒体をカスケード利用することで、水処理装置21を過大に設置する必要が無くなり、設備費用を低く抑えることができる。   As shown in FIG. 5, the more specific equipment arrangement of the first embodiment is such that the flow of the object to be selected and the flow of water as the liquid medium are reversed. That is, a part of the water used in the float / sink sorting is passed to the hydrocyclone sorter 22, a part of the water used in the liquid cyclone sorter 22 is passed to the water treatment device 21, and the purified water is passed to the float / sink sorter 23. used. By using the liquid medium in cascade as described above, it is not necessary to install the water treatment device 21 excessively, and the equipment cost can be kept low.

比較例及び実施の形態1での工程での選別結果を夫々図6に示す。
実施の形態1でのプロセスでは、第1の工程である液体サイクロン選別装置22により、元々シュレッダーダストに含まれていた30%のPPが70%まで濃縮されて、上側回収口5から回収された。さらにこの上側回収物を第2の工程である浮沈選別装置23で選別すると、99%以上にまで濃縮された浮上物が回収される。この時、第1の工程である液体サイクロン選別装置22の下側回収物中のPP量は1%以下であり、第2の工程である浮沈選別装置23でも沈降物からPPは検出されなかった。即ち、PPの歩留99%以上で、濃度99%以上の高純度なPPを高効率に回収できたことになる。
FIG. 6 shows the results of selection in the comparative example and the process in the first embodiment.
In the process according to the first embodiment, 30% PP originally contained in the shredder dust is concentrated to 70% by the hydrocyclone sorter 22 as the first step, and recovered from the upper recovery port 5. . Further, when the upper collection product is sorted by the floatation / sink sorting device 23 as the second step, the floated product concentrated to 99% or more is collected. At this time, the amount of PP in the lower collection of the hydrocyclone sorter 22 in the first step was 1% or less, and no PP was detected from the sediment in the float / sink sorter 23 in the second step. . That is, high-purity PP with a concentration of 99% or more can be recovered with high efficiency at a PP yield of 99% or more.

一方比較例(a)では、第1の工程は実施の形態1と同様の液体サイクロン選別装置22であるから、同様の歩留で同様のPP濃度の上側回収物が得られたが、この上側回収物をさらに第2の工程で液体サイクロン選別装置22にかけても、上側回収物の濃度は80%までしか濃縮しなかった。この時、不純物となったものを分析すると、その多くは比重1.05程度のPSやABSであり、φ30mm〜φ50mm程度の比較的大きな片状の粒子であった。即ち、液体サイクロン選別装置22による選別では、水流の乱れによる不純物の混入が避けられないが、特に片状の大きな粒子が、この影響を受けるため、繰り返し液体サイクロン選別装置22による選別を実施しても、PPを濃縮させることができないものと判断される。   On the other hand, in the comparative example (a), since the first step is the same hydrocyclone sorter 22 as in the first embodiment, an upper recovered material having the same PP concentration was obtained with the same yield. Even when the recovered material was further subjected to the hydrocyclone sorter 22 in the second step, the concentration of the upper recovered material was only concentrated to 80%. At this time, when the impurities were analyzed, most of them were PS and ABS having a specific gravity of about 1.05, and they were relatively large pieces of particles having a diameter of about 30 mm to 50 mm. That is, in the sorting by the hydrocyclone sorter 22, impurities are inevitably mixed due to the turbulence of the water flow. However, since large particles in particular are affected by this, the sorting by the hydrocyclone sorter 22 is repeatedly performed. It is also determined that PP cannot be concentrated.

