JP2022523397A - Combined melting of molten slag and residues from stainless steel and ferrochrome plants - Google Patents

Combined melting of molten slag and residues from stainless steel and ferrochrome plants Download PDF

Info

Publication number
JP2022523397A
JP2022523397A JP2021551575A JP2021551575A JP2022523397A JP 2022523397 A JP2022523397 A JP 2022523397A JP 2021551575 A JP2021551575 A JP 2021551575A JP 2021551575 A JP2021551575 A JP 2021551575A JP 2022523397 A JP2022523397 A JP 2022523397A
Authority
JP
Japan
Prior art keywords
slag
metal
furnace
ferrochrome
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021551575A
Other languages
Japanese (ja)
Inventor
ヴァロ、キモ
パルヴィアイネン、ティモ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Publication of JP2022523397A publication Critical patent/JP2022523397A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【解決手段】 本発明は、ステンレス鋼及びフェロクロム工場で生成されたスラグ及び廃棄物などの中間留出物を含む金属及び金属酸化物を溶解する方法に関する。本発明の処理方法は、上述の産業界からの全ての中間留出物及び残留物の溶解プロセスである。留出物は、エネルギー節約のために主に液相で処理される。【選択図】図1The present invention relates to a method for dissolving metals and metal oxides including intermediate distillates such as slag and waste produced in stainless steel and ferrochrome factories. The treatment method of the present invention is a process for dissolving all intermediate distillates and residues from the above-mentioned industries. Distillates are treated primarily in the liquid phase to save energy. [Selection diagram] Fig. 1

Description

本発明は、ステンレス鋼及びフェロクロム工場で生成されたスラグ及び廃棄物などの金属及び金属酸化物含有中間留出物を溶解するための方法に関する。本発明の処理方法は、上述の産業界からの全ての中間留出物及び残留物の溶解プロセスである。留出物は、エネルギー節約のために主に液相で処理される。 The present invention relates to a method for dissolving metal and metal oxide-containing intermediate distillates such as slag and waste produced in stainless steel and ferrochrome plants. The treatment method of the present invention is a process for dissolving all intermediate distillates and residues from the above-mentioned industries. Distillates are treated primarily in the liquid phase to save energy.

電気アーク炉を使用した鉄鋼産業では、実質的な量の金属酸化物含有粉塵が製造される。この粉塵は、ごみ処理地に投棄できない金属を大量に含むため、廃棄問題が発生している。加えて、廃棄金属は、経済的な損失を意味する。粉塵に加えて、金属を含有するいくらかの廃棄留出物が産業界で発生し、これらの留出物は、金属回収及び環境影響の低減の機会を提示する。 The steel industry using electric arc furnaces produces substantial amounts of metal oxide-containing dust. This dust contains a large amount of metal that cannot be dumped at the waste disposal site, which causes a disposal problem. In addition, waste metal means economic loss. In addition to dust, some waste distillate containing metal is generated in the industry, and these distillates offer opportunities for metal recovery and reduction of environmental impact.

1970年代初頭に、Enviroplasプロセスは、冶金産業からスラグ及び粉塵を処理するために、南アフリカで開発された。典型的なプロセスには、ステンレス鋼プラントの粉塵、無煙炭、溶剤、及び基本剤を投入する直流アーク炉を含む。製品は、例えば、投入されたCr並びにNiの90%超を含む合金、及び使い捨てのスラグである。 In the early 1970s, the Enviroplas process was developed in South Africa to treat slag and dust from the metallurgical industry. Typical processes include a DC arc furnace that charges stainless steel plant dust, anthracite, solvents, and basic agents. The products are, for example, alloys containing more than 90% of the charged Cr and Ni, and disposable slag.

欧州特許第1641946B号には、複数の後続工程で金属合金溶融物を製造し、それにより、粉塵及びスラグが、Cr及びNiを回収するためにこのプロセスに再利用される方法が開示されている。 European Patent No. 1641946B discloses a method of producing a metal alloy melt in multiple subsequent steps, whereby dust and slag are reused in this process to recover Cr and Ni. ..

