JP2022523397A - Combined melting of molten slag and residues from stainless steel and ferrochrome plants - Google Patents
Combined melting of molten slag and residues from stainless steel and ferrochrome plants Download PDFInfo
- Publication number
- JP2022523397A JP2022523397A JP2021551575A JP2021551575A JP2022523397A JP 2022523397 A JP2022523397 A JP 2022523397A JP 2021551575 A JP2021551575 A JP 2021551575A JP 2021551575 A JP2021551575 A JP 2021551575A JP 2022523397 A JP2022523397 A JP 2022523397A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- metal
- furnace
- ferrochrome
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002893 slag Substances 0.000 title claims abstract description 54
- 229910000604 Ferrochrome Inorganic materials 0.000 title claims abstract description 19
- 239000010935 stainless steel Substances 0.000 title claims abstract description 19
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 19
- 238000002844 melting Methods 0.000 title description 13
- 230000008018 melting Effects 0.000 title description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 29
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 20
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000000428 dust Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000010891 electric arc Methods 0.000 claims description 11
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 9
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 5
- 239000013618 particulate matter Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- -1 scale Substances 0.000 claims description 4
- 239000010802 sludge Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 claims description 3
- 239000003830 anthracite Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical group [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000003546 flue gas Substances 0.000 claims 1
- 238000010310 metallurgical process Methods 0.000 claims 1
- 239000002244 precipitate Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 239000002699 waste material Substances 0.000 abstract description 15
- 150000002739 metals Chemical class 0.000 abstract description 5
- 239000007791 liquid phase Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 abstract 1
- 239000011651 chromium Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B3/00—General features in the manufacture of pig-iron
- C21B3/04—Recovery of by-products, e.g. slag
- C21B3/06—Treatment of liquid slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
- C04B5/06—Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/005—Manufacture of stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5264—Manufacture of alloyed steels including ferro-alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0087—Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/02—Working-up flue dust
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/20—Arc remelting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2400/00—Treatment of slags originating from iron or steel processes
- C21B2400/02—Physical or chemical treatment of slags
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2200/00—Recycling of waste material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Ceramic Engineering (AREA)
- Analytical Chemistry (AREA)
- Structural Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
【解決手段】 本発明は、ステンレス鋼及びフェロクロム工場で生成されたスラグ及び廃棄物などの中間留出物を含む金属及び金属酸化物を溶解する方法に関する。本発明の処理方法は、上述の産業界からの全ての中間留出物及び残留物の溶解プロセスである。留出物は、エネルギー節約のために主に液相で処理される。【選択図】図1The present invention relates to a method for dissolving metals and metal oxides including intermediate distillates such as slag and waste produced in stainless steel and ferrochrome factories. The treatment method of the present invention is a process for dissolving all intermediate distillates and residues from the above-mentioned industries. Distillates are treated primarily in the liquid phase to save energy. [Selection diagram] Fig. 1
Description
本発明は、ステンレス鋼及びフェロクロム工場で生成されたスラグ及び廃棄物などの金属及び金属酸化物含有中間留出物を溶解するための方法に関する。本発明の処理方法は、上述の産業界からの全ての中間留出物及び残留物の溶解プロセスである。留出物は、エネルギー節約のために主に液相で処理される。 The present invention relates to a method for dissolving metal and metal oxide-containing intermediate distillates such as slag and waste produced in stainless steel and ferrochrome plants. The treatment method of the present invention is a process for dissolving all intermediate distillates and residues from the above-mentioned industries. Distillates are treated primarily in the liquid phase to save energy.
電気アーク炉を使用した鉄鋼産業では、実質的な量の金属酸化物含有粉塵が製造される。この粉塵は、ごみ処理地に投棄できない金属を大量に含むため、廃棄問題が発生している。加えて、廃棄金属は、経済的な損失を意味する。粉塵に加えて、金属を含有するいくらかの廃棄留出物が産業界で発生し、これらの留出物は、金属回収及び環境影響の低減の機会を提示する。 The steel industry using electric arc furnaces produces substantial amounts of metal oxide-containing dust. This dust contains a large amount of metal that cannot be dumped at the waste disposal site, which causes a disposal problem. In addition, waste metal means economic loss. In addition to dust, some waste distillate containing metal is generated in the industry, and these distillates offer opportunities for metal recovery and reduction of environmental impact.