さらに比較例(b)では第1の工程で浮沈選別を行い、液体サイクロンよりも高い75%濃度の回収物を得たが、さらに第2の工程で浮沈選別を実施しても回収物のPP濃度は85%までしか上げることができなかった。この時比較例(a)と同様に不純物成分の特性を分析したが、φ30mm以下の比較的小さな粒子が多く、また、各粒子の表面は埃などで汚染されたままであり、気泡などが付着しやすい状態だった。即ち、水中での沈降速度の遅い小さな粒子が浮沈選別では十分に選別できず、繰り返し浮沈選別を行っても、除去しきれないものが残ると判断され、また水中で攪拌されるとはいえ液体サイクロンの様に激しい水流にさらされることのない浮沈選別では、洗浄効果は乏しく、気泡の除去が十分ではないことも純度を上げられない原因と考えられる。   Further, in Comparative Example (b), the floatation / sink sorting was performed in the first step, and a recovered material having a concentration of 75% higher than that of the liquid cyclone was obtained. The concentration could only be increased to 85%. At this time, the characteristics of the impurity component were analyzed in the same manner as in Comparative Example (a). However, there were many relatively small particles having a diameter of 30 mm or less, and the surface of each particle remained contaminated with dust or the like. It was easy. In other words, small particles with a slow sedimentation rate in water cannot be adequately sorted by flotation and sedimentation. In the floatation / sink selection that is not exposed to a strong water flow like a cyclone, the cleaning effect is poor, and the fact that the bubbles are not sufficiently removed is considered to be the reason why the purity cannot be increased.

さらに比較例(c)では第1の工程で浮沈選別を行い、浮上した回収物を第2の工程で液体サイクロンにより選別したが、回収物のPP純度は85%にしかならなかった。これまでの知見から純度が上がらない原因を考えると、第1の工程である浮沈選別の不純物は、粒子の小さなものと、埃等の汚染物により気泡が付着するなどして見掛け比重の変化したものが中心であったと考えられるが、その後の第2の工程である液体サイクロンによる選別で、前者の粒子サイズによる不純物成分は排除されるものの、後者の汚染による見掛け比重の変化したものは液体サイクロン中で洗浄されるものの、当然この中には大きな片状の粒子も含まれているから、これらが不純物となり、回収物の純度を上げられなかったものと考えられる。   Furthermore, in Comparative Example (c), floatation / sink selection was performed in the first step, and the recovered material that floated was selected using a liquid cyclone in the second step, but the PP purity of the recovered material was only 85%. Considering the reason why the purity does not increase from the knowledge so far, the apparent specific gravity of the impurities in the first step of the flotation / settlement change has changed due to small particles and bubbles adhering to contaminants such as dust. It is thought that the main thing was, but in the second step of the subsequent liquid cyclone, the impurity component due to the particle size of the former was eliminated, but the latter changed the apparent specific gravity due to contamination of the latter. Although it is washed in the inside, naturally, since it contains large pieces of particles, it is considered that these became impurities and the purity of the recovered material could not be increased.

以上の様に、本実施の形態の比重選別プロセスによれば第1の工程で液体サイクロンにより、粗選別を行い、第2の工程の浮沈選別で仕上げ選別を行うので、液体サイクロンの洗浄効果と比較的小さな粒子の高純度選別の効果と、浮沈選別の比較的大きな粒子の高純度選別を効果的に活用することができるため、埃などの汚れが付着した比較的広い粒度範囲を持ったシュレッダーダストを高純度に効率良く比重選別することが可能である。   As described above, according to the specific gravity selection process of the present embodiment, the rough selection is performed by the liquid cyclone in the first step, and the final selection is performed by the floating / sink selection in the second step. Shredders with a relatively wide particle size range with dirt and other contaminants attached to them because they can effectively utilize the effects of high-purity sorting of relatively small particles and high-purity sorting of relatively large particles in the ups and downs. It is possible to efficiently sort specific gravity with high purity.

尚、実施の形態1ではφ50mmで粉砕したシュレッダーダストを用いたが、φ50mm以上でも同様に高純度、高効率な選別が実施できるもものの、プラスチック類の元々の形状が殻状の成形品であり、リブ等の異形部分をもつことから、空気溜りや洗浄しにくい部位が存在することになり、本実施の形態1で示したような99%以上の高純度回収は不可能となるので、50mm以下に粉砕することが望ましい。   In the first embodiment, shredder dust pulverized at φ50 mm was used, but high-purity and high-efficiency sorting can be performed even at φ50 mm or more, but the original shape of plastics is a shell-like molded product. In addition, since it has a deformed portion such as a rib, there is a portion that is hard to collect air and is difficult to clean, and 99% or higher purity recovery as shown in the first embodiment is impossible. It is desirable to grind into:

実施の形態2.
実施の形態2では実施の形態1と同様の図1で示される工程で、実施の形態1で排出されたPPを回収した残渣物から、比重1.1に調整した塩水を使用して、汎用PSと汎用ABS混合物を回収した。加えて比較例として、図2(c)の工程でも選別を行った。
Embodiment 2. FIG.
In the second embodiment, in the process shown in FIG. 1 similar to the first embodiment, the salt water adjusted to a specific gravity of 1.1 is used from the residue obtained by collecting the PP discharged in the first embodiment. The PS and universal ABS mixture was recovered. In addition, as a comparative example, sorting was also performed in the process of FIG.