現在、ステンレス鋼製造及びフェロクロム製造からの中間留出物は、様々な指定されたプロセスで別々に処理されている。スラグは、金属回収プラントにおいて冷却された形で処理され、金属酸化物系廃棄物、例えば、バグフィルタの粉塵、ミルスケール、及びスラッジは、一般的に、別々の廃棄物溶解プラント又はごみ処理地で処理される。中間留出物の産出には常にいくらかの量の金属酸化物が存在するが、還元結果を改善するために、これらの留出物を再び溶融することは、一般的には有益ではない。スラグ留出物からの残留金属は、従来、機械的金属回収装置によって回収され、いくらかの金属は、処理後のスラグ中に残存する。 Currently, intermediate distillates from stainless steel and ferrochrome productions are processed separately in various designated processes. Slag is treated in a cooled form in a metal recovery plant, and metal oxide-based waste, such as bag filter dust, mill scale, and sludge, are generally treated in separate waste dissolution plants or waste treatment areas. Is processed by. There is always some amount of metal oxide in the production of intermediate distillates, but it is generally not beneficial to remelt these distillates to improve the reduction results. Residual metal from slag distillate has traditionally been recovered by mechanical metal recovery equipment and some metal remains in the treated slag.

ステンレス鋼製造及びフェロクロム製造からの液体スラグを同じ処理装置で処理するための最新の方法は存在しない。 There is no modern method for processing liquid slag from stainless steel and ferrochrome production in the same processing equipment.

Figure 2022523397000002
Figure 2022523397000002

定義
本発明の文脈では、ステンレス鋼スラグとは、ステンレス鋼製造において、スクラップ溶融、AOD/VOD転換、及びレードル処理プロセスで生成されたスラグのことである。
Definitions In the context of the present invention, stainless steel slag is the slag produced by the scrap melting, AOD / VOD conversion, and ladle processing processes in the manufacture of stainless steel.

Figure 2022523397000003
Figure 2022523397000003

本発明の文脈では、フェロクロムスラグとは、クロム鉱石からのフェロクロム溶解動作で生成されたスラグのことである。フェロクロムスラグの典型的な組成範囲を表2に提示する。 In the context of the present invention, ferrochrome slag is slag produced by ferrochrome melting action from chromium ore. The typical composition range of ferrochrome slag is presented in Table 2.

本発明は、独立請求項に開示されるものによって定義される。好ましい実施形態は、従属請求項に記載されている。 The present invention is defined by those disclosed in the independent claims. Preferred embodiments are described in the dependent claims.

本発明によれば、フィルタの粉塵、ミルスケール、及びスラッジなどの金属酸化物系廃棄物は、電気アーク炉又は転換炉内のステンレス鋼及びフェロクロム製造からの液体スラグと共に溶融される。著しい特徴は、スラグ投入材料を液相に供給することであり、したがって、溶融及び還元のためのエネルギー要件を著しく減少させる。 According to the present invention, metal oxide-based wastes such as filter dust, mill scale, and sludge are melted together with liquid slag from stainless steel and ferrochrome production in an electric arc furnace or conversion furnace. A significant feature is the supply of the slag input material to the liquid phase, thus significantly reducing the energy requirements for melting and reduction.

発明の詳細
スラグ留出物及び金属酸化物系廃棄留出物からの金属酸化物は、エネルギー節約のために既に溶融相中で乾式冶金することによって金属に還元され、これにより、溶解の利益が向上する。
Details of the Invention Metal oxides from slag distillates and metal oxide-based waste distillates are reduced to metals by dry metallurgy already in the molten phase to save energy, thereby benefiting from melting. improves.

本発明に関連するスラグ留出物は全て、ステンレス鋼及びフェロクロム製造容器(電気アーク炉、転換炉、レードル処理)からのスラグであり、また、前述の金属製造施設からの他の金属又は金属酸化物含有中間留出物、例えば、使用後耐火物である。この技術革新に関連する金属酸化物含有中間留出物は、ステンレス鋼及びフェロクロム製造(例えば、溶解、溶融、粉砕、熱間並びに冷間圧延、及び酸再生施設)からの金属酸化物、硫酸塩、又は水酸化物含有ガス浄化粉塵、スケール、及びスラッジである。 All slag distillates related to the present invention are slag from stainless steel and ferrochrome manufacturing vessels (electric arc furnace, conversion furnace, radle treatment) and other metals or metal oxidation from the aforementioned metal manufacturing facilities. Material-containing intermediate distillate, for example, refractory after use. Metal oxide-containing intermediate distillates associated with this innovation include metal oxides and sulfates from stainless steel and ferrochrome production (eg, melting, melting, grinding, hot and cold rolling, and acid regeneration facilities). , Or hydroxide-containing gas purified dust, scale, and sludge.