1970年代初頭に、Enviroplasプロセスは、冶金産業からスラグ及び粉塵を処理するために、南アフリカで開発された。典型的なプロセスには、ステンレス鋼プラントの粉塵、無煙炭、溶剤、及び基本剤を投入する直流アーク炉を含む。製品は、例えば、投入されたCr並びにNiの90%超を含む合金、及び使い捨てのスラグである。 In the early 1970s, the Enviroplas process was developed in South Africa to treat slag and dust from the metallurgical industry. Typical processes include a DC arc furnace that charges stainless steel plant dust, anthracite, solvents, and basic agents. The products are, for example, alloys containing more than 90% of the charged Cr and Ni, and disposable slag.
欧州特許第1641946B号には、複数の後続工程で金属合金溶融物を製造し、それにより、粉塵及びスラグが、Cr及びNiを回収するためにこのプロセスに再利用される方法が開示されている。 European Patent No. 1641946B discloses a method of producing a metal alloy melt in multiple subsequent steps, whereby dust and slag are reused in this process to recover Cr and Ni. ..
現在、ステンレス鋼製造及びフェロクロム製造からの中間留出物は、様々な指定されたプロセスで別々に処理されている。スラグは、金属回収プラントにおいて冷却された形で処理され、金属酸化物系廃棄物、例えば、バグフィルタの粉塵、ミルスケール、及びスラッジは、一般的に、別々の廃棄物溶解プラント又はごみ処理地で処理される。中間留出物の産出には常にいくらかの量の金属酸化物が存在するが、還元結果を改善するために、これらの留出物を再び溶融することは、一般的には有益ではない。スラグ留出物からの残留金属は、従来、機械的金属回収装置によって回収され、いくらかの金属は、処理後のスラグ中に残存する。 Currently, intermediate distillates from stainless steel and ferrochrome productions are processed separately in various designated processes. Slag is treated in a cooled form in a metal recovery plant, and metal oxide-based waste, such as bag filter dust, mill scale, and sludge, are generally treated in separate waste dissolution plants or waste treatment areas. Is processed by. There is always some amount of metal oxide in the production of intermediate distillates, but it is generally not beneficial to remelt these distillates to improve the reduction results. Residual metal from slag distillate has traditionally been recovered by mechanical metal recovery equipment and some metal remains in the treated slag.
ステンレス鋼製造及びフェロクロム製造からの液体スラグを同じ処理装置で処理するための最新の方法は存在しない。 There is no modern method for processing liquid slag from stainless steel and ferrochrome production in the same processing equipment.
定義
本発明の文脈では、ステンレス鋼スラグとは、ステンレス鋼製造において、スクラップ溶融、AOD/VOD転換、及びレードル処理プロセスで生成されたスラグのことである。
Definitions In the context of the present invention, stainless steel slag is the slag produced by the scrap melting, AOD / VOD conversion, and ladle processing processes in the manufacture of stainless steel.
本発明の文脈では、フェロクロムスラグとは、クロム鉱石からのフェロクロム溶解動作で生成されたスラグのことである。フェロクロムスラグの典型的な組成範囲を表2に提示する。 In the context of the present invention, ferrochrome slag is slag produced by ferrochrome melting action from chromium ore. The typical composition range of ferrochrome slag is presented in Table 2.
本発明は、独立請求項に開示されるものによって定義される。好ましい実施形態は、従属請求項に記載されている。 The present invention is defined by those disclosed in the independent claims. Preferred embodiments are described in the dependent claims.
本発明によれば、フィルタの粉塵、ミルスケール、及びスラッジなどの金属酸化物系廃棄物は、電気アーク炉又は転換炉内のステンレス鋼及びフェロクロム製造からの液体スラグと共に溶融される。著しい特徴は、スラグ投入材料を液相に供給することであり、したがって、溶融及び還元のためのエネルギー要件を著しく減少させる。 According to the present invention, metal oxide-based wastes such as filter dust, mill scale, and sludge are melted together with liquid slag from stainless steel and ferrochrome production in an electric arc furnace or conversion furnace. A significant feature is the supply of the slag input material to the liquid phase, thus significantly reducing the energy requirements for melting and reduction.
発明の詳細
スラグ留出物及び金属酸化物系廃棄留出物からの金属酸化物は、エネルギー節約のために既に溶融相中で乾式冶金することによって金属に還元され、これにより、溶解の利益が向上する。
Details of the Invention Metal oxides from slag distillates and metal oxide-based waste distillates are reduced to metals by dry metallurgy already in the molten phase to save energy, thereby benefiting from melting. improves.