一般に家電やOA機器ではPP以外にPSやABSが主要なプラスチックとして使用されているが、比重1.1を超えるものの多くは、現在では家電製品で使用されなくなった難燃剤(PBDEなど)を含んでおり、回収してもその使用用途は限られる。難燃プラスチック以外でもPVCやPFなどの熱硬化プラスチックやPVC、PBTなど微量で選別しきれない多種多様なプラスチックを含んでいる。   In general, PS and ABS are used as main plastics in addition to PP in home appliances and OA equipment, but many of those with a specific gravity of 1.1 or more include flame retardants (such as PBDE) that are no longer used in home appliances. Even if it is collected, its use is limited. In addition to flame retardant plastics, it contains a wide variety of plastics such as PVC, PF, and other hard-curing plastics, such as PVC, PBT, etc.

一方汎用のPS、ABSは主要な成分として多量の回収が期待できる半面、両者の比重がほぼ同等であり、比重選別では分離できない。しかし比重選別によりPS、ABSだけに選別してしまえれば、後工程で静電選別を行うなどして用途展開することが可能となる。   On the other hand, general-purpose PS and ABS can be expected to recover a large amount as main components, but the specific gravity of both is almost the same, and cannot be separated by specific gravity sorting. However, if only PS and ABS can be selected by specific gravity selection, it is possible to develop applications by performing electrostatic selection in a subsequent process.

実施の形態2での選別結果を図7に示す。尚、予め被選別物中の汎用PS、汎用ABSの重量比を測定すると約40%であった。
実施の形態2の被選別物は実施の形態1の工程で既に水による洗浄が施されており、第1の工程で液体サイクロンを使用しても、浮沈選別を使用しても、比較的高い濃縮が認められた。しかし、実施の形態2の結果が示す99%以上の純度は比較例(c)では実現することができなかった。
FIG. 7 shows the selection result in the second embodiment. In addition, it was about 40% when the weight ratio of general purpose PS and general purpose ABS in a to-be-sorted object was measured previously.
The object to be sorted of the second embodiment has already been washed with water in the process of the first embodiment, and is relatively high regardless of whether the liquid cyclone is used in the first process or the floatation / sink sorting is used. Concentration was observed. However, the purity of 99% or more indicated by the result of Embodiment 2 could not be realized in Comparative Example (c).

尚、本発明は、以上述べた実施の形態において説明し、かつ図面に示した比重選別プロセスに限定されるものでは無く、例えば液媒体としてアルコールなどの軽比重物を使用したり、フェロシリコンなどの擬重液を使用するなど、その要旨を脱し得ない範囲で種々変形して実施することができる。   The present invention is not limited to the specific gravity selection process described in the embodiment described above and shown in the drawings. For example, a light specific gravity material such as alcohol is used as a liquid medium, ferrosilicon or the like. For example, a pseudo-heavy liquid can be used with various modifications within a range in which the gist cannot be removed.

実施の形態1を示す図で、選別工程を示す図である。It is a figure which shows Embodiment 1 and is a figure which shows a selection process. 実施の形態1を示す図で、比較例の選別工程を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the selection process of a comparative example. 実施の形態1を示す図で、液体サイクロン選別装置を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows a hydrocyclone sorter. 実施の形態1を示す図で、浮沈選別装置を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows an ups and downs sorting apparatus. 実施の形態1を示す図で、選別装置配置図である。It is a figure which shows Embodiment 1 and is a sorter arrangement drawing. 実施の形態1を示す図で、選別結果を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows a selection result. 実施の形態2を示す図で、選別結果を示す図である。It is a figure which shows Embodiment 2, and is a figure which shows a selection result.