本発明の処理方法は、金属酸化物系廃棄物の溶解を溶融スラグ投入材料と組み合わせる。したがって、金属酸化物系廃棄留出物には別々の処理装置が必要とされない。この組み合わせプロセスにより、スラグ中の金属残渣に対する従来の機械的分離も不必要になる。現在の処理方法では、純粋な金属合金及び金属を含まないスラグを産出物として製造する。 The treatment method of the present invention combines the dissolution of metal oxide-based waste with a molten slag input material. Therefore, a separate treatment device is not required for the metal oxide-based waste distillate. This combination process also eliminates the need for conventional mechanical separation of metal residues in the slag. Current processing methods produce pure metal alloys and metal-free slag as a product.

溶解(溶融留出物のエネルギー投入及び金属酸化物の還元)は、交流又は直流電気アーク炉内で実行することができる。また、転換炉容器が好ましい場合には、化学エネルギーを使用することができる。 Melting (energy input of molten distillate and reduction of metal oxides) can be performed in an AC or DC electric arc furnace. Also, if a conversion furnace vessel is preferred, chemical energy can be used.

金属酸化物の還元は、還元剤で行われる。有用な還元剤の例としては、コークス、無煙炭、黒鉛、メタン、プラスチック、及びゴムである。また、他の炭素源も用いることができる。更に、ケイ素及びアルミニウム系還元剤を使用することができる。 The reduction of the metal oxide is carried out with a reducing agent. Examples of useful reducing agents are coke, anthracite, graphite, methane, plastics, and rubber. Also, other carbon sources can be used. Further, silicon and aluminum-based reducing agents can be used.

この文脈における粉塵はまた、ZnOを含んでもよい。本発明による方法で使用するための留出物には、最大寸法100mmの廃棄鋼プラントの粉塵及び粒子状物質を含んでもよい。 Dust in this context may also contain ZnO. Distillates for use in the process according to the invention may include dust and particulate matter from a waste steel plant with a maximum size of 100 mm.

本発明による方法が利用されるとき、金属としてクロム、鉄、及びニッケルの回収は、典型的には90%超である。 When the method according to the invention is utilized, the recovery of chromium, iron, and nickel as metals is typically greater than 90%.

本発明によれば、Cr還元のための最適なスラグ塩基度は、溶融ステンレス鋼スラグ(石灰源として作用する)及びフェロクロムスラグを混合することによって達成される。したがって、天然資源並びにエネルギーを節約する追加の石灰投入及び溶融が不要である。 According to the present invention, optimum slag basicity for Cr 2 O 3 reduction is achieved by mixing molten stainless steel slag (acting as a lime source) and ferrochrome slag. Therefore, no additional lime input and melting is required to save natural resources and energy.