本発明に関連するスラグ留出物は全て、ステンレス鋼及びフェロクロム製造容器(電気アーク炉、転換炉、レードル処理)からのスラグであり、また、前述の金属製造施設からの他の金属又は金属酸化物含有中間留出物、例えば、使用後耐火物である。この技術革新に関連する金属酸化物含有中間留出物は、ステンレス鋼及びフェロクロム製造(例えば、溶解、溶融、粉砕、熱間並びに冷間圧延、及び酸再生施設)からの金属酸化物、硫酸塩、又は水酸化物含有ガス浄化粉塵、スケール、及びスラッジである。 All slag distillates related to the present invention are slag from stainless steel and ferrochrome manufacturing vessels (electric arc furnace, conversion furnace, radle treatment) and other metals or metal oxidation from the aforementioned metal manufacturing facilities. Material-containing intermediate distillate, for example, refractory after use. Metal oxide-containing intermediate distillates associated with this innovation include metal oxides and sulfates from stainless steel and ferrochrome production (eg, melting, melting, grinding, hot and cold rolling, and acid regeneration facilities). , Or hydroxide-containing gas purified dust, scale, and sludge.
本発明の処理方法は、金属酸化物系廃棄物の溶解を溶融スラグ投入材料と組み合わせる。したがって、金属酸化物系廃棄留出物には別々の処理装置が必要とされない。この組み合わせプロセスにより、スラグ中の金属残渣に対する従来の機械的分離も不必要になる。現在の処理方法では、純粋な金属合金及び金属を含まないスラグを産出物として製造する。 The treatment method of the present invention combines the dissolution of metal oxide-based waste with a molten slag input material. Therefore, a separate treatment device is not required for the metal oxide-based waste distillate. This combination process also eliminates the need for conventional mechanical separation of metal residues in the slag. Current processing methods produce pure metal alloys and metal-free slag as a product.
溶解(溶融留出物のエネルギー投入及び金属酸化物の還元)は、交流又は直流電気アーク炉内で実行することができる。また、転換炉容器が好ましい場合には、化学エネルギーを使用することができる。 Melting (energy input of molten distillate and reduction of metal oxides) can be performed in an AC or DC electric arc furnace. Also, if a conversion furnace vessel is preferred, chemical energy can be used.
金属酸化物の還元は、還元剤で行われる。有用な還元剤の例としては、コークス、無煙炭、黒鉛、メタン、プラスチック、及びゴムである。また、他の炭素源も用いることができる。更に、ケイ素及びアルミニウム系還元剤を使用することができる。 The reduction of the metal oxide is carried out with a reducing agent. Examples of useful reducing agents are coke, anthracite, graphite, methane, plastics, and rubber. Also, other carbon sources can be used. Further, silicon and aluminum-based reducing agents can be used.
この文脈における粉塵はまた、ZnOを含んでもよい。本発明による方法で使用するための留出物には、最大寸法100mmの廃棄鋼プラントの粉塵及び粒子状物質を含んでもよい。 Dust in this context may also contain ZnO. Distillates for use in the process according to the invention may include dust and particulate matter from a waste steel plant with a maximum size of 100 mm.
本発明による方法が利用されるとき、金属としてクロム、鉄、及びニッケルの回収は、典型的には90%超である。 When the method according to the invention is utilized, the recovery of chromium, iron, and nickel as metals is typically greater than 90%.
本発明によれば、Cr2O3還元のための最適なスラグ塩基度は、溶融ステンレス鋼スラグ(石灰源として作用する)及びフェロクロムスラグを混合することによって達成される。したがって、天然資源並びにエネルギーを節約する追加の石灰投入及び溶融が不要である。 According to the present invention, optimum slag basicity for Cr 2 O 3 reduction is achieved by mixing molten stainless steel slag (acting as a lime source) and ferrochrome slag. Therefore, no additional lime input and melting is required to save natural resources and energy.