符号の説明Explanation of symbols

1 液体サイクロン、2 貯留水槽、3 スラリーポンプ、4 貯留水槽攪拌装置、5 上側回収口、6 下側回収口、10 浮沈水槽、11 供給口攪拌装置、12 パドル、13 篩、14 ポンプ、15 スクリューコンベア、21 水処理装置、22 液体サイクロン選別装置、23 浮沈選別装置、24 液媒体の流れ、25 被選別物の流れ。   DESCRIPTION OF SYMBOLS 1 Hydrocyclone, 2 Reservoir tank, 3 Slurry pump, 4 Reservoir tank agitator, 5 Upper recovery port, 6 Lower recovery port, 10 Floating / sink tank, 11 Supply port agitator, 12 Paddle, 13 Sieve, 14 Pump, 15 Screw Conveyor, 21 Water treatment device, 22 Hydrocyclone sorting device, 23 Flotation / sinking device, 24 Liquid medium flow, 25 Sorted material flow.

Claims (3)

被選別物を液体サイクロン選別装置により比重選別を行い、液媒体より比重の小さい上側回収物と、液媒体より比重の大きい下側回収物に選別する工程と、
前記上側回収物を浮沈選別装置により選別し、浮上物を回収する工程とを備えたことを特徴とする混合破砕物の比重選別方法。
The specific gravity of the object to be sorted is selected by a liquid cyclone sorting apparatus, and the upper recovered material having a specific gravity smaller than the liquid medium and the lower recovered material having a higher specific gravity than the liquid medium are selected.
A method for selecting the specific gravity of the mixed crushed material, comprising: a step of sorting the upper collected material by a floatation / sink sorting device and collecting the floating material.
前記浮沈選別装置で使用した液媒体を前記液体サイクロン選別装置で使用し、前記液体サイクロン選別装置で使用した液媒体を浄化処理して前記浮沈選別装置に利用することを特徴とする請求項1記載の混合破砕物の比重選別方法。   The liquid medium used in the float / sink sorter is used in the liquid cyclone sorter, and the liquid medium used in the liquid cyclone sorter is purified and used in the float / sink sorter. Specific gravity sorting method for mixed crushed material. 貯留水槽に投入された被選別物を貯留水槽攪拌装置で液媒体と混合し、スラリーポンプを通って液体サイクロンに供給し、液体サイクロン内で回転運動により液媒体よりも比重の大きな粒子は下側回収口から流出し、液媒体よりも比重の小さな粒子は上側回収口から流出して比重選別される液体サイクロン選別装置と、
前記液体サイクロン選別装置の上側回収口から流出する上側回収物が供給される被選別物供給口に供給口攪拌装置を有するとともに、浮遊物を攪拌、液媒体上で搬送するためのパドルを有し、浮遊物を回収する篩を通して浮上選別物が回収される浮沈選別装置とを備えたことを特徴とする混合破砕物の比重選別装置。
The object to be sorted put in the storage tank is mixed with the liquid medium by the storage tank agitator, supplied to the liquid cyclone through the slurry pump, and particles having a specific gravity larger than that of the liquid medium by the rotary motion in the liquid cyclone. A liquid cyclone sorting device that flows out from the recovery port and particles having a specific gravity smaller than that of the liquid medium flow out of the upper recovery port and is subjected to specific gravity sorting.
In addition to having a supply port agitating device at the sorting object supply port to which the upper recovery product flowing out from the upper recovery port of the liquid cyclone sorting device is supplied, it also has a paddle for stirring floating material and transporting it on the liquid medium And a specific gravity sorter for mixed crushed material, comprising: a float / sink sorter for collecting floated sort through a sieve for collecting floated matter.
JP2004352131A 2004-12-06 2004-12-06 Shredder dust specific gravity sorting method and shredder dust specific gravity sorting device Active JP4723230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352131A JP4723230B2 (en) 2004-12-06 2004-12-06 Shredder dust specific gravity sorting method and shredder dust specific gravity sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352131A JP4723230B2 (en) 2004-12-06 2004-12-06 Shredder dust specific gravity sorting method and shredder dust specific gravity sorting device

Publications (2)

Publication Number Publication Date
JP2006159047A true JP2006159047A (en) 2006-06-22
JP4723230B2 JP4723230B2 (en) 2011-07-13

Family

ID=36661632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352131A Active JP4723230B2 (en) 2004-12-06 2004-12-06 Shredder dust specific gravity sorting method and shredder dust specific gravity sorting device

Country Status (1)