本発明によれば、Cr、Ni、及びMoを含むことが好ましい、複数の連続的かつ同期化された方法工程において、フェロクロム合金を製造するための方法が提供される。
・ 第1の方法工程では、溶融ステンレス鋼スラグ及び溶融フェロクロムスラグは、ステンレス鋼及びフェロクロム製造施設から、溶融スラグの処理プラントに移送される。溶融スラグは、電気アーク炉又は転換炉に投入され、続いて、液体ステンレス鋼スラグ及びフェロクロムスラグを自然混合する。
・ 第2の方法工程では、還元エネルギーは、転換炉を利用する実施形態では、電気又は化学エネルギーの形で溶融物に供給される。また、移送中にスラグがわずかに冷却されるので、所望の溶融温度に達するために、追加のエネルギーも必要とされる。
第3の方法工程では、金属酸化物系廃棄留出物及び還元剤、好ましくは無煙炭が溶融物に導入され、スラグ中の金属酸化物の還元は、最適な温度で行われる。
・ 第4の方法工程では、スラグ中の還元金属液滴は、金属ヒールに沈下させる。金属還元及び沈下の後、スラグ及び金属は、還元炉又は容器から引き出される。
・ 第5の方法工程では、引き出された金属及びスラグは、骨材の形に冷却されるか、又は小滴状粒子に顆粒化される。金属合金はまた、エネルギー節約のために、ステンレス鋼製造施設内の液体として直ちに使用することができる。製造された金属合金は、金属産業で更に使用されてもよく、製造されたスラグは、主として土工中の様々なスラグ製品用途において更に使用されてもよい。
INDUSTRIAL APPLICABILITY According to the present invention, there is provided a method for producing a ferrochrome alloy in a plurality of continuous and synchronized method steps, preferably containing Cr, Ni, and Mo.
-In the first method step, the molten stainless steel slag and the molten ferrochrome slag are transferred from the stainless steel and ferrochrome manufacturing facility to the molten slag processing plant. The molten slag is charged into an electric arc furnace or a conversion furnace, and subsequently, liquid stainless steel slag and ferrochrome slag are naturally mixed.
-In the second method step, the reduction energy is supplied to the melt in the form of electrical or chemical energy in the embodiment utilizing a conversion furnace. Also, as the slag cools slightly during transfer, additional energy is required to reach the desired melting temperature.
In the third method step, a metal oxide-based waste distillate and a reducing agent, preferably smokeless coal, are introduced into the melt, and the reduction of the metal oxide in the slag is carried out at an optimum temperature.
-In the fourth method step, the reduced metal droplets in the slag are subsided on the metal heel. After metal reduction and subsidence, the slag and metal are withdrawn from the reduction furnace or vessel.
-In the fifth method step, the extracted metal and slag are cooled in the form of aggregate or granulated into droplets. Metal alloys can also be used immediately as a liquid in stainless steel manufacturing facilities to save energy. The metal alloys produced may be further used in the metal industry and the slag produced may be further used primarily in various slag product applications during earthwork.

本発明は、添付の図面を参照して、より詳細に例示される。
図1は、ステンレス鋼及びフェロクロム施設からの金属及び金属酸化物含有残留物の組み合わせ処理の原理を示す。
The present invention is exemplified in more detail with reference to the accompanying drawings.
FIG. 1 shows the principle of combined treatment of metals and metal oxide-containing residues from stainless steel and ferrochrome facilities.

図1は、容器を使用して、溶融スラグが金属製造施設から溶解施設に移送される方法を示す。液体スラグは、スラグ製造量に相当する量の位相で溶解炉に投入される。加えて、固体スラグ及び固体金属酸化物系廃棄留出物は、投入シュートを介して、サイロから炉内に投入される。余分なエネルギーは、所望の還元温度を達成するために電極によって提供される(金属に対して1500℃~1600℃及びスラグに対して1600℃~1700℃)。炭素系還元剤を添加して、スラグ層からの金属酸化物を金属ヒールに還元する。還元金属液滴又は他の冶金パラメータの沈下速度は、スラグ添加剤、例えば、石英及び石灰によって変更することができる。製造された金属合金の還元及び沈下の後、炉は引き出される。金属合金は、ステンレス鋼製造において液体として使用されるか、又は金属産業で使用するために金属顆粒に顆粒化される。溶解炉から製造されたスラグは、異なる用途のために、空気、水、又はガスによってスラグ製品に顆粒化される。また、スラグ骨材を製造するために、空気冷却を使用してもよい。製造されたスラグは、金属を含まないため、更なる金属分離は必要ではない。 FIG. 1 shows how a vessel is used to transfer molten slag from a metal manufacturing facility to a melting facility. The liquid slag is charged into the melting furnace in a phase corresponding to the amount of slag produced. In addition, solid slag and solid metal oxide-based waste distillate are charged into the furnace from the silo via the charging chute. The extra energy is provided by the electrodes to achieve the desired reduction temperature (1600 ° C to 1600 ° C for metal and 1600 ° C to 1700 ° C for slag). A carbon-based reducing agent is added to reduce the metal oxide from the slag layer to the metal heel. The sinking rate of the reduced metal droplets or other metallurgical parameters can be varied with slag additives such as quartz and lime. After the reduction and subsidence of the metal alloy produced, the furnace is withdrawn. Metal alloys are used as liquids in stainless steel production or granulated into metal granules for use in the metal industry. Slag produced from a melting furnace is granulated into slag products by air, water, or gas for different uses. Air cooling may also be used to produce the slag aggregate. The slag produced does not contain metal and does not require further metal separation.