本発明によれば、Cr、Ni、及びMoを含むことが好ましい、複数の連続的かつ同期化された方法工程において、フェロクロム合金を製造するための方法が提供される。
・ 第1の方法工程では、溶融ステンレス鋼スラグ及び溶融フェロクロムスラグは、ステンレス鋼及びフェロクロム製造施設から、溶融スラグの処理プラントに移送される。溶融スラグは、電気アーク炉又は転換炉に投入され、続いて、液体ステンレス鋼スラグ及びフェロクロムスラグを自然混合する。
・ 第2の方法工程では、還元エネルギーは、転換炉を利用する実施形態では、電気又は化学エネルギーの形で溶融物に供給される。また、移送中にスラグがわずかに冷却されるので、所望の溶融温度に達するために、追加のエネルギーも必要とされる。
第3の方法工程では、金属酸化物系廃棄留出物及び還元剤、好ましくは無煙炭が溶融物に導入され、スラグ中の金属酸化物の還元は、最適な温度で行われる。
・ 第4の方法工程では、スラグ中の還元金属液滴は、金属ヒールに沈下させる。金属還元及び沈下の後、スラグ及び金属は、還元炉又は容器から引き出される。
・ 第5の方法工程では、引き出された金属及びスラグは、骨材の形に冷却されるか、又は小滴状粒子に顆粒化される。金属合金はまた、エネルギー節約のために、ステンレス鋼製造施設内の液体として直ちに使用することができる。製造された金属合金は、金属産業で更に使用されてもよく、製造されたスラグは、主として土工中の様々なスラグ製品用途において更に使用されてもよい。
INDUSTRIAL APPLICABILITY According to the present invention, there is provided a method for producing a ferrochrome alloy in a plurality of continuous and synchronized method steps, preferably containing Cr, Ni, and Mo.
-In the first method step, the molten stainless steel slag and the molten ferrochrome slag are transferred from the stainless steel and ferrochrome manufacturing facility to the molten slag processing plant. The molten slag is charged into an electric arc furnace or a conversion furnace, and subsequently, liquid stainless steel slag and ferrochrome slag are naturally mixed.
-In the second method step, the reduction energy is supplied to the melt in the form of electrical or chemical energy in the embodiment utilizing a conversion furnace. Also, as the slag cools slightly during transfer, additional energy is required to reach the desired melting temperature.
In the third method step, a metal oxide-based waste distillate and a reducing agent, preferably smokeless coal, are introduced into the melt, and the reduction of the metal oxide in the slag is carried out at an optimum temperature.
-In the fourth method step, the reduced metal droplets in the slag are subsided on the metal heel. After metal reduction and subsidence, the slag and metal are withdrawn from the reduction furnace or vessel.
-In the fifth method step, the extracted metal and slag are cooled in the form of aggregate or granulated into droplets. Metal alloys can also be used immediately as a liquid in stainless steel manufacturing facilities to save energy. The metal alloys produced may be further used in the metal industry and the slag produced may be further used primarily in various slag product applications during earthwork.
本発明は、添付の図面を参照して、より詳細に例示される。
図1は、容器を使用して、溶融スラグが金属製造施設から溶解施設に移送される方法を示す。液体スラグは、スラグ製造量に相当する量の位相で溶解炉に投入される。加えて、固体スラグ及び固体金属酸化物系廃棄留出物は、投入シュートを介して、サイロから炉内に投入される。余分なエネルギーは、所望の還元温度を達成するために電極によって提供される(金属に対して1500℃~1600℃及びスラグに対して1600℃~1700℃)。炭素系還元剤を添加して、スラグ層からの金属酸化物を金属ヒールに還元する。還元金属液滴又は他の冶金パラメータの沈下速度は、スラグ添加剤、例えば、石英及び石灰によって変更することができる。製造された金属合金の還元及び沈下の後、炉は引き出される。金属合金は、ステンレス鋼製造において液体として使用されるか、又は金属産業で使用するために金属顆粒に顆粒化される。溶解炉から製造されたスラグは、異なる用途のために、空気、水、又はガスによってスラグ製品に顆粒化される。また、スラグ骨材を製造するために、空気冷却を使用してもよい。製造されたスラグは、金属を含まないため、更なる金属分離は必要ではない。 FIG. 1 shows how a vessel is used to transfer molten slag from a metal manufacturing facility to a melting facility. The liquid slag is charged into the melting furnace in a phase corresponding to the amount of slag produced. In addition, solid slag and solid metal oxide-based waste distillate are charged into the furnace from the silo via the charging chute. The extra energy is provided by the electrodes to achieve the desired reduction temperature (1600 ° C to 1600 ° C for metal and 1600 ° C to 1700 ° C for slag). A carbon-based reducing agent is added to reduce the metal oxide from the slag layer to the metal heel. The sinking rate of the reduced metal droplets or other metallurgical parameters can be varied with slag additives such as quartz and lime. After the reduction and subsidence of the metal alloy produced, the furnace is withdrawn. Metal alloys are used as liquids in stainless steel production or granulated into metal granules for use in the metal industry. Slag produced from a melting furnace is granulated into slag products by air, water, or gas for different uses. Air cooling may also be used to produce the slag aggregate. The slag produced does not contain metal and does not require further metal separation.