Country Link
JP (1) JP4723230B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530497A (en) * 1978-08-18 1980-03-04 Voith Gmbh J M Method and apparatus for removing ash of fiber suspension
JPS577268A (en) * 1980-06-14 1982-01-14 Giken Eng:Kk Refining of cereals
JPS6128473A (en) * 1984-07-20 1986-02-08 Giken Eng:Kk Double liquid cyclone
US5676710A (en) * 1996-04-29 1997-10-14 Cli International Enterprises, Inc. Coal preparation system
JPH11253889A (en) * 1998-03-09 1999-09-21 Dowa Mining Co Ltd Method and device for recovering metal from solid waste
JP2000288421A (en) * 1999-04-07 2000-10-17 Meiki Sangyo Kk Waste material classifying device
US6335376B1 (en) * 1998-05-26 2002-01-01 Mba Polymers, Inc. Apparatus and method for enhancing partitioning of different polymeric materials from a mixture by density differential alteration
JP2002200433A (en) * 2000-12-28 2002-07-16 Nihon Cim Kk Process and equipment for washing and crushing waste plastics
JP2004230284A (en) * 2003-01-30 2004-08-19 Taiheiyo Cement Corp Method for treating powder content containing combustible solid content

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530497A (en) * 1978-08-18 1980-03-04 Voith Gmbh J M Method and apparatus for removing ash of fiber suspension
JPS577268A (en) * 1980-06-14 1982-01-14 Giken Eng:Kk Refining of cereals
JPS6128473A (en) * 1984-07-20 1986-02-08 Giken Eng:Kk Double liquid cyclone
US5676710A (en) * 1996-04-29 1997-10-14 Cli International Enterprises, Inc. Coal preparation system
JPH11253889A (en) * 1998-03-09 1999-09-21 Dowa Mining Co Ltd Method and device for recovering metal from solid waste
US6335376B1 (en) * 1998-05-26 2002-01-01 Mba Polymers, Inc. Apparatus and method for enhancing partitioning of different polymeric materials from a mixture by density differential alteration
JP2000288421A (en) * 1999-04-07 2000-10-17 Meiki Sangyo Kk Waste material classifying device
JP2002200433A (en) * 2000-12-28 2002-07-16 Nihon Cim Kk Process and equipment for washing and crushing waste plastics
JP2004230284A (en) * 2003-01-30 2004-08-19 Taiheiyo Cement Corp Method for treating powder content containing combustible solid content

Also Published As

Publication number Publication date
JP4723230B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US11130141B2 (en) System and method for recovering glass and metal from a mixed waste stream
JP4903653B2 (en) Material recovery system
JP2001096261A (en) Method of recycling waste electric appliance resource
Kumar et al. Recycling of printed circuit boards (PCBs) to generate enriched rare metal concentrate
JP3969048B2 (en) Recycling method for waste home appliances
Saisinchai Separation of PVC from PET/PVC mixtures using flotation by calcium lignosulfonate depressant
JP2010524663A (en) Method and system for sorting and processing recycled materials
JP6192084B1 (en) Sorting equipment for waste plastics containing metals
Lahtela et al. Mechanical Sorting Processing of Waste Material Before Composite Manufacturing-A Review.
JP2011167652A (en) Gravity concentration method and apparatus
JP5841598B2 (en) Simultaneous pre-concentration and pre-selection of at least one group of reusable polymeric material from the durable consumer goods crush waste at the end of the durable consumer life
JP2010162842A (en) Recovery method and recovery apparatus of waste plastic
JP4723230B2 (en) Shredder dust specific gravity sorting method and shredder dust specific gravity sorting device
JP4481629B2 (en) Specific gravity selection method
JP2008200952A (en) Processing method/processing system for turning waste resin into fuel
JP6985672B1 (en) Recycled material manufacturing equipment, waste specific gravity sorting processing equipment
US20220001391A1 (en) System and method for recovering desired materials using a ball mill or rod mill
Kumar et al. Recycling Technologies–Physical Separation
JP2021109309A (en) Specific gravity sorting processing method for waste plastics and processing device thereof
JP4579466B2 (en) Resin recycling system
US20240025086A1 (en) Method and system for separating plastics from a waste stream
JP3266868B2 (en) Waste plastic sorting equipment
JP6872209B1 (en) Waste sorting method, recycled material manufacturing method and its processing equipment
JP2004122661A (en) Plastic recycling system
JP2000246735A (en) Method and apparatus for separating waste plastics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4723230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250