Claims (6)

フェロクロム合金を製造するための方法であって、
-電気アーク炉又は転換炉に、溶融ステンレス鋼スラグ及び溶融フェロクロムスラグを投入して、前記スラグを混合することを可能にする工程と、
-前記電気アーク炉内の前記溶融物に電気エネルギーを、又は前記転換炉内の前記溶融物に化学エネルギーを供給する工程と、
-前記電気アーク炉又は前記転換炉内の前記溶融物に、金属塩を含む少なくとも1つの粒子状物質及び少なくとも1つの還元剤を供給する工程と、
-前記金属酸化物の還元を可能にし、金属合金を形成し、前記金属合金を沈下させることを可能にする工程と、
-前記電気アーク炉又は前記転換炉から、金属合金及びスラグを回収する工程と、を含む、方法。
A method for producing ferrochrome alloys,
-A step of charging molten stainless steel slag and molten ferrochrome slag into an electric arc furnace or a conversion furnace to enable mixing of the slag.
-A step of supplying electric energy to the melt in the electric arc furnace or chemical energy to the melt in the conversion furnace.
-A step of supplying at least one particulate matter containing a metal salt and at least one reducing agent to the melt in the electric arc furnace or the conversion furnace.
-A step that enables the reduction of the metal oxide, the formation of the metal alloy, and the subsidence of the metal alloy.
-A method comprising the step of recovering a metal alloy and slag from the electric arc furnace or the conversion furnace.
前記粒子状物質が、電気アーク炉の粉塵である、請求項1に記載の方法。 The method according to claim 1, wherein the particulate matter is dust in an electric arc furnace. 前記粒子状物質が、少なくとも1つの金属硫酸塩、硫化物、又は水酸化物を含む、請求項1に記載の方法。 The method of claim 1, wherein the particulate matter comprises at least one metal sulfate, sulfide, or hydroxide. 前記粒子状物質が、冶金プロセスから生じる煙道ガス粉塵、スケール、沈殿物、又はスラッジである、請求項1に記載の方法。 The method of claim 1, wherein the particulate matter is flue gas dust, scale, precipitate, or sludge resulting from a metallurgical process. 前記少なくとも1つの還元剤が、無煙炭を含む、請求項1に記載の方法。 The method of claim 1, wherein the at least one reducing agent comprises anthracite. 一次材が、前記電気アーク炉又は前記転換炉に添加されない、請求項1に記載の方法。 The method of claim 1, wherein the primary material is not added to the electric arc furnace or the conversion furnace.
JP2021551575A 2019-03-01 2020-02-28 Combined melting of molten slag and residues from stainless steel and ferrochrome plants Pending JP2022523397A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20195153A FI20195153A1 (en) 2019-03-01 2019-03-01 Combined smelting of molten slags and residuals from stainless steel and ferrochromium works
FI20195153 2019-03-01
PCT/FI2020/050129 WO2020178480A1 (en) 2019-03-01 2020-02-28 Combined smelting of molten slags and residuals from stainless steel and ferrochromium works

Publications (1)

Publication Number Publication Date
JP2022523397A true JP2022523397A (en) 2022-04-22

Family

ID=72337367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021551575A Pending JP2022523397A (en) 2019-03-01 2020-02-28 Combined melting of molten slag and residues from stainless steel and ferrochrome plants

Country Status (8)