Claims (6)
-電気アーク炉又は転換炉に、溶融ステンレス鋼スラグ及び溶融フェロクロムスラグを投入して、前記スラグを混合することを可能にする工程と、
-前記電気アーク炉内の前記溶融物に電気エネルギーを、又は前記転換炉内の前記溶融物に化学エネルギーを供給する工程と、
-前記電気アーク炉又は前記転換炉内の前記溶融物に、金属塩を含む少なくとも1つの粒子状物質及び少なくとも1つの還元剤を供給する工程と、
-前記金属酸化物の還元を可能にし、金属合金を形成し、前記金属合金を沈下させることを可能にする工程と、
-前記電気アーク炉又は前記転換炉から、金属合金及びスラグを回収する工程と、を含む、方法。 A method for producing ferrochrome alloys,
-A step of charging molten stainless steel slag and molten ferrochrome slag into an electric arc furnace or a conversion furnace to enable mixing of the slag.
-A step of supplying electric energy to the melt in the electric arc furnace or chemical energy to the melt in the conversion furnace.
-A step of supplying at least one particulate matter containing a metal salt and at least one reducing agent to the melt in the electric arc furnace or the conversion furnace.
-A step that enables the reduction of the metal oxide, the formation of the metal alloy, and the subsidence of the metal alloy.
-A method comprising the step of recovering a metal alloy and slag from the electric arc furnace or the conversion furnace.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20195153A FI20195153A1 (en) | 2019-03-01 | 2019-03-01 | Combined smelting of molten slags and residuals from stainless steel and ferrochromium works |
FI20195153 | 2019-03-01 | ||
PCT/FI2020/050129 WO2020178480A1 (en) | 2019-03-01 | 2020-02-28 | Combined smelting of molten slags and residuals from stainless steel and ferrochromium works |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022523397A true JP2022523397A (en) | 2022-04-22 |
Family
ID=72337367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021551575A Pending JP2022523397A (en) | 2019-03-01 | 2020-02-28 | Combined melting of molten slag and residues from stainless steel and ferrochrome plants |
Country Status (8)
Country | Link |
---|---|
JP (1) | JP2022523397A (en) |
KR (1) | KR20210134310A (en) |
CN (1) | CN113366129A (en) |
CA (1) | CA3129671A1 (en) |
FI (2) | FI20195153A1 (en) |
SE (1) | SE2150998A1 (en) |
TW (1) | TW202033771A (en) |
WO (1) | WO2020178480A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113265534B (en) * | 2021-04-14 | 2023-03-31 | 嘉峪关宏电铁合金有限责任公司 | Low-grade ferrochromium slag recycling production process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000292069A (en) * | 1999-02-03 | 2000-10-20 | Kawasaki Steel Corp | Manufacture of reducing metal from metal content and movable furnace hearth for manufacturing reducing metal |
JP2009041107A (en) * | 2001-06-18 | 2009-02-26 | Kobe Steel Ltd | Method for manufacturing granular metal |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA963234B (en) * | 1995-05-02 | 1996-07-29 | Holderbank Financ Glarus | Process for the production of hydraulic binders and/or alloys such as e g ferrochromium of ferrovanadium |
AT405839B (en) * | 1996-01-17 | 1999-11-25 | Holderbank Financ Glarus | METHOD FOR PRODUCING RAW IRON, COLORED METAL ALLOYS, FECR AND SYNTHETIC BLAST FURNACE SLAGS USING METAL OXIDE CONTAINING WASTE COMBUSTION RESIDUES OR SLAGS |
AT407263B (en) * | 1999-04-22 | 2001-02-26 | Holderbank Financ Glarus | METHOD FOR REPRODUCING STEEL SLAG |
JP2001316712A (en) * | 2000-05-02 | 2001-11-16 | Nippon Steel Corp | Method for recovering chromium from chromium containing slag |
AT412349B (en) * | 2003-06-25 | 2005-01-25 | Voest Alpine Ind Anlagen | METHOD FOR PRODUCING AN ALLOYED METAL MELT AND PRODUCTION PLANT THEREFOR |
KR20050109763A (en) * | 2004-05-17 | 2005-11-22 | 주식회사 포스코 | Method for recovery valuable metals from steel-making slag of stainless steel |
KR100793591B1 (en) * | 2006-12-28 | 2008-01-14 | 주식회사 포스코 | Method for reduction of metallic chromium from slag containing chromium oxide |
CN107058677A (en) * | 2017-05-22 | 2017-08-18 | 山西太钢不锈钢股份有限公司 | A kind of smelting process of utilization stainless steel electroslag |