Country Link
JP (1) JP2022523397A (en)
KR (1) KR20210134310A (en)
CN (1) CN113366129A (en)
CA (1) CA3129671A1 (en)
FI (2) FI20195153A1 (en)
SE (1) SE2150998A1 (en)
TW (1) TW202033771A (en)
WO (1) WO2020178480A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265534B (en) * 2021-04-14 2023-03-31 嘉峪关宏电铁合金有限责任公司 Low-grade ferrochromium slag recycling production process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292069A (en) * 1999-02-03 2000-10-20 Kawasaki Steel Corp Manufacture of reducing metal from metal content and movable furnace hearth for manufacturing reducing metal
JP2009041107A (en) * 2001-06-18 2009-02-26 Kobe Steel Ltd Method for manufacturing granular metal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA963234B (en) * 1995-05-02 1996-07-29 Holderbank Financ Glarus Process for the production of hydraulic binders and/or alloys such as e g ferrochromium of ferrovanadium
AT405839B (en) * 1996-01-17 1999-11-25 Holderbank Financ Glarus METHOD FOR PRODUCING RAW IRON, COLORED METAL ALLOYS, FECR AND SYNTHETIC BLAST FURNACE SLAGS USING METAL OXIDE CONTAINING WASTE COMBUSTION RESIDUES OR SLAGS
AT407263B (en) * 1999-04-22 2001-02-26 Holderbank Financ Glarus METHOD FOR REPRODUCING STEEL SLAG
JP2001316712A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Method for recovering chromium from chromium containing slag
AT412349B (en) * 2003-06-25 2005-01-25 Voest Alpine Ind Anlagen METHOD FOR PRODUCING AN ALLOYED METAL MELT AND PRODUCTION PLANT THEREFOR
KR20050109763A (en) * 2004-05-17 2005-11-22 주식회사 포스코 Method for recovery valuable metals from steel-making slag of stainless steel
KR100793591B1 (en) * 2006-12-28 2008-01-14 주식회사 포스코 Method for reduction of metallic chromium from slag containing chromium oxide
CN107058677A (en) * 2017-05-22 2017-08-18 山西太钢不锈钢股份有限公司 A kind of smelting process of utilization stainless steel electroslag
CN108676942A (en) * 2018-05-18 2018-10-19 廖辉明 The materials such as a kind of iron content and/or zinc lead bronze tin cooperate with processing recovery method with molten steel slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292069A (en) * 1999-02-03 2000-10-20 Kawasaki Steel Corp Manufacture of reducing metal from metal content and movable furnace hearth for manufacturing reducing metal
JP2009041107A (en) * 2001-06-18 2009-02-26 Kobe Steel Ltd Method for manufacturing granular metal

Also Published As

Publication number Publication date
TW202033771A (en) 2020-09-16
CA3129671A1 (en) 2020-09-10
FI20195153A1 (en) 2020-09-02
CN113366129A (en) 2021-09-07
WO2020178480A1 (en) 2020-09-10
KR20210134310A (en) 2021-11-09
SE2150998A1 (en) 2021-08-12
FI20217132A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
Menad et al. Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust
JP5873600B2 (en) Nonferrous metallurgical slag processing method
RU2226220C2 (en) Steelmaking slag reprocessing method
WO2007066350A1 (en) A process for recovery of iron from copper slag
CN102337408B (en) Two-step reduction method for recycling stainless steel scales
Hanewald et al. Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO
JP2022523397A (en) Combined melting of molten slag and residues from stainless steel and ferrochrome plants
JP2001316712A (en) Method for recovering chromium from chromium containing slag
JP6451462B2 (en) Method for recovering chromium from chromium-containing slag
Yang et al. An environmentally benign process for effective recovery and solidification of Cr from stainless-steel slag
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
Schweers et al. A pyrometallurgical process for recycling cadmium containing batteries
WO2018168472A1 (en) Production method for metallic manganese
JP3705498B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP4485987B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP2004270036A (en) Recovering method of useful metal from useful metal-containing waste
JP2000204420A (en) Recovery of valuable metal from vanadium-containing waste
JP5532823B2 (en) Method for recovering valuable metals from waste batteries
Sviridova et al. Determination of the Basic Parameters of the Recovery Process for Extracting Iron from Iron and Steel Slag
JP2001098339A (en) Method of producing vanadium alloy iron and vanadium alloy steel
JP2015063744A (en) Method for recovering metal
Lentiuhov Modern aspects of metal-containing waste processing using electroslag technologies
KR102689605B1 (en) How to utilize metal oxide-containing side streams in the ferrochrome smelting process
Wegscheider et al. The 2sDR process-innovative treatment of electric arc furnace dust
Qu et al. Investigation of converter copper slag reduction using spent cathode carbon as a reductant

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210903

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240626