CN108676942A (en) * | 2018-05-18 | 2018-10-19 | 廖辉明 | The materials such as a kind of iron content and/or zinc lead bronze tin cooperate with processing recovery method with molten steel slag |
-
2019
- 2019-03-01 FI FI20195153A patent/FI20195153A1/en not_active Application Discontinuation
-
2020
- 2020-02-27 TW TW109106471A patent/TW202033771A/en unknown
- 2020-02-28 CN CN202080012085.9A patent/CN113366129A/en active Pending
- 2020-02-28 SE SE2150998A patent/SE2150998A1/en unknown
- 2020-02-28 CA CA3129671A patent/CA3129671A1/en active Pending
- 2020-02-28 JP JP2021551575A patent/JP2022523397A/en active Pending
- 2020-02-28 KR KR1020217025564A patent/KR20210134310A/en unknown
- 2020-02-28 FI FI20217132A patent/FI20217132A1/en unknown
- 2020-02-28 WO PCT/FI2020/050129 patent/WO2020178480A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000292069A (en) * | 1999-02-03 | 2000-10-20 | Kawasaki Steel Corp | Manufacture of reducing metal from metal content and movable furnace hearth for manufacturing reducing metal |
JP2009041107A (en) * | 2001-06-18 | 2009-02-26 | Kobe Steel Ltd | Method for manufacturing granular metal |
Also Published As
Publication number | Publication date |
---|---|
TW202033771A (en) | 2020-09-16 |
CA3129671A1 (en) | 2020-09-10 |
FI20195153A1 (en) | 2020-09-02 |
CN113366129A (en) | 2021-09-07 |
WO2020178480A1 (en) | 2020-09-10 |
KR20210134310A (en) | 2021-11-09 |
SE2150998A1 (en) | 2021-08-12 |
FI20217132A1 (en) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Menad et al. | Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust | |
JP5873600B2 (en) | Nonferrous metallurgical slag processing method | |
RU2226220C2 (en) | Steelmaking slag reprocessing method | |
WO2007066350A1 (en) | A process for recovery of iron from copper slag | |
CN102337408B (en) | Two-step reduction method for recycling stainless steel scales | |
Hanewald et al. | Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO | |
JP2022523397A (en) | Combined melting of molten slag and residues from stainless steel and ferrochrome plants | |
JP2001316712A (en) | Method for recovering chromium from chromium containing slag | |
JP6451462B2 (en) | Method for recovering chromium from chromium-containing slag | |
Yang et al. | An environmentally benign process for effective recovery and solidification of Cr from stainless-steel slag | |
JP4932309B2 (en) | Chromium recovery method from chromium-containing slag | |
Schweers et al. | A pyrometallurgical process for recycling cadmium containing batteries | |
WO2018168472A1 (en) | Production method for metallic manganese | |
JP3705498B2 (en) | Method for recovering valuable metals from waste containing V, Mo and Ni | |
JP4485987B2 (en) | Method for recovering valuable metals from waste containing V, Mo and Ni | |
JP2004270036A (en) | Recovering method of useful metal from useful metal-containing waste | |
JP2000204420A (en) | Recovery of valuable metal from vanadium-containing waste | |
JP5532823B2 (en) | Method for recovering valuable metals from waste batteries | |
Sviridova et al. | Determination of the Basic Parameters of the Recovery Process for Extracting Iron from Iron and Steel Slag | |
JP2001098339A (en) | Method of producing vanadium alloy iron and vanadium alloy steel | |
JP2015063744A (en) | Method for recovering metal | |
Lentiuhov | Modern aspects of metal-containing waste processing using electroslag technologies | |
KR102689605B1 (en) | How to utilize metal oxide-containing side streams in the ferrochrome smelting process | |
Wegscheider et al. | The 2sDR process-innovative treatment of electric arc furnace dust | |
Qu et al. | Investigation of converter copper slag reduction using spent cathode carbon as a reductant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210903 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20211228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240327 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240626 |